
Looking at Everything in Context

Zachary G. Ives1 Zhepeng Yan1 Nan Zheng1 Brian Litt2,3 Joost B. Wagenaar3
Departments of Computer & Information Science1, Bioengineering2, and Neurology3

University of Pennsylvania
Philadelphia, PA, USA

{zives,zhepeng,nanzheng}@cis.upenn.edu, littb@mail.med.upenn.edu, joostw@seas.upenn.edu

ABSTRACT
The database field has increasingly broadened past carefully
controlled, closed-world data, to consider the much more
complex space of data resources on the Web. In this area of
“open” Web and contributed data, there are vast quantities
of raw data — but there is a limited understanding about
real or realistic usage scenarios and problems.

In turn, this has made it difficult to assess the effectiveness
of data integration and structured search techniques. To
take the next step, data integration researchers need to pool
their resources around a small number of cloud-hosted “hub”
applications with real users, to gain access to the sorts of
workload-driven evaluations that are only possible in industry
today. We present our early work on the Habitat system,
an extensible data hosting and management platform for
evaluating integration techniques in situ. We describe an
initial deployment in a neuroscience setting, including “mid-
term”lessons learned in building the platform and community.
We conclude with a set of research challenges that we believe
will be instrumental in accelerating open data integration.

1. INTRODUCTION
The data management world has changed substantially over
the past decade: users have higher expectations for being able
to query and analyze data, yet the data increasingly comes
from open (dirty, inconsistent, incomplete, heterogeneous,
often unstructured) sources, such as direct user contributions
or Web crawls. Efforts to solve open data integration (“Web
data integration,”“dataspaces” [20], the “Semantic Web” [8],
“knowledge graphs” [10], etc.) aspire to help users query
across relationships instead of just within documents.

To address these new challenges, there has been a blurring
of the lines dividing databases, search, natural language pro-
cessing, and knowledge representation, as well as increasing
emphasis on crowdsourcing and semantic data extraction
and integration. Examples of algorithmic and systems inno-
vations in recent years include modeling of uncertainty [42],
automated Web-scale data extraction [13, 16, 44], new tech-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR’15)
January 4–7, 2015, Asilomar, CA USA.

niques for schema and entity alignment [17, 19, 41], and
reasoning about provenance, responsibility, and trust [28, 36].
New visions have been proposed to develop pay as you go
integration [20, 43], and to incorporate human (crowd) com-
ponents into querying [21].

Yet, this progress on algorithms and methodologies has
seldom translated into end-to-end solutions to integration
problems. Perhaps the biggest issue is that we only have
a limited understanding of the problems we need to solve.
Instead of the traditional TPC-H-style closed-world with
answers based on logical expressions, with measures that can
be precisely computed from the data — we have a world of
approximate-matching metrics that must be tailored to data
characteristics, and ranked query answers whose utility often
must be evaluated with respect to the user’s goals. Yet today
we typically can only conjecture about integration scenarios
and user goals.

The result of all of this is that many fundamental ques-
tions remain unanswered. We do not know what the “killer
applications” are for open data integration, nor what levels of
query expressiveness and semantic integration are necessary
for the common use cases. There are many potential ways of
designing the layers of an integration solution (extraction [49],
matching [41], query answering [45]) that produce approx-
imate results; and of using ranking strategies or machine
learning techniques to compose these [7, 47]. Techniques
are being proposed to explore using human and automated
approaches together [21, 47]. Yet we have little guidance
about what works well in practice.

We have great data resources on the Web: Freebase [10],
DBpedia [2], YAGO [44], GenBank [38]. However, other
than perhaps research challenges like the Open Ontology
Alignment Initiative (oaei.ontologymatching.org) and the
TREC Knowledge Base Acceleration effort (trec-kba.org),
we lack a good picture of how they would actually be used.

1.1 Missing Capabilities from Academia
Google, Facebook, and Microsoft (Bing) do understand the
usage patterns of their platforms, by virtue of their scale and
their direct interface to users. Instead of generating synthetic
workloads over available data, these companies monitor real
users, searches, and data. This view at scale yields many
benefits [25]:

• Network effect. Many resources are only useful if
there is enough adoption. Consider the success of
Wikipedia and Facebook, and the challenges that alter-
native platforms have had in replicating their success.
Many academic efforts, even if they leverage real data,

oaei.ontologymatching.org
trec-kba.org


have the problem of limited visibility and usage.

• Usage patterns. Both in terms of data and users,
industry has insight into what data is being processed,
and how people are using it. Simple frequency analyses
of term co-occurrences, click-throughs, etc. are very
effective in identifying what matters. Machine learning
becomes useful once there is training data.

• A/B testing and field experiments. As described
in [4, 14, 23, 48], Web companies do extensive A/B test-
ing to measure the impact of certain features. Such test-
ing methodologies, at sufficient scale, provide evidence-
based means of assessing ranking functions, alignments,
data presentation methods, etc.

• Surveys and polls. Another challenge in academia
tends to be finding representative subjects for user
studies or surveys. Thus some researchers turn to
Amazon Mechanical Turk to conduct certain kinds of
studies [35]. However, an existing user base can be a
more representative and informative population.

Such capabilities help inform what problems are most impor-
tant (the “80% solutions”), show where the bottlenecks are,
and identify what provides the most benefit. Google, Bing,
and Facebook credit many improvements to usage-driven
evaluation. It seems clear that the open data integration re-
search area needs similar capabilities (and also that industry
is not yet directly focused on this subfield).

1.2 Academic “Living Labs”
A key question is how can we acquire the types of insights
available at a Google or a Facebook from academia, while
focused on problems at the “bleeding edge”. Can our com-
munity create “living laboratories,” which enable researchers
to collaborate with real users (doing real work) in evaluating
their novel algorithms, metrics, interfaces, and tools? We
argue that the state of technology and science have advanced
to the point is indeed yes, if we are strategic. We describe
our steps towards this long-term vision:

• We identify promising application domains in need of
community data sharing solutions, which might provide
a lens into actual behavior (Section 2.1).

