
Raising Authorization Awareness in a DBMS

Abhijeet Mohapatra 1, Ravi Ramamurthy 2, Raghav Kaushik 2,
1Stanford University, 2Microsoft Research

ABSTRACT
Fine-grained authorization (FGA) is a critical feature of many
database applications. The general approach to FGA both in re-
search and practice is the following: FGA policies are enforced
by rewriting queries as a function of the current user. This query
rewriting suffices for supporting the functionality of FGA but es-
sentially treats FGA as a second-class citizen — most of the DBMS
is unaware of authorizations; all the authorization logic is encapsu-
lated in a small component that performs query rewriting.

In this paper, we argue that in order to engineer good perfor-
mance, it is essential to treat FGA as a first-class citizen by making
the core components of the DBMS authorization-aware. As con-
crete evidence, we propose a novel index structure that we call an
authorization index and show how an optimizer can exploit it to
generate plans that are significantly better than the plans obtained
using the rewriting approach. We also discuss how the tightly-
coupled integration of authorizations provides an interesting case
for revisiting other query processing problems.

1. INTRODUCTION
The current authorization model in the SQL standard allows au-

thorizations only to coarse grained objects such as tables and views.
Such coarse grained authorizations are inadequate for many appli-
cations. For example, a payroll application accessing Employee
information might want to let each employee access only their own
data. Such fine-grained authorizations have been traditionally im-
plemented in the application with little database support. Some
commercial database systems such as Oracle VPD [1] have recently
started providing native support for fine-grained authorizations [2].
The idea is that each user has access only to a subset of rows in
each table. The authorized subset is specified using an authoriza-
tion policy. We illustrate through an example.

Example 1.1 Consider a database that has the tables
submissions(paperID, title, track), users(email,
userID) and authors(paperID, userID). Consider an
authorization policy that lets authors access their submissions. This
policy can be specified as follows [3]. We assume that the function
userID() provides the identity of the current (application) user.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

GRANT select on submissions
where paperID in

(select paperID from authors
where userID = userID())

to public

1.1 Rewrite-then-Optimize Approach
The authorization policy is enforced by explicitly rewriting

queries [4] to go against the authorized subset. The key advantage
of this approach is that existing applications need not be modified
since the query rewriting is completely transparent to the applica-
tion as shown in the following example.

Example 1.2 Consider the database in Example 1.1. The query:

select * from submissions

gets rewritten to:

select * from submissions
where paperID in

(select paperID from authors
where userID = userID())

In terms of implementation, there is a query rewriting module that
is aware of the authorization policy. Any query posed to the sys-
tem is rewritten by the module to enforce the authorizations. After
the rewriting, the rest of the query processing proceeds as usual —
the rewritten SQL query is optimized and executed. This rewrite-
then-optimize architecture has the advantage that it separates the
authorization subsystem from the query processing subsystem. The
query rewriter that enforces the authorization policy does not have
to take execution costs and physical design into account. Similarly,
the query optimization and execution sub-system does not have to
be modified in order to incorporate support for (fine-grained) au-
thorizations — as far as they are concerned, the rewritten query is
yet another SQL query.

We observe in Example 1.2 that even though the original query
has no joins, the query rewriter adds a join in order to enforce the
authorization policy. In general, the complexity of the rewritten
query increases with the complexity of the authorization policy.

Example 1.3 We extend the database in Example 1.1
to add the tables trackChair(track, userID),
reviewers(paperID, userID) and conflicts(paperID,
userID). We also extend the authorization policy to let reviewers
have access to papers assigned to them and track chairs have access
to all non-conflicting papers in the respective track. Then the query
select * from submissions gets rewritten as:

select * from submissions
where paperID in

(select paperID from authors
where userID = userID())

union
select * from submissions
where paperID in

(select paperID from reviewers
where userID = userID())

union
select * from submissions
where track in

(select track from trackChair
where userID = userID()
and not exists
(select *
from conflicts
where userID = trackChair.userID
and paperID = submissions.paperID)))

Thus, what seems like a very simple operation namely looking
up all relevant submissions for a particular user gets rewritten to
a complex query that joins submissions with four other tables and
takes the union of the results. We note that Example 1.3 illustrates
how even the simplest single table queries can result in complex
rewritten queries for non-trivial policies. For queries that involve
multiple joins and subqueries as in the TPC-H benchmark, the com-
plexity of the rewritten query increases significantly — we need to
add authorization checks as in Example 1.3 for every table refer-
enced in the query. Not surprisingly, the complexity of the rewritten
queries can adversely impact the query performance.

The first natural optimization to consider is to “tune” the query
by selecting an appropriate physical database design. Many com-
mercial database systems support automatic physical design tools
(see [5] for an overview) that suggest appropriate physical designs
for an input query workload. However, the state of the art physical
design mechanisms offer only limited optimizations for the above
query. This is because commercial systems support a restricted
class of materialized views that includes select-project-join queries
with grouping and aggregation 1 and does not cover the above ex-
pression which involves a union of three queries including a nested
subquery with a negation. Thus, the performance problems of the
rewritten queries are unlikely to be “tuned” away for all policies.
The question arises if we can do better or is this complexity intrin-
sic to enforcing authorizations.

1.2 Authorization Aware Query Processing
Note that the “rewrite-then-optimize” approach forces a separa-

tion between the authorization component and the query engine—
components such as the optimizer, execution engine and physical
design are not designed or optimized to account for authorization
predicates.

