
Inner CALM:
Concurrency control protocols through the looking glass

Peter Alvaro

ABSTRACT

The CALM theorem—which states that monotonic programs
produce consistent distributed outcomes without coordina-
tion [2, 4]—originated with the (mirror image) observation
that mechanisms for ensuring consistency (e.g., concurrency
control and other coordination protocols) cannot be imple-
mented with purely monotonic logic [5]. Since that time,
CALM has been a useful guiding principle for deciding whether
costly protocols are necessary to ensure correct program out-
comes [1, 3, 10]. Recalling CALM’s roots in protocol imple-
mentation, we might be tempted to ask if we can apply a
finer-grained monotonicity analysis to study the implemen-
tations of coordination mechanisms themselves. For exam-
ple, do certain concurrency control protocols fundamentally
require more coordination or synchronization than others?

In 2011 and again in 2012, Joe Hellerstein and I taught
a class at Berkeley that presented fundamental distributed
systems concepts and mechanisms through the lens of soft-
ware development in the Bloom language. Students be-
gan with a simple key/value store implemented in Bloom;
class projects continually enriched the store with additional
mechanisms, including reliable and causal delivery, quorum
replication, multi-key transactions supported by 2PL and
MVCC, and commit protocols. Along the way, the students
turned the CALM static analysis machinery inwards, using
it to study the coordination protocol implementations them-
selves.

Some interesting results emerged that we will share in this
talk. Monotonicity analysis allowed us isolate and study the
fundamental cost of concurrency control protocols—namely,
when (and for what) processes are forced to wait, hence los-
ing the opportunity to do useful local work. The results of
such analyses are invariant to the scale (ranging from proces-
sor cache to planetary) of the systems that use them, as well
as to underlying (but rapidly changing) system assumptions
about capacity, random I/O latency and network reliability.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

Of particular interest is our assessment of the MVCC pro-
tocols, which can be expressed almost entirely using mono-
tonic logic: CALM analysis indicates that waiting is funda-
mentally only required for timestamp assignment. Recent
hardware trends make many of the historical shortcomings
of MVCC, including random I/Os and storage requirements,
less concerning—together, these observations help to explain
the renewed interest in multi-valued concurrency control in
large-scale distributed storage systems [6–9].

1. REFERENCES
[1] S. Abiteboul, E. Antoine, and J. Stoyanovich. The

Webdamlog System Managing Distributed Knowledge
on the Web. CoRR, abs/1304.4187, 2013.

[2] P. Alvaro, N. Conway, J. Hellerstein, and W. R.
Marczak. Consistency Analysis in Bloom: a CALM
and Collected Approach. In CIDR, 2011.

[3] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier.
Blazes: Coordination analysis for distributed
programs. In ICDE, 2014.

[4] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational Transducers for Declarative Networking. In
PODS, 2011.

[5] J. M. Hellerstein. The Declarative Imperative:
Experiences and conjectures in distributed logic.
SIGMOD Record, 2010.

[6] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
Concurrency Control Mechanisms for Main-memory
Databases. Proc. VLDB Endow., Dec. 2011.

[7] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka,
H. Plattner, J. Krüger, and M. Grund.
High-Performance Transaction Processing in SAP
HANA. IEEE Data Eng. Bull., 2013.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger Semantics for Low-latency
Geo-replicated Storage. NSDI’13.

[9] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional Storage for Geo-replicated Systems.
SOSP ’11.

[10] M. Takada. Distributed Systems for Fun and Profit.
http://book.mixu.net/distsys/, 2012.