• We describe our early work on the Habitat platform,
which has been designed not to solve a specific set of
data integration needs, but rather to enable in situ
evaluation of alternative techniques developed by the
research community (Section 2.2).

• We describe our initial lessons learned in specializing
the Habitat platform towards neuroscience research,
through the IEEG.org portal (Section 6).

• We propose a set of challenge problems that must be
addressed to further flesh out the vision of a series of
community-specific “living laboratories” for data man-
agement research (Section 7).

Our hope is that our Habitat platform, as well as a small
number of others strategically positioned in communities that
can make use of open data integration techniques, might serve
as the foundation of a new generation of data integration
research backed by user and workload-driven studies.

2. LIVING LABS FOR DATA INTEGRATION
Over the past decade, our group has been involved in a
variety of data integration and sharing efforts with academic
(generally scientific) collaborators [29, 40]. Each effort has
faced many obstacles in attempting to use it as an evaluation
domain for computer science research techniques.

A major challenge is ensuring that the user community
can be productive in their own areas of focus, while offering
computer science researchers the opportunity to incorporate
new experimental features that could be evaluated. This
requires an initial long-term investment in developing core
functionality, and constant effort in promoting the effort.

Unfortunately, a requirement from the computer science
perspective is that the effort achieves significant scale. If one
is to achieve the vision of a “living laboratory,” this requires
adoption by a large enough user community, who has data
as well as expertise in analyzing the data. Moreover, it must
be possible to get a bird’s eye view of the users, data, and
code (using a hosted solution, like Google or Amazon RDS,
as opposed to providing a tool like PostgreSQL).

We believe that this goal is now achievable for the first
time. Many research areas with interesting data are suddenly
re-orienting into data-centric fields: for instance, consider the
recent changes in neuroscience (with the BRAIN initiative),
or the emerging areas of network science and the movement
in sociology towards Web- and digital social network-based
user studies. We discuss these and other promising areas in
Section 2.1.

Moreover, with the advent of modern cloud-hosted services
and tools, and successful open source or user-contributed
models, it becomes feasible to build, host, and operate
community-scale software and services. Consider how Eclipse
and Linux provide core support for a wide variety of differ-
ent sub-projects, and how GitHub and StackOverflow serve
tremendous numbers of collaborating users. A prerequisite,
however, is a core platform that can be customized to the
needs of the application domain and to the needs of database
researchers. We describe our prototype platform, which we
call Habitat, in Section 2.2.

2.1 Finding a Foothold
Finding the right “foothold” applications is a significant chal-
lenge. Our own experience has been that the most critical
aspect is strong collaborator in the target domain, who is
a leader and influential figure in his or her field. Building
novel and useful tools is not enough; one needs visibility and
connections to foster platform adoption and sustainability.
An additional consideration is that it is generally easier to
gain traction in a discipline with little data management
infrastructure, versus one with a large legacy base. In ei-
ther case, however, a great deal of work must be invested in
changing people’s habits (see Section 6.2).

To drive data integration research, there is also a require-
ment for some minimum level of diversity, complexity, and
open-endedness to the problems. Standard file formats, tradi-
tional keyword search, and hand-coded queries are adequate
solutions for certain classes of applications. Database-style
solutions lend themselves towards answering queries in a
“heavy tailed distribution”: large numbers of queries that
are individually seldom-asked. Thus we must seek the latter
properties.

Even with these filter criteria, there are many possible
“foothold” applications through which data management re-



Ingest

Core Library: Extractors, Measures, Algorithms

         User-Driven Processing

Storage & Query Layer

Cataloging, 

Extraction, 

Indexing

(partial ETL)

Data 

content

User

profiles

Query

Formulator

Interactive 

UI

Online 

learner

Periodic Content Processing

Query User updates 

& feedback

Ranked

query results

New source

discovery / 

upload

Search / 

task 

selection

Offline 

learning

Workload &

Provenance

Training 

Data

Feature

Weights

Task 

Prioritizer

Offline 

learner
Query

Formulator

Data View

Online 

learner

Evaluation Management

Alternate

Configs

User 

Selection

Design Analytics

Survey

Feedback

Timing &

Usage

Event Bus

Support 

Services

Task 

Services

Evaluation 

Services

Sampling 

/ Profiling

Sampling 

/ Profiling
Entity 

resolution

Entity 

resolution
Feature

extraction

Feature

extraction
Schema

alignment

Schema

alignmentIndexing
ClusteringInfo

extraction
CleaningInfo

extraction

Info

extraction

Figure 1: Habitat architecture diagram

search might be driven, particularly within biomedical and
social science fields that are just beginning to focus on data-
driven methodologies. Several promising domains include
neuroscience (Section 6), the intensive care unit and hospital
emergency room, cardiology, wearable or implantable devices,
and emerging efforts to bring “big data” techniques to the
social and behavioral sciences. The main ingredients are a
reasonable amount of digital data, a community consensus
that data analysis can yield new insights, and a strong col-
laborator who can co-lead the effort from within the domain.
Additionally, the ideal situation is that researchers (both
from the database field and the target domain) will focus on
a small number of central collaborative efforts, rather than a
multitude of competing platforms.

2.2 The Habitat Platform
We have previously constructed numerous data integration
systems [26, 28, 31], as well as several biomedical applica-
tions. Based on this experience, we have been developing a
unified platform that can be easily customized to serve the
needs of various application domains — yet also supports new
research at any layer of the data integration stack, possibly
even extending to computer-human research (e.g., crowd-
sourced computation, collaborative filtering), self-tuning re-
search (e.g., more efficient storage systems), and methods
for visualization and querying of data.