Instead, consider the following strategy for executing the query
in Example 1.3. Assume we can pre-compute the “capability list”
that lists, for each user, all submissions to which they have access.
Given the query select * from submissions issued by a
specific user, we look up the “capability list” for the user similar to
an index-seek plan and obtain all the submissions that they have ac-
cess to. The above strategy accesses only two database objects —
the submissions table and the “capability list”; this is in con-
trast with the complex query involving five tables implied by the
1”matchable" views typically do not include constructs such as
union — we define matchable views more precisely in Section 6.

rewriting shown in Example 1.3. The key question is how we can
implement such a “capability list” efficiently. Obviously, material-
izing the capability-lists as a materialized view is not feasible for
reasons previously described. Instead, consider the following alter-
native. Suppose that the query rewriter that enforces authorizations
is aware of the presence of the “capability lists”. It can then choose
to rewrite the query to go against the capability lists (to enforce
the authorizations) thereby eliminating the need for view match-
ing; this could result in an execution plan that is much better than
the plan obtained by explicitly enforcing the authorization through
query rewriting.

In this paper, we explore the importance of raising authorization
awareness in a DBMS. As a concrete example, we propose adding
a new auxiliary structure that we term an authorization index (Sec-
tion 2) to the database system, that essentially maintains the capa-
bility list for the table. Just as regular indexes provide a fast path
for retrieving tuples that satisfy a particular predicate, authorization
indexes provide a fast path for retrieving tuples that are authorized
for a particular user. We briefly discuss challenges in integrating
such indexes in a traditional optimizer (Section 3) and present a pre-
liminary experimental evaluation that points to the benefits of such
index structures (Section 4). We believe this is an initial step —
opening up the DBMS to incorporate authorization as a first-class
citizen provides an interesting opportunity to revisit well known
query processing problems which we discuss in Section 5.

2. AUTHORIZATION INDEXES
Authorization indexes are a new auxiliary structure that provide a

“fast-path” for accessing data that is authorized for a particular user.
As in the case of regular indexes, the key issues that arise are: 1)
creating and maintaining the indexes and 2) leveraging the indexes
during query processing. In this section, we define authorization
indexes and discuss how they can be created and maintained. We
discuss how authorization indexes can be leveraged by the query
rewriter/query optimizer in the following section.

DEFINITION 2.1. Consider a table T . We assume that each
tuple in the table is uniquely identified by a surrogate (ti). Given an
access control policyP on T , the set of userids U and the predicate
access(ui, ti) which returns true if user ui is authorized to access
tuple ti under policy P , an authorization index I on table T is
defined as:
I = { (ui, ti) | ui ∈ U and access(ui, ti) is true }

The surrogate (ti) can be the RID of the tuple or the key value
corresponding to any clustered index on the table T . Thus, au-
thorization indexes maintain the mapping between users and the
corresponding RIDs that they are authorized to access in a table.

In general, an authorization index is a database object with the
following properties.

1. An authorization index is a DDL construct. An authorization
index is created via a create authorization index
statement that specifies a table. The authorization index
stores the mapping between users and the corresponding
RIDs that they are allowed to access. Like a regular index,
an authorization index is an auxiliary structure (it is not nec-
essary to create an authorization index in order to enforce
authorizations). It is similar to indexes and different from
materialized views in that applications are not permitted to
reference the authorization index by name.

2. As the name suggests, an authorization index is
authorization-aware. This is a key difference from tradi-
tional indexes and materialized views (and hence motivates

the new terminology). In order to create the index, in ad-
dition to the table which is being indexed, we also need
the authorization policy (that is stored as part of the system
catalog) and a view that specifies the set of userIDs. By
binding the index to the authorization policy, the query pro-
cessing subsystem leverages an authorization index without
any need for complex view matching. An “index-seek”
operation performed over the authorization index to retrieve
the authorized tuples of a particular user is equivalent to
applying the authorization predicate independent of its com-
plexity. For instance, in Example 1.3, an index-seek plan
that fetches the RIDs corresponding to the current userID
could be much more efficient that evaluating a query with
four joins.

3. Just like any other auxiliary structure, an authorization in-
dex needs to be used in a cost-based manner by the query
rewriter/query optimizer (see Section 3.1 for more details).

4. In order to maintain an authorization index as the data
changes, we leverage previous work on incremental main-
tenance of views. This implies that authorization indexes
can only be constructed for a limited class of authorizations.
However, this is a much larger class than the set of material-
ized views that can be efficiently matched. We discuss index
creation and maintenance in this section.

2.1 Index Creation
Recall that an authorization policy on a table is specified using a

predicated grant. In general, consider the grant statement on a table
T of the following form (where predicate P is parameterized using
the userID() function).

grant select on T where P

A create authorization index statement for a table
requires as input: 1) the corresponding predicated grant on the ta-
ble and 2) a list of userIDs who can access this table. We assume
these are supplied in a view (USERS(uid)). In some cases the set of
userids directly corresponds to the set of values in a database table
column (e.g, the o_custkey column) in which case the USERS table
can be a view that points to the appropriate column. An authoriza-
tion index needs to be maintained incrementally with updates. This
is in general not feasible for arbitrary authorization predicates P .
A create authorization index statement first checks if
the predicated grant for the table falls in the class of predicates that
are incrementally maintainable (Section 2.2) and fails otherwise.

