
Let’s Rethink Join Optimization in Distributed Systems

Semih Salihoglu
Stanford University

semih@cs.stanford.edu

ABSTRACT
Distributed shared-nothing systems that process large-scale data
has seen unprecedented developments over the last decade. The
advent of Google’s MapReduce [2] and Hadoop [3] has been fol-
lowed by a series of systems with relational operators or SQL-like
interfaces, such as Pig [8], Hive [10], Spark [12], SparkSQL [9],
and Myria [4]. One of the core operations performed by these
systems is evaluating relational joins. Along with these systems
developments, there has also been very exciting progress on join
algorithms both in the serial and distributed settings. However, the
algorithmic progress in joins and the developments in large-scale
data processing systems have not yet met. Current systems typi-
cally perform pairwise join plans, which perform well on data with
primary and foreign key constraints, but are ill-suited and subopti-
mal for more complex sparse data that many modern applications
process [7]. As new distributed data processing systems are rapidly
being developed, we believe it is the right time to rethink how joins
should be optimized in these systems. In this abstract, we argue
that there is a promising opportunity to implement and experiment
with a new set of join algorithms in distributed systems. Table 1
summarizes the algorithms we discuss and their properties.

The specific problem we consider is the evaluation a conjunctive
join query Q of m relations R1, ..., Rm on a cluster of p distributed
machines. Let IN and OUT be the size of the input tables and output
of Q, respectively. Let MAX-OUT be the maximum possible output
of Q under all instances of the input tables. We characterize the
performance of distributed algorithms with two parameters: (1) the
number of rounds of communication required between machines;
and (2) the network IO cost of the algorithm, which consists of
the total communication incurred between the machines including
writing the results to a distributed file system or database.

The optimal one-round join algorithm is the Shares algorithm,
introduced by Afrati et. al. [1] in the MapReduce context. The
cost of Shares can be characterized as O(f(p)IN + OUT) [1], where
f(p) is a non-decreasing function in the level of parallelism. In other
words, the cost of Shares increases as we increase the level of paral-
lelism, where the rate of the increase depends on the specific query.

Shares’ optimality as a one-round algorithm has shown that the
only way to evaluate joins more efficiently in parallel is to de-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA..

Name Rounds Query Class Network I/O Cost
Pairwise Joins Multi general O(INm−1 + OUT)
Shares [1] One general O(f(p)IN + OUT)
D-Y [5, 11] Multi acyclic O(IN + OUT)
D-GJ [5, 7] Multi general O(IN + MAX-OUT)
D-Yan-GJ [5] Multi treewidth-w O(INw−1 + OUT)

Table 1: Distributed Join Algorithms.

sign multi-round algorithms. The following three multi-round algo-
rithms offer different cost guarantees for different classes of queries.
We classify the queries according to their cyclicity. All of the three
algorithms avoid any dependency on the level of parallelism and
execute for a constant number of rounds, where the constant of
each algorithm depends on the query.
1. Distributed Yannakakis (D-Y) [5, 11]: For acyclic queries, a

distributed version of the famous algorithm of Yannakakis [11]
achieves the asymptotically best network I/O cost of O(IN +
OUT).

2. Distributed Generic Join (D-GJ) [5, 7]: For general queries,
the distributed version of Generic Join—a recent serial algo-
rithm with provably worst-case runtime guarantees—achieves
the worst-case optimal network I/O cost of O(IN + MAX-OUT).

3. Hybrid Distributed Yannakakis and Generic Join (D-Yan-
GJ) [5]: For queries with bounded treewidth of w [5], i.e.,
bounded degrees of cyclicity, a hybrid version of D-Y and D-GJ
can achieve a network I/O cost of O(INw + OUT). This can be
considered a middle point between the guarantees of D-Y, and
D-GJ.

In contrast, pairwise join plans can generate unnecessarily large
intermediate outputs, as large as INm−1, which is asymptotically
suboptimal to the algorithms we have discussed, including Shares.

We believe the developments in the theory of distributed join al-
gorithms suggest that we should next implement and experiment
with these algorithms in existing systems. In particular, we should
compare their performances against each other and the join plans of
existing systems under four different parameters: (1) query classes;
(2) parallelism scales; (3) input skewness; and (4) execution en-
vironments, e.g., Hadoop-like disk-based systems, Spark-like sys-
tems with caching features, or Naiad-like [6] systems with stream-
ing capacities. These parameters are very rich and pose oppor-
tunities for multiple groups to do valuable systems research. We
welcome the systems research of other groups on distributed join
algorithms and hope that some of these algorithms can enter the
optimizers of existing distributed systems, all told making a signif-
icant contribution to a very fundamental problem that has been at
the core of database research.



1. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in a

Map-Reduce Environment. IEEE Trans. Knowl. Data Eng., 23(9),
2011.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In Proceedings of the Symposium on Operating
System Design and Implementation, 2004.

[3] Apache Hadoop. http://hadoop.apache.org/.
[4] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,

D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu,
M. Balazinska, B. Howe, and D. Suciu. Demonstration of the Myria
Big Data Management Service. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2014.

[5] C. R. M. Joglekar, S. Salihoglu. D-Y. Technical report, Stanford
University, August 2014. http://infolab.

[6] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A Timely Dataflow System. In Proceedings of the
ACM Symposium on Operating Systems Principles, 2013.

[7] H. Q. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New
Developments in the Theory of Join Algorithms. SIGMOD Record,
42(4), 2014.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2008.

[9] Spark SQL. https://spark.apache.org/sql/.
[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,

H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solution
Over a Map-Reduce Framework. Proceedings of the VLDB
Endowment, 2(2), 2009.

[11] M. Yannakakis. Algorithms for Acyclic Database Schemes. In
Proceedings of the International Conference on Very Large Data
Bases, 1981.

[12] Zaharia, M. and Chowdhury, M. and Franklin, M. J. and Shenker, S.
and Stoica, I. Spark: Cluster Computing with Working Sets. In 2nd
USENIX Conference on Hot Topics in Cloud Computing, 2010.


	References