Our early prototype Habitat platform (Figure 1) is built
to accept a set of “pluggable” components at different levels;
this is in contrast to typical database systems that provide
integrated solutions. Our goal is a repurposable framework
for interconnecting various third-party-provided modules,
much like Eclipse does today for software development tools.
One of our key focal points is the interaction between the
data integration platform (the area in which the database
community is most comfortable) and the user-facing software.
Habitat modules should be possible to mix and match

for different target domains with different constraints — and
it should be feasible to configure them to do in situ eval-
uation of alternative strategies, e.g., A/B testing [4]. To
achieve scale and elasticity, the platform is designed to be
cloud-hosted, using standard cloud building blocks (Web
application servers, key-value stores, hosted RDBMSs, load
balancers, etc.).

For flexibility we adopt a “pay as you go” data integration

model [20, 43] that heavily builds upon our recent Q Sys-
tem [46, 47, 51]. Our platform can store (or link via the Web
to) data of any type, e.g., as objects within a key/value store.
However, the amount of query functionality will depend on
how much extraction, translation, processing, and linking has
been applied to the data. These processing steps may occur
over time, and may be directed by humans or algorithms.

Our main objective is flexibility, with performance a sec-
ondary goal that we address on an as-needed basis, after
conducting real evaluation. We adopt a very general graph
data model, where nodes represent data items and edges
represent (possible) links. In contrast to RDF and other
similar data, each node and edge in our platform (as with
our Q System [47]) is associated with a set of features that
can be used to derive a score. These features can include
data provenance, scores from various matchers or recognizers,
attribute values from the data, and so on. The algorithm for
computing the scores, and for returning top-k ranked results,
can be customized for the application.

Habitat is designed to operate as a cloud-based Platform-
as-a-Service (PaaS) with additional, configurable, Software-
as-a-Service (Saas) front-end modules for search, visualiza-
tion, and evaluation. We divide the architecture of Habitat
into three service categories. Support Services are shared
across system components and invoked via a common inter-
face. Task Services initiate processing of the data. Finally,
the Evaluation Management Service allows us to configure the
other components, possibly on a per-user or per-experiment
basis.

3. SUPPORT SERVICES
The Support Services provided by the Habitat platform are
illustrated in the bottom tier of Figure 1. They encompass
the storage layer, communications mechanisms for modules,
and the library of operators that can be applied to manipulate
or parse the data.

3.1 Storage Layer
The middleware Storage Layer takes a variety of raw data
types (binary files, text, time series, tuples, XML, JSON,
hyperlinks, graph data) and stores them according to a con-
figurable policy. In our existing platform, there are multiple
underlying storage systems, including a large-object key-value
store (currently Amazon S3 or the filesystem), a small-object



Dataset

patId studyIdPatient

name condition

smith

                
            

has-a
has-a

has-a
has-a

contains 121

contains

34

contains

EEG

study

has-ahas-a

file

34

contains contains
file

has-a

contains

   patient
has left temporal
lobe epilepsy   

Image

desc

has-ahas-a

file contains

smith

contains

Figure 2: Example content graph upon load of several database tables and text documents. This virtual
graph is partitioned across several subsystems in the Storage Layer. Each edge and node is also annotated
with a set of features (not shown) from which quality or relevance scores will be derived.

key-value store (MongoDB), and a relational DBMS. We
allow for links across the various data storage subsystems,
such that the data is abstractly a single content graph in
which both nodes and edges can have weighted features. The
model and storage formats extend those we developed for
the Q Query System [32, 46, 47, 51].

Example 1. See Figure 2 for a simplified content graph
for neuroscience data uploaded by users. Perhaps one data
provider uploads patient metadata in the form of a Patient
table that references a clinician’s PDF document. Another
uploads a collection of EEG traces in a file format called MEF,
which includes header information that about the associated
dataset; as well as a set of records for the Dataset table.
A third source provides Image data. Through pay-as-you-go
data integration techniques developed in the Q System [46,
47] and implemented in the Task Services layer (Section 4),
Habitat should ultimately discover links among the provided
data.

Beyond encoding the core data of interest, the storage
layer also records provenance for derived data. Provenance
comes in a variety of forms. For database-style views and
queries, we capture derivations using a variant of the semiring
provenance formalism, encoded in relations [24, 33]. We aug-
ment this style of provenance with in formation about which
results were observed by the user, and any user feedback
or actions on the data items. Of course, much of scientific
data processing goes beyond database-style queries to “black
box” data functions (e.g., in MATLAB, Python, R, or Java).
Here, we use a traditional graph representation of inputs
and data flows [6, 34, 39]. Ultimately we hope to use a
combination of the ideas from ProQL [33] and Lipstick [1]
to allow for complex reasoning and link analysis over the
provenance (and associated log records). We believe that
there are many opportunities for harnessing the data prove-
nance and usage information to make quality assessments
and recommendations [30].

Another key task of the Storage Layer is to maintain
collections of data used for algorithm training. These are
generally curated by data experts, who additionally create
gold standard annotations.

Finally, the Storage Layer maintains assigned weights for
various features that contribute to the scoring model. As we
describe in the next section, these weights can be customized

per user and collaborative filtering techniques [50] can be
used to customize them across the user community.

3.2 Event Bus
In contrast to a standard database system, Habitat is very
focused on third-party extensibility of its core functionality.
We envision that our team or other collaborators will continue
to come up with new modules that enable visualization of
different datatypes, modules that enable the creation of
custom survey forms or usage modes, and so on.

To facilitate this, we borrow an abstraction commonly
used in extensible event-driven software: the Event Bus.
Modules, particularly those that interact with the user, can
register themselves as listeners (using the standard event-
condition-action paradigm) when an event occurs. Various
system services trigger events whose descriptions are sent
as messages along the event bus. Typical events include
the registration of a new dataset to the “Ingest” module
of Section 4, a successful user login, or the completion of
an analysis job. The Event Bus is also used to coordinate
requests across distributed deployments of Habitat.