The straightforward way of creating the index is to iterate over
all uids in the USERS table and compute the “capability list” cor-
responding to predicate P and obtain the corresponding RIDS to
create the index entry for each uid.

However, we can further optimize this step (similar to the notion
of bulk-loading a traditional index). We assume that predicate P
contains a reference to a table S that contains the predicate param-
eterized by the userID() function (say S.attr = userID()). For such
a predicated grant, we could “bulk load” the authorization index I
for this user-group by executing the following query (we assume
the function RID() returns the RID/key column for the input row in
table T).

insert into I
select distinct uid, RID(t)
from T t, USERS u
where P’

In the above query, predicate P ′ is a modified version of the
original predicate P that removes the occurrence of S.attr =
userID() in predicate P and replaces it with S.attr = u.uid.
Note that the above procedure essentially outputs the userIDs in
addition to the tuple RIDs. Since S.attr may not be a key attribute
of relation S, we filter duplicates from the join between table T and
table S (hence the distinct clause).

In addition, we may wish to build an authorization index for only
a subset of the users for the table. For instance, consider a CEO of a
company who is authorized to see all employee data; the authoriza-
tion index needs to keep track of this mapping for each tuple in the
employee table. Excluding such an user from the index can help
improve its storage efficiency and maintenance costs. We can ex-
tend authorization indexes to be defined over roles instead of users.
This is similar to the notion of a partial index [6]. Assume each user
belongs to an unique role. Thus, we have the option of creating an
authorization index for users who belong in the “employee” role
but not the “CEO” role. When a user logs in, the database system
checks the role that he currently belongs to (in general a user can
have multiple roles and log in using only a subset of those roles)
and can thus determine if an authorization index can be used. Our
techniques naturally extend for the case for the multiple roles.

2.2 Index Maintenance
As with regular indexes, it is necessary for authorization indexes

to be incrementally maintained with updates. Note that updates
can include updates made either: (a) to the base relations on which
authorizations are defined or (b) to the set of users that have access
to the table (the USERS table described in the previous section) or
(c) to the authorization policy to the table.

If the authorization policy corresponding to a table is changed,
the authorization index has to be dropped. This is similar to the case
where the definition of a materialized view is changed; the materi-
alized view is no longer valid. Unlike regular indexes, authorization
indexes also need to be maintained when the set of users that have
access to the table changes (this could happen when the set of users
assigned to a particular role changes or through GRANT/REVOKE
statements) — we note that the bulk-loading scheme for the index
can be extended to incrementally maintain the index for this case.

For updates made to the base relation, we incrementally maintain
the authorization index by leveraging prior work [7] that maintains
views by using delta propagation rules.We need to add appropri-
ate additional metadata (e.g., certain partial counts) to maintain the
indexes as defined in [7]. The class of predicated grants that can
be maintained using the techniques is described by the following
grammar.

P := P and P | P or P Q := SPJ query
:= <attr> op <attr> := SPJ query where P
:= <attr> op <val>
:= <attr> op agg(Q)
:= exists(Q)
:= true | false
:= not P

As mentioned in Section 3.1, we disallow any create
authorization index statement for a table whose pred-
icated grant does not fall in the above class of predicate. In spite of
restricting the class of predicates for which we can use authoriza-
tion indexes, we note that the above language covers a rich class
of authorization predicates including the examples discussed in the
introduction.

Note that the key insight we leverage in authorization indexes
is the fact that the class of maintainable materialized views far ex-
ceeds the class of matchable views (see Section 6) — while there
is previous work [7] showing how we can incrementally main-
tain views containing union and limited forms of negation such as
the expression above, it is unclear how to efficiently extend view
matching technology to also capture union and negation. View
matching is implemented in commercial optimizers by checking
equivalence of query sub-expressions to a view expression. Even
in the case of a single conjunctive view, checking equivalence has
the same complexity as graph isomorphism [8] and it is known [9]
that the worst-case complexity of view matching increases sharply
when we add other operations such as unions. Note that autho-
rization indexes sidestep the need to match views and only rely on
incremental view maintenance algorithms.

3. AUTHORIZATION AWARE QUERY OP-
TIMIZATION

In order to effectively support authorization indexes, the query
optimizer needs to be authorization aware — this is contrast to the
“rewrite-then-optimize” approach in which the optimizer optimizes
the rewritten query as a regular query. An authorization aware op-
timizer essentially integrates the query rewriting (to add authoriza-
tions) and cost-based optimization in a single step. Extending an
optimizer to reason about authorization predicates has several di-
mensions; we focus on the following aspects: 1) why the choice
of authorization indexes should be cost-based 2) how to integrate
authorization indexes in a memo-based query optimizer 3) some
interesting properties of authorization indexes. While we focus the
discussion on a single query, we note that authorization indexes
are also applicable to stored procedures which can contain multi-
ple queries — the authorization checks and optimization are still
enforced for each query individually.

3.1 Plans using Authorization Indexes

Example 3.1 Consider TPC-H Query 14 which is a join of the
Lineitem and Part tables followed by an aggregate computation.
Consider a policy in which a customer is only allowed to see lineit-
ems corresponding to his orders and parts corresponding to those
lineitems. In this case the original query (see Figure 1(a)) gets
rewritten to the following query shown in Figure 1(b) (the addi-
tional semi-joins are added to enforce the authorizations).

