Synthesizing Data Programs

Michael Cafarella

University of Michigan
Ann Arbor, M| 48103
michjc@umich.edu

1. ABSTRACT

At least two important tasks in modern data manage-
ment exist outside traditional database models and query
languages: data transformation and feature programs. Data
transformation is the informal preprocessing code that trans-
forms raw data into a dataset that is appropriate for import
into a relational database for deeper analysis. Feature pro-
grams transform raw data into a compact piece of training
data that is suitable for use in a statistical training pro-
cedure. These two tasks are driven by two applications
that are intellectually exciting, economically important, and
which rightfully garner substantial attention in the database
community: data analytics and machine learning.

Unfortunately, to date, both data transformation and fea-
ture programs have largely existed in an ad hoc netherworld
of Python programs and shell scripts. Consider a stock
trader engaged in an analytics task, who is interested in
downloading a text file that describes large executive stock
sales. The trader’s intention is to identify “suspicious stocks”
from the executiveSale table described by the text file, then
perform a semijoin between the query answer and her pre-
existing stockHoldings table; the result will identify stocks
that she wants to consider selling. But before she can do
so, she must do some critical data transformation: she must
write a regular expression to capture triples of stockSym-
bol, executiveName, sharesSold; then multiply the sharesSold
number by the share price; then translate numeric values to
the correct binary formats; then finally emit the results in a
format that can be imported by her RDBMS.

Current practice is for the trader to write the above steps
in a small but monolithic program in a mixture of Python,
XPath, regular expressions, or perhaps some similar lan-
guages. It is perhaps not surprising that engineers use a
range of tools here: a large part of the problem is that the
input data can come described in almost any model, includ-
ing informal ones. However justified, the resulting programs
remain burdensome to write, easy to write incorrectly, hard
to maintain in the face of changes to either the input text or
the output schema, and opaque to the database optimizer.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

Previous work has addressed some of the problems de-
scribed above. Wrangler focused on data transformation
for spreadsheet-style grids [2]. Wrapper induction work at-
tempted, with some success, to induce input-custom text
processors [3]. Researchers have proposed optimizers for
text tasks outside the RDBMS [1]. However, none of these
solutions has yet obtained widespread popularity. Moreover,
it seems a shame to have a series of piecemeal solutions for
what might be a single intellectual problem — automatically
synthesizing programs that are usually:

1. Quite short.

2. Written in constrained languages, such as regular ex-
pressions.

3. Easy to check for correctness, by applying them to a
known input and testing the program output. In the
case of data transformation programs, we can test if
the output matches the target relational schema. In
the case of feature programs, we can test if the result-
ing training data improves a machine learning task.

We propose a system for synthesizing data programs. The
system takes as input a description of the desired output
language, some task-specific training examples, and some
optional hints from the user. The system emits a small pro-
gram in the target language. This system should be adapt-
able to a huge range of inputs and target languages. In
practice, we expect that most users will choose one of sev-
eral “off the shelf” target languages and only provide the
system with data-specific assistance.

Researchers in the programming languages community have
had some success with synthesis in similarly constrained set-
tings, such as inferring correct multithreaded locking code [4].
Like those systems, we propose to model program synthesis
as a constraint satisfaction problem. We have been building
a data program synthesis system and have some promising
initial results.

2. REFERENCES

[1] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. To
search or to crawl?: towards a query optimizer for
text-centric tasks. In SIGMOD Conference, pages 265-276,
2006.

[2] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
interactive visual specification of data transformation
scripts. In CHI, pages 3363—-3372, 2011.

[3] N. Kushmerick. Wrapper induction: Efficiency and
expressiveness. Artif. Intell., 118(1-2):15-68, 2000.

[4] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI, pages 136-148, 2008.