3.3 Core Library of Operators
Finally, Habitat contains a library of typed operators, which
are strongly typed in terms of their inputs and outputs. The
Core Library includes:

• Extractors and file format readers, which allow us to
“pull” semantic content from files or complex data struc-
tures, or to determine (machine learning-style) features
that affect the score of a result. In general, we assume
that multiple different extractors may be applicable to
any given file or data object.

• Measures compute a semantic distance between items,
such as schema elements or data values. These com-
monly represent matchers from schema matching [22,
41] and record linking [19]. In Habitat we use a variety
of off-the-shelf algorithms from COMA++ [15] as well
as our own custom algorithms [46]. In principle, any
clustering coefficient could also be used, although we
have not yet investigated this possibility.

• Finally, we allow for algorithms (clustering, sampling,
annotation, scientific data analysis) that condense, con-
nect, or produce sketches of data. These will generally



be domain-specific, and triggered by the end-user or a
custom plugin module.

Each operator typically creates new nodes and/or edges
that are added to the content graph. Such outputs are
annotated with features indicating the operator(s) that pro-
duced them, enabling the system to associate a reliability or
confidence weight with each operator. The Core Library’s
operators are used within the task-oriented subsystems of
the platform.

4. TASK SERVICES
We divide the main task services into an ingest service for
handling new content, a periodic content processing service
that provides prioritized background processing of existing
data, and an online processing service that handles user
queries, updates, and external API usage. We describe each
of these components in more detail.

4.1 Ingest
Experience has shown that users will be more willing to
contribute data if they are not required to do any conver-
sion or processing on their end. Hence any user upload
triggers an event on the Event Bus. In turn this ultimately
invokes the ingest service, a variant of the standard ETL
(extract/transform/load) pipeline used in many data ware-
housing settings. The Ingest stage uses typing information
to identify any relevant workflows that perform tasks related
to data extraction, transformation, quality analysis, and so
on.

Of course, it is not necessarily the case that we have a full
set of ETL tools to convert any user’s data into a unified
form. Thus we emphasize an extensible, incremental ingest
process. As each data collection is uploaded, we store it as a
collection of binary objects, along with available metadata
about the collection.

If the appropriate file format readers are available, the
Ingest stage will read the data out and create new nodes
and edges in the content graph of the Storage Layer, anno-
tated with features that will result in confidence scores. It
additionally indexes any textual content using an inverted
index.

4.2 Periodic Content Processing
Rather than assuming a set of regularized stages that take
raw data and convert it into warehoused data, we adopt a
more general model that allows for iterative refinement of
the data content and system operation over time.

The periodic content processing module is given a set
of event-action-condition rules that poll the data to see if
further processing can be done. Each action consists of a
sequence of Core Library operators, e.g., to extract content
from a BLOB of a known file type, to run a data quality
measure, or to better link the data in the system by running
entity resolution or schema matching algorithms. Note that
as the system is running, further operators may be registered
with the Core Library, thus increasing the set of potential
transformations or operations that can be invoked.

Of course, the space of potential operators may be much
larger than the set of computational resources we are willing
to devote. Given a budget, the Task Prioritizer attempts
to determine which operations to apply next, and to which
subsets of the data. It can make use of a machine learning

component (Offline learner) and usage history to determine
what algorithms and data values are of most importance.
Our Task Prioritizer is currently under development, but we
see it as a key aspect of iteratively improving the integration
level of the data integration platform. See Section 7 for more
details on some of the challenges that must be solved.

4.3 Online Processing
We assume that any user, administrator, or external interac-
tion with the system yields two effects: the user or external
request is handled, and evaluation information is gathered
to improve the operation of the system. The Online Pro-
cessing module implements these actions.

Here, the user asks for a particular data resource using
some particular interface or modality (e.g., Web form, text
search, Web service API). The Query Formulator will turn
this into a form that can be answered from the Storage Layer.
Our current emphasis is on structured keyword queries, for
which we leverage the techniques developed in the Q Query
System [46, 47, 51]. Here, search-driven integration tech-
niques combine on-demand schema matching with structured
keyword search [9, 27].

Example 2. Figure 3 illustrates how in the search-driven
data integration model of the Q System [46], a keyword query
posed by the user over the original content graph of Figure 2
will be handled. Initially, the user’s query (for EEG and im-
age data for patients whose condition is left temporal epilepsy)
is encoded as a set of keyword nodes in the graph (dark nodes
at the bottom). From there, similarity measures are used
to map the terms to nodes representing values, attributes,
and relations (see unlabeled arcs between keyword nodes and
other nodes). Then a series of iterative expansion steps are
performed: for each keyword node, schema matching and
record linking algorithms are invoked between the frontier
nodes connected to the keyword nodes, and other nodes in
the content graph; if these exceed a threshold new edges are
added, expanding the frontier (see linksTo edges added to
the original graph). Eventually a set of top-k Steiner trees
are returned1.

Query results will appear in a Data View appropriate for
the datatype. Structured search resutls are presented in a
tree-style hierarchical browser, whereas custom viewers are
invoked for images, time series data (see Figure 4), and so on.
Within the set of search results, the user (or user’s external
tool) may browse, manipulate, and edit the data.

User interactions and timings are immediately broadcast
on the Event Bus and also logged to the Storage Layer. An
online learner may use that feedback to directly update
the query and results as the system interacts [46, 51]. Our
online learner again comes from the Q System: here, an
algorithm called MIRA takes user feedback on the relative
scores of output results, and adjusts the weights of individual
features to match the feedback. This learning step enables
the system to learn how much to weigh the output of each
source, extractor, matching tool, etc., and thus to improve
the quality of its query results.

5. EVALUATION MANAGEMENT SERVICE
1More precisely, we use the output of a top-k Steiner tree
approximation algorithm [47].