Recall that authorization indexes essentially maintain the map-
ping between users and the corresponding RIDs that they are au-
thorized to access for a table. Thus, for the join query discussed in
the above example, a query plan that uses the authorization indexes
on Lineitems and Parts (Figure 1(c)) to fetch the authorized tu-
ples need not evaluate the additional semi-joins that are introduced
due to the authorization predicates and could potentially result in
a much better plan. As shown in Figure 1, authorization indexes
provide an alternate means for enforcing the predicated grant on a
table (instead of adding the authorization predicates).

A simple way to leverage authorization indexes is always con-
sider using an authorization index for a table if it were available.
However, just like the case of regular indexes, this may not be the
best choice as shown in the following example.

Example 3.2 Figure 1 shows two query plans, one that uses the au-
thorization predicates (Figure 1(b)) for both tables and another plan
(Figure 1(c)) that uses the authorization indexes for both tables. Us-
ing an authorization index to retrieve all authorized tuples is likely

Lineitem Part

Agg

Orders

Lineitem Orders

Fetch

IndexSeek

Auth-Lineitem

IndexSeek

Auth-Part

Fetch

Agg

Lineitem Part

Agg

(a)

(b) (c)

Figure 1: Different Query Plans for Example 4.1

to be efficient if the fraction of tuples in the table that the user is
authorized to see is small (otherwise it could result in a large num-
ber of random I/Os). This is similar to the case of a regular index
which is likely to be useful only when the predicate is highly selec-
tive. For instance, if the customer has ordered only a few lineitems
and their corresponding parts are also a small fraction of the part
table, then the plan that uses both authorization indexes is likely to
be the best plan. However, consider scenarios where the number of
lineitems is small but the number of corresponding parts is a large
fraction of the part table (or vice-versa). In such cases, alternate
plans as shown in Figure 2 that use authorization indexes for one
table and adds the authorization predicates for another table could
potentially be better choices than the two plans shown in Figure 1.
This points to the fact that the choice of authorization indexes must
be made in a cost based manner.

Lineitem

Agg

Orders

(a)

IndexSeek

Auth-Part

Fetch Fetch

IndexSeek

Auth-Lineitem

Agg

(b)

Part

Lineitem Orders

Figure 2: Alternate Query Plans for Example 4.1

3.2 Integrating Authorization in a Memo
We assume a transformation rule-based query optimizer(see [10]

for an overview), but our techniques can be extended for other op-
timizer architectures as well. The key data structure used by trans-
formation rule-based optimizers to keep track of different logical
and physical plans is called a memo. Figure 3 shows a snapshot
of the memo for TPC-H Query 14. Each group represents a set of
equivalent logical expressions and keeps track of different imple-
mentation choices (shown shaded in Figure 3) available for it. For
instance, Group 3 in Figure 3 represents the join between the two

tables. It has two logical expressions corresponding to the two pos-
sible join orderings and an implementation using the hash join algo-
rithm. Transformation rules are used to generate different logical
alternatives and implementation algorithms for each group. Each
plan (sub-plan) is costed by invoking suitable cost functions and
suboptimal plans (sub-plans) are suitably pruned. Once all the rules
have been applied, the memo is finally traversed top-down to pick
the optimal plan.

Group 1: Get Lineitem

Group 2: Get Part

Group 3: Join(1,2)

Group 4: Agg(3)

1. TableScan

1. TableScan

1. HJ(1.1, 2.1)Join(2,1)

ScalarAgg(3.1)

Figure 3: Fragment of Memo for TPC-H Query 14

Authorization indexes are in many ways similar to traditional in-
dexes, there are implementation rules (covering index-seek plans)
which need to be added to the memo [10]. Likewise, the issues in
costing plans using such indexes are quite similar. However, a key
difference is semantics : a index-seek plan is equivalent to a base
table scan to which the authorization predicates have been applied.
This is independent of the predicate complexity (e.g., it could in-
clude sub-queries) and this makes the integration non-trivial.

In order to extend the optimizer to incorporate authorization in-
dexes, we need the following changes.

• We need to maintain a new logical property for every group:
IsAuthorized

• We need to add a new logical rule for adding authorization
predicates for a table

• We need to add a new implementation rule for authorization
indexes

We now explain each of the above modifications. It is essential
to keep track of whether each group is authorized or not. This is
because the query optimizer has to now enforce the correctness of
a execution plan with respect to the predicated grants (recall that
the query rewriter does not exist in this architecture). We can track
this by adding a new logical property for a group: IsAuthorized.
Note that a group being authorized is a logical property; it does not
depend on the specific algorithms used for implementation.

A group in the memo (that corresponds to a base table) can be
explicitly authorized by adding the authorization predicate (for the
appropriate table). This can be implemented by adding a new logi-
cal rule to add authorization predicates for a table based on the ap-
propriate predicate grant. The IsAuthorized property can be prop-
agated by using the rule that a group is authorized if and only if
all its children are authorized. The key point is that authorization is
explicitly enforced by the query optimizer while creating the appro-
priate groups in the memo thus bypassing view matching to identify
the authorization predicates. While traversing the memo to pick the
final plan, we need to pick the authorized query execution plan with
the cheapest cost.

Authorization indexes can be incorporated in such an optimizer
by adding a new implementation rule. Whenever an optimizer cre-
ates an authorized group for a single table relation by adding the

authorization predicate, the implementation rule would add the in-
dex seek plan on an authorization index for the table (if it exists) as
a possible implementation alternative.

Consider the join query discussed in example 4.1. A snapshot
of the memo for an optimizer modified as stated above is shown
in Figure 4. The authorized groups (Groups 4-7 in Figure 4) are
marked with a ’*’. Recall that the authorizations on the lineitem
and parts table required additional semi-joins with the orders table
in order to restrict the access to a particular customer’s information.
Notice that the optimizer adds these semi-joins in order to enforce
the authorizations in Groups 4 and 5. The authorization index also
serves as an implementation alternative for these groups. For in-
stance, for the Group 5, the implementation alternatives are to use
hash joins for enforcing the semi-joins (the HJ(2.1,4.1) alternative)
or to use the authorization index. Depending on the cost of the
alternatives, either of these plans can be chosen.

Group 1: Get Lineitem

Group 2: Get Part

Agg(6)

1. TableScan

1. TableScan

ScalarAgg(6.2)

Group 3: Get Orders

Group 4*: LSJoin(1,3)

Group 5*: LSJoin(2,4)

Group 6*: Join(4,5)

Group 7*:

1. TableScan

1. HJ(1.1,3.1)

1. HJ(2.1,4.1) 2. Index(AuthIndexPart)

2. Index(AuthIndexLI)

2. HJ(4.2, 5.2)1. HJ(4.1,5.1)

Figure 4: Fragment of Memo in Modified Optimizer

We note that there are several additional issues to be addressed
— these include issues such as extending the cost-model for au-
thorization indexes and appropriate pruning techniques for the new
transformation rules. We defer a more detailed examination and
evaluation of the proposed architecture of an authorization-aware
optimizer to future work.

3.3 Side Channel Attacks and Safe Plans
It has been previously shown that fine-grained access control is

amenable to side channel attacks [11]. For instance, user defined
functions or predicates could involve operations with side effects.
For instance consider the following query.

SELECT * from EMPLOYEE
WHERE EMPID = ’XYZ’
AND 1/(salary - 100K) = 0.23

Assume the query is issued by someone who is not a manager of
XYZ and hence is not authorized to see his salary. The employee
relation would be replaced with the corresponding authorized view
(which could be a join with another table). The selection predicate
involving the salary attribute and the predicate on empid column
could however be pushed below the access control semi-join due
to classic optimizations considered by the query optimizer (e.g.,
select predicates are typically pushed down) . Note if there is an
divide by zero exception encountered during query execution, the
information that the salary of XYZ is 100K can be inferred. Thus,
a query optimizer that is unaware of authorizations can potentially
pick an “unsafe” plan. This again points to the fact that the rewrite-
then-optimize architecture can result in subtle problems in enforc-
ing authorization.

There has been previous work [11] that extends a query opti-
mizer to choose only safe plans that avoid this problem. Interest-

ingly, authorization indexes can naturally prevent such side channel
attacks. The key reason is that the index access is atomic - an index
seek plan for an authorization index (a leaf level operator in a plan)
obtains all authorized tuples and no other predicate can be pushed
into this operation 2 and this guarantees that only authorized tuples
are even input to other operators such as filters. Thus, authorization
indexes provide a simple way to derive safe plans [11].

4. EXPERIMENTAL EVALUATION
In this section we provide a preliminary evaluation of the ef-

fectiveness of using authorization indexes. We use a simple client
based implementation to simulate query plans that use authoriza-
tion indexes — we defer a detailed integration in a query optimizer
and its evaluation to future work.

4.1 Implementation and Experimental Setup
We used the following experimental setup. We simulated an au-

thorization index for a relation by materializing the corresponding
userid and tuple id/key value mappings for that relation as a table
(indexed on the userid column). By using a client side SQL parsing
tool, we implemented an “authorization-aware” query rewriter that
can rewrite the query to include the appropriate combination of au-
thorization predicates and authorization indexes. We implemented
a simple greedy algorithm to choose appropriate authorization in-
dexes. The algorithm works as follows: we start with the rewritten
query that includes all authorization predicates. As long as we can
improve the query cost (using the optimizer estimated cost of the
rewritten query), we consider rewritings that adds the “next-best”
authorization index that improves the cost. Note when we add an
authorization index we can drop the corresponding authorization
predicate. We believe that this represents a simple strawman al-
gorithm to simulate a good plan that uses authorization indexes —
we note that a thorough integration with an optimizer would likely
result in better plans.

We use the TPC-H database (1 GB version) and the TPC-H
queries as our workload. We note that for the fine-grained autho-
rization policies used in the experiments, some queries resulted in
empty results. We only report the results for the queries that re-
turned non-empty results for all the policies. We evaluate the effec-
tiveness of authorization indexes with respect to the following two
key parameters: (a) complexity of the authorization policy and (b)
physical database design.

4.1.1 Authorization Policies
In order to study the effectiveness of authorization indexes under

a variety of authorization policies, we used the following different
authorization policies on the TPC-H database:

• P1: Policy P1 constrains a customer to see his own orders,
the lineitems corresponding to his orders and so on (the pol-
icy discussed in Example 2.1). As discussed in Section II,
the query rewriter will produce rewritten queries involving
subqueries to enforce the authorizations.