Dataset

patId studyId

Patient

name condition

smith

                
            

has-a
has-a

has-a
has-a

contains contains

hasCondition
121

34

contains

EEG

study

has-ahas-a

file

34

contains contains
file

has-a

contains

   patient
has left temporal
lobe epilepsy   

Image

desc

has-ahas-a

file contains

smith

contains

left temporal
epilepsy

linksTo

linksTo

linksTo

condition left temporal epilepsy eeg images

                
            

Figure 3: Example content graph as a query is posed and different edges are computed.

Beyond providing core services for supporting user actions, we
also want to allow data integration researchers to evaluate
alternative algorithms, metrics, and modules against one
another in situ. The final service focuses on experiment
design, followed by evaluation.

Our goal is to enable researchers to identify target user
groups, by querying their profile, history (e.g., datasets con-
tributed, publications), or various workload parameters, and
can send these users consent requests or surveys. Moreover
(as in [4]), they may specify different implementations of
components (e.g., viewers, matchers, etc.) that are deployed
to different user or user groups, such that A/B testing can
be done to compare results using normal activities.

Unlike with Facebook [4] or Google, in our setting the
person conducting the experiment is not necessarily a member
of the development group responsible for the core platform:
rather, the experiment might be conducted by a user who
has developed a “plug-in” module and should not have direct
access to the raw data, query logs, and so on. We are
developing a set of options that enable the study participant
to grant different levels of data and query visibility to the user
conducting the study. For instance, rather than presenting
the search terms and data as part of the evaluation results,
we might instead present aggregate quality measures, or
substitute hashed values that maintain some properties (e.g.,
value-equality testing) without revealing the underlying data.

Of course, underlying these capabilities, we are also build-
ing query services for the logs, user response timings, and
user feedback histories. We believe this core set of capabili-
ties will provide a depth of validation that has, to this point,
not been achievable in open data integration.

6. PILOT DEPLOYMENT: IEEG.ORG
The previous section describes our core, domain-independent
Habitat platform. However, the platform has been co-
developed alongside a targeted application, which seeks to
provide data integration and big data capabilities to the neu-
roscience research community. To this point, neuroscience
has suffered from a lack of standardization and shared in-
frastructure for addressing many of its grand challenges, e.g.,
understanding neurodegenerative diseases.

Starting with the domain of epilepsy research and treat-
ment — where there is a need for algorithmic techniques
to detect the onset of seizures in order to build implantable

Figure 4: IEEG.org deployment of Habitat for neu-
roscience

medical devices that can administer electric shocks to pre-
empt the seizures — we have been specializing Habitat in
the form of a platform called IEEG.org, which consists of
an HTML5-based Web data portal, a set of APIs, and a
many-TB data repository. IEEG.org’s domain goals are to
enable neuroscientists to search for and share time series
and imaging data for patients and animals with epilepsy; to
build and evaluate new data analysis algorithms for epilepsy
research; and to collaborate in the production and analysis
of this data. Our second set of goals revolve around fleshing
out and validating the Habitat platform.

6.1 Customization for the IEEG Platform
IEEG.org specializes Habitat along several dimensions.

Storage layer. IEEG features a combination of relational,
text, time series, imaging, and hierarchical data. Our storage
layer encompasses a series of open-source (MySQL, Mon-
goDB, BerkeleyDB), cloud (Amazon S3), and custom ser-
vices to hold this data. Time series datasets often feature
10s-100s of electrode channels, each sampled in the 10s of
KHz for days or months. Building upon a compressed file
format called the Multiscale Electrophysiology Format [12],
we developed new time series subsystems for storing and
streaming the data, “pushing down” signal processing opera-
tions like downsampling and filtering to the earliest possible
points.

Access Control and Security. IEEG.org was focused on



community-wide data sharing, which is often viewed as a
“structured Wikipedia for the field.” Yet a critical feature
was support for access control because many users wanted
to support small collaborations that would run for a time,
before results were published and then data was published.
Access control often encompasses not only the source data
and operations being applied, but even search logs: scientists
are often concerned that others will determine what they
are doing and “scoop” them. Some industry partners are
even concerned about controlling access to derived results,
necessitating a model in which permissions associated with a
derived dataset are always a subset of those associated with
the parent dataset.

Periodic Content Processing. A major challenge for
IEEG is that each new source of content is often from a
different neuroscience sub-community, with not only different
data formats but different means of recording metadata.
There is typically a mix of raw time series and imaging
data as well as clinical metadata, annotations, case histories,
etc. We separate the content ingestion step (where data is
uploaded by users directly to Amazon S3, and added to a
pending queue) from a deferred content processing stage.

During the content processing stage, we perform data
integrity checking and conversion as appropriate to the file
format; we run a data quality reports; we pre-index all
structured and textual data; and if feasible, we map the
metadata into our core schema. The various processing steps
are specified as pipelines built up from modules in the Core
Library, triggered via event-condition-action rules. As new
modules or pipelines are added, these will automatically be
applied to old as well as new data.

Online Processing. A lesson learned in building the user-
facing aspects of the IEEG.org effort was to focus on max-
imizing end-user productivity, while keeping the computer
science research at the periphery.

While the data integration aspects of most interest lay in
building universal search across uploaded, indexed, partly
integrated data using techniques from our Q System [47, 51],
we also constructed traditional Web query forms for the more
common query patterns. A major point of emphasis was
providing an interactive data viewer for time series (EEG)
data that operated in the browser in real-time (see right
side of Figure 1). Over time, other viewers for different
data modalities such as MRI images — and capabilities for
switching views — have become essential.

Core Library, Web Services, and Virtual Machines.
Most neuroscience researchers are more comfortable writing
their own custom data analysis code than reusing existing
modules. Hence a second point of emphasis was on a set of
APIs to make it feasible to connect such algorithms to our
platform and to register these within the Core Library in a
seamless way. In order to support scale-out, we developed
MapReduce-like APIs to handle time series data en masse.
However, our early users were more comfortable writing
single-threaded, main-memory, procedural code in MATLAB.
Thus the MATLAB usage pattern became a significant point
of emphasis in the early stages. Ultimately, as the user com-
munity has grown over time to encompass industry partners,
we are again returning to use cases that require a broader
treatment of data-parallel analysis using clusters of virtual
machines. In some cases, due to access control restrictions,

we have had to provide custom virtual machines that have
no network access to the external Internet.