• P2: Policy P2 is a complex policy that uses negations (sim-
ilar to the example in the introduction). A particular user
(e.g., an analyst) is allowed to see his records but is not al-
lowed to any customer records that correspond to a particular
nation. For policy P2, we generate a relation called AuthNa-
tions(c_custkey, n_name). A tuple (c, n) ∈ AuthNations if
customer c is not permitted to view the order corresponding

2note that authorization indexes do not support SARGable predi-
cates

to the nation n. We note that policy P2 cannot be re-written
as a SPJ query.

GRANT select on orders
where o_orderkey IN
select o_orderkey
from orders o, customer c, nation n
and o.o_custkey = c.c_custkey
and c.c_nationkey = n.n_nationkey
and c.c_custkey = user_id()
and n.n_name not in

(select * from AuthNations as a
where a.c_custkey = c.c_custkey)

• P3: Policy P3 is a complex policy that uses unions. A partic-
ular user (e.g., an analyst) is constrained to view the lineit-
ems purchased in a fixed set of regions. The set of regions
for a particular user will access is specified using UNIONS
(we vary the number of unions to study increasing complex
authorizations).

4.1.2 Physical Design
Another important parameter for consideration is the baseline for

comparison. In order to defend against the best possible baseline,
we carefully considered “tuned” versions of the database for each
policy. For instance, authorization policy P1 may be rewritten as
an equivalent SPJ policy (that represent the decorrelated versions
of the rewritten queries which involve subqueries). For policy P1
, we consider a physical design that materializes all possible pri-
mary key-foreign key join-paths in the TPC-H database. However,
exact materialized views are not feasible for policies P2 and P3
for since the authorizations are typically more complicated (with
sub-queries, negations and unions) than the language of material-
ized views supported by commercial database systems. As an ap-
proximation, we tune the workload by using an automated physical
design tool that is part of the database system we use. Such tools
(see [5] for an overview) take an input query workload and a storage
bound and return a set of indexes/materialized views that best op-
timize the workload while respecting a storage bound. We did not
place constraints on the storage bound required. Thus, this physical
design in some sense is fully “optimized" for the workload.

4.2 Results for Policy P1
We first report the results for policy P1 over the basic TPC-H

database. We compare the query times of the rewritten TPC-H
queries with authorization predicates to the query rewritings gener-
ated by the greedy algorithm. The graphs plot relative speedup as a
function of the query — note that the Y axis is in log (base 2) scale.

Evaluation on Tuned Database: Authorization policy P1 is a
SPJ policy. Hence, the rewritten queries may be potentially an-
swered using the views that materialize the primary key-foreign
key joins, we materialized views corresponding to all primary key-
foreign key joins in the TPC-H database. We first compare the
query times of the rewritten TPC-H queries in the tuned database
to the query times of the query rewritings generated by the greedy
algorithm. The results are reported in Figure 5. Only three queries
in the benchmark (queries Q4, Q6 and Q8) could be matched with
the materialized views. As mentioned in the introduction, view
matching uses a lot of heuristics and there is no guarantee that
the rewritten queries (involving subqueries) will be matched to the
corresponding un-nested/de-correlated version of the materialized
views. On an average, the benchmark queries rewritten using the
authorization indexes ran 90x faster than the ones matched against

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

Benchmark Queries

Lo
g

(T
im

e
 in

 B
as

ic
 D

B
 +

 M
V

s
/ B

as
ic

 +
 A

ut
h

 Id
xs

)

Figure 5: Performance of authorization indexes over Policy P1
in the presence of all materialized joins

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Benchmark Queries

Lo
g

(T
im

e
 in

 T
un

ed
 D

B
 /

T
un

e
d

+
 A

ut
h

Id
xs

)

Figure 6: Performance of authorization indexes over Policy P1
in the tuned TPC-H DB

materialized views. Thus, authorization indexes can be very effec-
tive even for policies that fall within the class of supported materi-
alized views.

As an additional data point, we also obtained an optimized phys-
ical design for the rewritten queries using the automated physical
design tool that ships as a part of SQL Server (we did not give the
design tool any bounds in storage requirement). The space required
to store the suggested indexes was around 2 Gb (the space required
to store the authorization indexes was around 875 MB). In order
to evaluate if there is any additional benefit in having authorization
indexes, we compared the execution time of the tuned rewritings
with the rewritings generated by the greedy algorithm on the tuned
database. The results are shown in Figure 6. The average speed
up in execution time for the greedy rewritings (even over the tuned
rewritings) was a factor of 11x.

We observed that there were interesting interactions between au-
thorization indexes and the indexes suggested by the physical de-
sign tool. For instance, for TPC-H queries 3 and 9, the greedy
algorithm picked an index intersection plan between a regular in-
dex (suggested by the physical design tool) and an authorization
index in order to intersect the RIDS before the relevant tuples are

Figure 7: Snapshot of the query execution plan for Query 3
showing an index intersection plan between an authorization
index and a regular index

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Benchmark Queries

Lo
g

(T
im

e
 in

 T
un

ed
 D

B
 /

T
un

e
d

+
 A

ut
h

Id
xs

)

Figure 8: Performance of authorization indexes over Policy P2
in the tuned TPC-H DB

fetched from the base relations. The plans (an example is shown in
Figure 7) led to a speed up of 5x and 13x in the execution times of
queries 3 and 9 respectively.

4.3 Results on complex policies - P2 and P3
Policy P1 was a simple authorization policy which could be

equivalently rewritten as a SPJ query. To evaluate the effectiveness
of authorization indexes we vary the complexity of the authoriza-
tion policy by introducing negations (P2) and unions (P3). We first
report the results for the authorization policy P2 which contains
negations — we only report the results on the tuned database.