Collaborative Tools. Social networking and data manage-
ment are typically viewed as disjoint capabilities. However,
since IEEG.org needed to serve as a platform that engaged
users and facilitated science, we developed a variety of collab-
orative, social-network-like features around data, users, and
tools. Discussion boards, messaging facilities, project teams,
usage notifications, and data provenance tracking became
the means of connecting users, tools, and data — and of
maintaining engagement.

It is too early to declare victory. However, IEEG.org
currently has 560 users and 1250 contributed datasets, is a
key part of several community-wide NIH and DARPA efforts,
and serves as a gateway between large biomedical device
companies and the neuroscience research community. The
effort has taught us several lessons that we believe are of
broader significance to open data integration research efforts.

6.2 Midterm Lessons Learned

Computer scientists are not representative
We have found a significant difference in culture between com-
puter science and the life sciences. Computer scientists are
typically problem-driven, and expected to frequently come
up with new problems and generalizable solutions. Small
variations in our assumptions often produce different results.
Hence, except in industry settings, there is relatively low
risk to open-sourcing or publicly posting our data and code
resources. Thus our culture has embraced these practices.

In contrast, much of experimental science is driven by
(expensive-to-collect) data and proprietary methods. When
sharing data and methods, a scientist is giving up a significant
first-mover advantage, which in turn means it is much harder
to convince scientists to share data.

� Successful collaborative tools and techniques from computer
science do not necessarily extend to other sciences.

“Passive sharing” is a major hurdle
Abstractly, every scientist agrees that data sharing is im-
portant, and moreover, funding agencies or journals often
mandate publication of the data. However, many individuals
engage in “passive sharing” by posting their data to satisfy
their obligations, but they make no effort to ensure others
can actually make use of the data. Key assumptions may be
missing, file formats may be under-specified, etc. (To be fair,
at times supporting others is a time-consuming task with
few rewards.)

� We must offer incentives that are viewed as outweighing the
risks involved, which also means we must be able to measure
the factors we wish to incentivize.

Public data does not create data users
More challenges arise when attempting to cultivate a com-
munity of data users. In areas like astronomy or genomics,
where a small number of shared instruments were collectively
used by a broad array of researchers — not only does infor-
mation management infrastructure exist for the scientists,
but there is a large community of researchers who never



directly interact with the instruments, but instead look for
data on the Web. Unfortunately, in less infrastructure-rich
communities like neuroscience, there exists no separate com-
munity of data scientists, so the availability of data does not
necessarily translate into a set of data users.

� Lack of a data scientist culture makes it hard to recruit users,
as we must convince many individuals to use shared as well as
local data.

Figure 5: Leaderboard for Seizure Prediction Chal-
lenge on kaggle.com, ongoing as of 17-Nov-14.

Visibility requires sustained effort
Part of the challenge to getting engaged users is, in fact,
to get users in the first place. Standard tactics — going
to conferences, hosting workshops — are effective to some
extent, but in fact, for the IEEG.org effort, our greatest
recruiting tool has proven to be a contest aimed at data
scientists who were not necessarily in our original target
neuroscience community.

Here, we were able to bootstrap off Kaggle.com, a com-
pany that helps corporations and organizations run data
science contests. For the Penn-Mayo Seizure Detection Chal-
lenge (kaggle.com/c/seizure-detection), we curated sev-
eral datasets hosted on IEEG.org, and formulated a contest
(with a cash prize) to build the best epileptic seizure-detection
algorithm. The contest was heavily publicized and drew 205
participants, many of whom submitted entries on a daily
basis. The state of the art in seizure detection has been
relatively primitive for some time; but as of the time of this
paper (just before contest closing), the top-scoring entry has
achieved a detection accuracy of over 97% (with the top-12
entries scoring above 95%). The visibility and success of the
contest has already drawn many users to our endeavor, and
some of these users are making use of IEEG.org. We are
in the midst of conducting a second challenge (sponsored
by the American Epilepsy Society) for seizure prediction in
streaming fashion, at kaggle.com/c/seizure-prediction.
Figure 5 shows the leaderboard as of mid-November 2014.
Visibility attained from the first challenge, as well as official
sponsorship and a larger prize, have increased participation
to 527 teams.

� Challenge problems with prizes are an important means of
engagement and help create success stories. An open question
is how to maintain visibility and engagement for such challenges,
once many groups are competing.

Sustainability requires a long-term plan
Software development is expensive and time consuming, and
involves much more than a few graduate students connecting
together their research projects. Funding agencies now worry
about sustainability, as most platform efforts wither away
beyond the initial effort. Our strategy has been to “sprint”
to develop the core platform along the lines of Figure 1; then
later to adapt this platform to serve both database research
(e.g., our search [51] and large scale data analysis [37] efforts)
as well as a variety of new user communities. Those separate
efforts require much less development time and produce much
faster payoff, hence a slew of them can jointly sustain the
overall effort. Our hope is that efforts like Habitat can also
be used to bootstrap future projects with similar goals.

� The core platform requires dedicated funding, but thereafter
it may be feasible to sustain via multiple specialization efforts.

The world keeps changing
Our experience with the project affirms the notion that
incremental approaches to standardization, which are more
agile in handling new use cases, are essential. Through the
first few years of the IEEG.org effort, not only did our target
community change several times (clinician-epileptologists
who looked at human data, neuroscientists who also looked
at animals, implantable device manufacturers), but the kinds
of data and usage scenarios also shifted and expanded. Our
basic platform and our software engineering practices had to
keep changing towards models that were easily extensible,
including by third parties.

� The pay-as-you-go integration approach, where data is itera-
tively improved over time, is essential in handling scale. So is a
platform which supports rapid adaptation.

7. RESEARCH CHALLENGE PROBLEMS
As our effort continues to move forward, we have identified
a number of critical research challenges that we believe are
bottlenecks towards progress in open data integration.

Structured data sharing metrics and incentives
A major challenge moving forward, across the data-centric
sciences, is determining the metrics — then later, the rewards

— for sharing data. A key question is what is the equivalent
of the h-index (the “s-index”) for data?

Given data in a usage (provenance) graph, a starting
point would be measures like ObjectRank [5] or eigenvector
centrality [11] to assign scores to the data, possibly based
on where the “uses” of the data appear in the literature [30].
However, this approach assumes that data is atomic, whereas
in reality much scientific data is both joined and aggregated to
produce results. A challenge moving forward is understanding
how to prorate the impact of the data here, possibly using a
proportional model like that of responsibility [36]. Conversely,
there are a set of questions about how to combine the impact
scores of many individual data items to rate the repository
or the user.

Kaggle.com
kaggle.com/c/seizure-detection
kaggle.com/c/seizure-prediction


Strategic improvement of the data
To achieve the vision of pay-as-you-go data integration, we
believe it is essential not only to react to user changes —
but also to proactively work on improving the data (hence
our periodic content processing step). As the volumes of
data on the platform grow, and the Core Library supports
many different extraction, matching, and clustering steps,
the system (whether purely algorithmic or augmented by
the crowd) does not have the resources to do all processing.
It must focus on the highest-payoff processing tasks: what
data to align algorithmically, what cleaning tasks to perform,
when to solicit human attention to improve a portion of the
data, etc. The actual payoff may not come until multiple
steps are combined. Hence, we need to look at how to build
a system that plans a set of actions that have the highest
anticipated cost-benefit payoff. Traditionally the database
field has only looked at optimization and planning in a very
specialized way; in the future we are likely to need a more
sophisticated AI planning mechanism.

Privacy-preserving user experiments
User studies are challenging even when data is not person-
ally identifying and subjects can be asked for consent (i.e.,
HIPAA considerations are met). Many scientific users want
their queries, data, and usage patterns to be kept confiden-
tial, at least until they have published results. To this point,
the experiments we have conducted on IEEG.org have only
included code from us or third-party code that is trusted,
and we have not looked at the actual data (only the perfor-
mance differences). Our users know that their workloads and
activities can be used in computer science experiments, but
that such data will remain confidential. This largely mirrors
the terms of usage at Facebook [3, 4, 23], Microsoft [14],
and Google [48], where extensive A/B testing and workload
monitoring are done.

To reach the broader vision of platforms where third-party
researchers can contribute their own (semi-trusted) code to
the platform and conduct experiments — the challenge is how
to ensure that data and metadata are adequately protected.
Can we guarantee, e.g., that running a contributed schema
matching algorithm will not reveal the data being matched?
The full guarantees of, e.g., differential privacy [18], may
not be necessary for public data — but it seems essential
to develop techniques for validating that the algorithms are
implemented in a data-independent fashion (hence do not
recognize specific data), and ensuring they are applied to data
with enough diversity and/or noise to ensure their output is
meaningful yet privacy preserving. Alternatively, they must
be restricted to data for which consent was obtained.

It is worth noting that our goal with IEEG.org is to also
facilitate sharing of data that might itself be private. Here,
with respect to allowing third-party experiments, there are
both technical questions with stricter constraints than de-
scribed above (what privacy assurances can we give, perhaps
now requiring differential privacy-style guarantees), as well as
broader legal and administrative policies (will Institutional
Research Boards give consent to such experiments). It re-
mains unclear whether this more ambitious setting will be
feasible, but clearly it presents interesting problems.

8. CONCLUSION
The field of open data integration will remain immature

until enough “living labs” are available to help guide and
evaluate research problems and solutions. In this paper,
we have proposed a unifying architecture for platforms that
facilitate both applied science and computer science — via
a combination of data integration, collaborative tools, and
management of user-based evaluations. We have presented
our experiences in implementing and evaluating these con-
cepts in the IEEG.org platform, and proposed a series of
open research challenges that are essential towards solving
the greater challenges of the field.

Acknowledgments
This work was funded in part by NSF IIS-1217798, NIH
U24-5U24NS063930, and gifts from Google and Amazon.

References
[1] Y. Amsterdamer, S. Davidson, D. Deutch, T. Milo,

J. Stoyanovich, and V. Tannen. Putting lipstick on a
pig: Enabling database-style workflow provenance. In
Proc. VLDB, 2011.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyga-
niak, and Z. G. Ives. DBpedia: A nucleus for a web of
open data. In ISWC/ASWC, 2007.

[3] E. Bakshy and D. Eckles. Uncertainty in online experi-
ments with dependent data: an evaluation of bootstrap
methods. In KDD, 2013.

[4] E. Bakshy, D. Eckles, and M. S. Bernstein. Designing
and deploying online field experiments. In WWW, 2014.

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Ob-
jectRank: Authority-based keyword search in databases.
In VLDB, 2004.

[6] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E.
Scheidegger, C. T. Silva, and H. T. Vo. VisTrails: En-
abling interactive multiple-view visualizations. IEEE
Visualization, 2005.

[7] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado,
and Y. Velegrakis. Keyword search over relational
databases: a metadata approach. In SIGMOD, 2011.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using BANKS. In ICDE, 2002.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In SIGMOD,
2008.

[11] P. Bonacich. Simultaneous group and individual cen-
tralities. Social Networks, 13, 1991.

[12] B. H. Brinkmann, M. R. Bower, K. A. Stengel, G. A.
Worrell, and M. Stead. Multiscale electrophysiology
format: An open open-source electrophysiology format
using data compression, encryption, and cyclic redun-
dancy check. Proc. IEEE Eng Med Biol Soc., 2009.