Results on Tuned Database: As mentioned earlier, as we can-
not create “exact" materialized views for the complex policies, we
use the automated physical design tool to suggest an appropriate
physical design. The space required to store the suggested indexes
was ∼ 500 Mb. We compared the execution time of the queries
rewritten using authorization predicates on the tuned database with
the rewritings generated by the greedy algorithm. The results are
shown in Figure 8. The average speed up in execution time for the
greedy rewritings over the tuned rewritings was by a factor of ∼
30x.

Evaluation on Policy P3 Policy P3 constrains the users to view
the lineitems corresponding to their orders where the parts are pur-
chased from a set of regions. We vary the complexity of the pol-
icy by varying the number of regions by adding additional UNION
clauses. In this experiment, we fix the query to be select * from
lineitem and show the results for five “users” who can see the re-

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Basic
Tuned

Number of Unions

Lo
g

(T
im

e
 n

or
m

al
iz

ed
 w

.r.
t B

as
ic

 +
 A

ut
h

Id
xs

)

Figure 9: Performance of authorization indexes over Policy P3
with respect to Basic and Tuned TPC-H DB

sults corresponding to one to five regions - (i.e., user three’s autho-
rization policy would result in a rewritten query that has a union
of three subqueries). The results are reported in Figure 9. On an
average, the speed up in execution time of the local greedy rewrit-
ings over the rewritings with authorization predicates on the basic
database and the database tuned using the physical design tool are
100x and 10x respectively. The space required to store the autho-
rization indexes for policy P3 with 1, 2, 3, 4 and 5 regions is 64,
128, 192, 256, and 320 Mb respectively. The physical design tool
was only able to select only a few relevant indexes with a total space
of 14 Mb.

4.4 Selectivity of Authorization Predicates
If an user can view only a small fraction of the base relation’s

tuples, authorization indexes are likley to provide faster access to
the records. As this fraction grows we would expect authorization
indexes to have diminishing returns (as is the case with regular in-
dexes). In this section, we evaluate the effectiveness of authoriza-
tion indexes by varying the selectivity of the authorization policy
P1. Policy P1 constrains a customer to view his own order. We
vary the selectivity the authorization predicate on the policy P1 by
grouping customers and allowing a customer to view the records
of all customers in his group. We report the results for groups of
size 2, 4, 8, 16, and 256. the results are reported in Figure 10.
For groups of size 2 and 4, authorization indexes were used in al-
most every query (9 of 11 queries). However, for groups of size
256, less than a half of the benchmark queries were rewritten using
authorization indexes. The authorization index on the Customer ta-
ble had the most diminishing return and was excluded from every
rewriting with more than 4 groups.

4.5 Summary of Results
The experimental results illustrating the average speed-up and

maximum speed-up (across the TPC-H queries) for all the policies
is summarized in Table 1.

The experimental results demonstrate that authorization indexes
can significantly reduce the execution times of complex queries
(with fine-grained authorizations) even when compared to a phys-
ical design that is highly tuned for the rewritten queries. For in-
stance, for Policy P2 the maximum speed-up was close to two or-
ders of magnitude (for TPC-H Query 5). Of course, this is not
meant to be an exhaustive study and there are other important di-

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

|Group| = 2
|Group| = 4
|Group| = 8
|Group| = 16
|Group| = 256

Benchmark Queries

Lo
g

(T
im

e
 in

 B
as

ic
 D

B
 /

B
as

ic
 +

 A
ut

h
Id

xs
)

Figure 10: Performance of authorization indexes over Policy
P1 with varying selectivities

Policy Average speed-up Maximum speed-up
P1 11x 32x
P2 34x 85x
P3 10x 24x (Policy with 5 unions)

Table 1: Summary of results

mensions to consider (such as the cost of storing and maintaining
the indexes). But, the results clearly demonstrate that authorization
indexes merit more study.

5. OPEN PROBLEMS
In this section, we briefly comment on some interesting research

problems that arise from the tightly-coupled integration of autho-
rizations and a query engine.

Compression Techniques: We have focused our discussion on
SELECT queries. Users could have different authorization for SE-
LECT and UPDATES (e.g., an analyst can read data but not update
it). This would imply having multiple authorization indexes for dif-
ferent operations. Thus the space requirements of using authoriza-
tion indexes could be non-trivial. It is interesting to examine appro-
priate compression techniques for such indexes. For instance, one
can consider a bitmap index [12] like representation for the RIDS.
Likewise, other compression techniques like run length encoding
could also prove to be effective in compressing RID lists.

Authorization based Optimizations: Reasoning about autho-
rization also opens the avenue for interesting optimizations of reg-
ular query processing. Consider a set of reporting queries that need
to be run for a set of users (e.g., a set of managers in a hierarchy).
Note that the rewritten queries for different users could have large
sub-queries that are identical based on the “org-chart”. A multi-
query optimization scheme that is aware of the authorizations can
compute a “minimal” subset of queries to run in order to cover all
the original reporting queries. In general, the interaction of query
processing and the complexity of authorization schemes (e.g., in-
volving recursion) is relatively unexplored.

Authorization Semantics: Current FGA semantics are based on
the ”truman” model [13] which enables any query to be run on a
selected subset of rows of the database (the rows being identified

by appropriate predicates on each table). Ideally, the authorizations
would also include: 1) restrictions on appropriate columns and 2)
restrictions on computations that are allowed on that subset of rows
and columns (e.g., can aggregate these rows but not filter them). We
can enable this functionality using additional views but this loses an
important advantage of enforcing authorizations using rewriting,
namely transparency. Another important problem is the issue of
information leakage — as discussed in Section 3.3, side channel
attacks can be used to subvert authorizations. While a certain class
of attacks can be handled by using the notion of safe plans, it is
not clear how to generalize this notion for other side channels such
as timing information. Designing an uniform FGA model that can
permit only specific computations on data while taking into account
any information leakage using side channels is an intersting avenue
for future work.

Authorization and Encryption: There has been recent work on
integrating encryption as a first class citizen in a database (e.g., [14,
15]) — there has not been much work that examines the integration
of fine-grained authorizations and encryption. For instance, does a
rewriting based approach suffice or can fine-grained authorizations
be directly enforced using encryption (e.g., by using appropriate
keys or a specific partial homomorphic encryption technique to re-
strict computations). Again, developing a unified FGA model that
integrates (fine-grained) encryption with authorization is an inter-
esting open problem.

6. RELATED WORK
The original query rewriting model for authorizations was pro-

posed in [4]. Extensions for fine-grained authorizations are dis-
cussed in [1, 2, 3]. Oracle VPD [1] is a commerical offering that
implements FGA using predicated grants.

In addition, the Oracle DBMS supports the notion of application
contexts[16] which is a set of name-value pairs that is available to
the application (e.g., the current employee id) — this can be poten-
tially used to optimize the rewritten query for simple authorization
policies in a similar fashion as authorization indexes. But for more
complex policies (e.g., the query in 1.3), the application would
have to reason about query equivalence between complex subex-
pressions in order to guarantee correctness and this is best handled
by an authorization aware query optimizer (Section 3). Caching
application contexts could still provide an interesting optimization
for authorization indexes in certain cases — for instance, we could
choose partial authorization indexes on the basis of which applica-
tion contexts are cached.

As discussed previously, commerical systems support material-
ized views for only a limited class of expressions. For instance,
the algorithms described in [17] are indicative of the state of the art
and handle the following class of expressions — a view must be de-
fined by a single- level SQL statement containing selections, (inner)
joins, and an optional group-by. The FROM clause cannot contain
derived tables, i.e. it must reference base tables, and subqueries are
not allowed. The output of an aggregation view must include all
grouping columns as output columns (because they define the key)
and a count column. Aggregation functions are limited to sum and
count. Thus, materialized views do not cater the complex expres-
sions that arise more naturally for fine-grained authorizations.

7. CONCLUSIONS
The rewrite-then-optimize architecture for integrating authoriza-

tion in a database introduces subtle performance problems that are
hard to “tune” away. We argue the need for raising authorization

awareness in a DBMS 3. In particular, we introduced the notion of
an authorization index. Our initial experiments demonstrate that
such an index structure (along with an authorization aware opti-
mizer) can provide significant benefits for complex TPC-H queries.
We consider this paper as a first step — we believe the tightly-
coupled integration of authorization and query processing can be a
rich source for interesting problems.

8. REFERENCES
[1] Oracle Corporation, “Oracle virtual private database,”

http://www.oracle.com/.
[2] Q. Wang et al., “On the correctness criteria of fine-grained

access control in relational databases,” in VLDB, 2007.
[3] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine grained

authorization through predicated grants,” in ICDE, 2007.
[4] M. Stonebraker and E. Wong, “Access control in a relational

database management system by query modification,” in
ACM CSC-ER, 1974.

[5] “Special issue on self-managing systems,” IEEE Data Eng.
Bull., vol. 29, no. 3, 2006.

[6] M. Stonebraker, “The case for partial indexes,” SIGMOD
Rec., vol. 18, no. 4, pp. 4–11, 1989.

[7] T. Griffin and L. Libkin, “Incremental maintenance of views
with duplicates,” in SIGMOD, 1995.

[8] S. Chaudhuri and M. Vardi, “Optimization of real
conjunctive queries,” in PODS, 1993.

[9] Y. Sagiv and M. Yannakakis, “Equivalences among relational
expressions with the union and difference operators,” J.
ACM, vol. 27, no. 4, 1980.

[10] G. Graefe, “The Cascades Framework for Query
Optimization,” IEEE Data(base) Engineering Bulletin,
vol. 18, pp. 19–29, 1995.

[11] G. Kabra, R. Ramamurthy, and S. Sudarshan, “Redundancy
and information leakage in fine-grained access control,” in
SIGMOD, 2006.

[12] P. O’Neil and D. Quass, “Improved query performance with
variant indexes,” in SIGMOD, 1997.

[13] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy,
“Extending query rewriting techniques for fine-grained
access control,” in SIGMOD, 2004.

[14] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan, “Cryptdb: protecting confidentiality with
encrypted query processing,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26, 2011, 2011.

[15] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan, “Orthogonal security
with cipherbase,” in CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings, 2013.

[16] Oracle Corporation, “Implementing application context and
fine-grained access control,” http://docs.oracle.com/.

[17] J. Goldstein and P. åke Larson, “Optimizing queries using
materialized views: A practical, scalable solution,” 2001, pp.
331–342.

3If you support our cause, you can help by citing this paper. We
also welcome donations.