[13] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: exploring the power of tables on
the web. PVLDB, 1(1), 2008.

[14] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham.
Seven pitfalls to avoid when running controlled experi-
ments on the web. In KDD, New York, NY, USA, 2009.
Available from http://doi.acm.org/10.1145/1557019.

1557139.

http://doi.acm.org/10.1145/1557019.1557139
http://doi.acm.org/10.1145/1557019.1557139


[15] H. H. Do and E. Rahm. Matching large schemas: Ap-
proaches and evaluation. Inf. Syst., 32(6), 2007.

[16] A. Doan, R. Ranakrishnan, F. Chen, P. DeRose, Y. Lee,
R. McCann, M. Sayyadian, and W. Shen. Commu-
nity information management. IEEE Data Engineering
Bulletin, December 2006.

[17] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration
with uncertainty. In VLDB, 2007.

[18] C. Dwork. Differential privacy. In 33rd Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, part II (ICALP 2006), volume 4052 of Lecture
Notes in Computer Science, pages 1–12, Venice, Italy,
July 2006. Available from http://research.microsoft.

com/apps/pubs/default.aspx?id=64346.

[19] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE,
19(1), 2007.

[20] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information man-
agement. SIGMOD Rec., 34(4), 2005.

[21] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. CrowdDB: answering queries with crowd-
sourcing. In SIGMOD Conference, 2011.

[22] A. Gal. Uncertain Schema Matching. Synthesis Lectures
on Data Management. Morgan and Claypool, 2011.

[23] A. Grant and K. Zhang. Airlock: Face-
book’s mobile A/B testing framework. Tech-
nical report, Facebook, 2014. https://

code.facebook.com/posts/520580318041111/

airlock-facebook-s-mobile-a-b-testing-framework/.

[24] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tan-
nen. Update exchange with mappings and provenance.
In VLDB, 2007. Amended version available as Univ. of
Pennsylvania report MS-CIS-07-26.

[25] A. Halevy, P. Norvig, and F. Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2),
2009.

[26] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In ICDE, March 2003.

[27] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked
keyword searches on graphs. In SIGMOD, 2007.

[28] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. Or-
chestra: Rapid, collaborative sharing of dynamic data.
In CIDR, January 2005.

[29] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor,
V. Tannen, P. P. Talukdar, M. Jacob, and F. Pereira.
The Orchestra collaborative data sharing system. SIG-
MOD Rec., 2008.

[30] Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer.
Querying provenance for ranking and recommending. In
TaPP, 2012.

[31] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to
source properties in processing data integration queries.
In SIGMOD, June 2004.

[32] M. Jacob and Z. G. Ives. Sharing work in keyword
search over databases. In SIGMOD, 2011.

[33] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying
data provenance. In SIGMOD, 2010.

[34] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience,
2006.

[35] W. Mason and S. Suri. Conducting behavioral re-
search on Amazon’s Mechanical Turk. Behavior Re-
search Methods, 44(1):1–23, 2012. Available from
http://dx.doi.org/10.3758/s13428-011-0124-6.

[36] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu.
The complexity of causality and responsibility for query
answers and non-answers. PVLDB, 4(1), 2010.

[37] S. Mihaylov, Z. G. Ives, and S. Guha. REX: Recursive,
delta-based data-centric computation. In PVLDB, 2012.

[38] National Center for Biotechnology Information. Gen-
Bank. Available from www.ncbi.nlm.nih.gov/

GenBank/.

[39] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Fer-
ris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Mar-
vin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe. Taverna: lessons in creat-
ing a workflow environment for the life sciences. Con-
currency and Computation: Practice and Experience,
18(10), 2006.

[40] Processing phylOData (pPOD).
http://phylodata.seas.upenn.edu/cgi-
bin/wiki/pmwiki.php.

[41] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J., 10(4), 2001.

[42] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE, 2007.

[43] A. D. Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD,
New York, NY, USA, 2008.

[44] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:
A large ontology from Wikipedia and WordNet. J. Web
Sem., 6(3), 2008.

[45] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Synthesis Lectures on Data Management.
2011.

[46] P. P. Talukdar, Z. G. Ives, and F. Pereira. Automatically
incorporating new sources in keyword search-based data
integration. In SIGMOD, 2010.

[47] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer,
Z. G. Ives, F. Pereira, and S. Guha. Learning to create
data-integrating queries. In VLDB, 2008.

[48] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Over-
lapping experiment infrastructure: More, better, faster
experimentation. In KDD, New York, NY, USA, 2010.
Available from http://doi.acm.org/10.1145/1835804.

1835810.

[49] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase:
a probabilistic taxonomy for text understanding. In
SIGMOD Conference, 2012.

[50] Z. Yan and Z. G. Ives. Collaboratively learning to repair
links. Submitted for publication, 2014.

[51] Z. Yan, N. Zheng, Z. Ives, P. Talukdar, and C. Yu.
Actively soliciting feedback for query answers in keyword
search-based data integration. PVLDB, 2013.

http://research.microsoft.com/apps/pubs/default.aspx?id=64346
http://research.microsoft.com/apps/pubs/default.aspx?id=64346
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
http://dx.doi.org/10.3758/s13428-011-0124-6
www.ncbi.nlm.nih.gov/GenBank/
www.ncbi.nlm.nih.gov/GenBank/
http://doi.acm.org/10.1145/1835804.1835810
http://doi.acm.org/10.1145/1835804.1835810

	Introduction
	Missing Capabilities from Academia
	Academic ``Living Labs''

	Living Labs for Data Integration
	Finding a Foothold
	The Habitat Platform

	Support Services
	Storage Layer
	Event Bus
	Core Library of Operators

	Task Services
	Ingest
	Periodic Content Processing
	Online Processing

	Evaluation Management Service
	Pilot Deployment: IEEG.org
	Customization for the IEEG Platform
	Midterm Lessons Learned

	Research Challenge Problems
	Conclusion

