
Building Highly-Optimized, Low-Latency Pipelines for
Genomic Data Analysis

Yanlei Diao, Abhishek Roy
University of Massachusetts Amherst
{yanlei,aroy}@cs.umass.edu

Toby Bloom
New York Genome Center

tbloom@nygenome.org

Abstract. Next-generation sequencing has transformed ge-
nomics into a new paradigm of data-intensive computing.
The deluge of genomic data needs to undergo deep analysis
to mine biological information. Deep analysis pipelines often
take days to run, which entails a long cycle for algorithm and
method development and hinders future application for clinic
use. In this project, we aim to bring big data technology to
the genomics domain and innovate in this new domain to
revolutionize its data crunching power. Our work includes
the development of a deep analysis pipeline, a parallel plat-
form for pipeline execution, and a principled approach to
optimizing the pipeline. We also present some initial evalua-
tion results using existing long-running pipelines at the New
York Genome Center, as well as a variety of real use cases
that we plan to build in the course of this project.

1. INTRODUCTION
Genomics has revolutionized almost every aspect of life

sciences, including biology, medicine, agriculture, and the
environment. At the same time, next-generation sequencing
has transformed genomics into a new paradigm of data-
intensive computing [2]: the sequencing instruments are now
able to produce billions of reads of a DNA sequence in a
single run, raising the potential to answer biological questions
with unprecedented resolution and speed. Large sequencing
centers are already producing terabytes of genomic data each
day. Figure 1 shows that the projected growth rates for data
acquisition from sequencers will outpace the growth rates
of processor/memory capacities as per Moore’s law. This
trend is making genomic data processing and analysis an
increasingly important and challenging problem.

Despite the high volume, the deluge of genomic data needs
to undergo complex processing to mine biological informa-
tion from vast sets of small sequence reads. There has
been intensive research on individual problems in genomic
data analysis, such as assembly (e.g., [18,37,49]), alignment
(e.g., [20,22,23,26], SNP (single nucleotide polymorphism)
detection (e.g., [7,25]), and SNP genotyping (e.g., [6,7]). On

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR’15)
January 4-7, 2015, Asilomar, California, USA.

the other hand, a recent trend is that genomics is moving
toward “deep analysis” with significantly increased complex-
ity in data processing. Such deep analysis often requires
sequence data to be transformed from the raw input through
a large number of steps, where each step brings more bio-
logical meaning to the data or improves the quality of the
derived information, until finally a high-level observation
(e.g., regarding a population of objects under study) with a
significant biological meaning can be derived. Our work is
driven by the data processing needs of such deep analysis,
characterized as follows:

1. Deep analysis in genomics research requires a full
pipeline that integrates many data processing and analysis
tools. Such a pipeline typically consists of a large number of
steps, from the initial alignment (mapping short reads to the
reference genome), to data cleaning for fixing many issues
introduced by noisy input data (e.g., removing duplicate
reads, recalibrating quality scores, and local re-alignment
based on known SNP locations), to variant calling and geno-
typing, and further to advanced statistical mining. Based on
our past work on building such pipelines for general genome
research [27,31] as well as specific research projects such as
genome-wide association studies (GWAS) [41], we observe
that there are usually at least 15-20 processing steps in the
pipeline to ensure that (1) data is transformed into high-level
biological information (e.g., genotypes, associations between
mutations and phenotypes), and (2) such information is de-
rived with all (most of) the noise removed from the input
data—omitting the necessary data cleaning steps may have a
severe negative impact on the quality of derived information.

2. Deep analysis pipelines often take long to run, which
entails a long cycle for algorithm and method development for
genomics research and hinders future application for clinic
use. The long running time is due to several main factors:
(1) Current bioinformatics pipelines are extremely inefficient
with respect to I/O. This is because a data set of hundreds
of GBs per sample is not reduced by processing, but ratherSynergistic Challenges in Data-Intensive Science and Exascale Computing

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!'!" #!''" #!'#" #!'(" #!'$" #!')"

*+,+-,./"
0+12+3-+/"
4/.-+55./"
6+7./8"

CAGR = 72%

CAGR = 60%

CAGR = 36%

CAGR = 20%

Figure 3.1: Projected growth rates for data acquisition and processor/memory capacities. (Figure
courtesy of Kathy Yelick.)

• Zero suppression, or more correctly “below threshold suppression”. Data from each collision
are produced by millions of sensitive devices. The majority of the devices record an energy
deposit consistent with noise and inconsistent with the passage of a charged particle. These
readings are cut out at a very early stage. This is not a trivial choice. For example a free
quark might deposit 11% of the energy expected for a normal charged particle, and would
very likely be rendered invisible by the zero suppression. However, discovery of a free quark
would be a ground-breaking science contribution that could well be worthy of a Nobel prize.

• Selection of “interesting” collisions. This proceeds in a series of steps. The first step is to
decide which collisions merit the digitization (and zero suppression) of the analog data in the
detection devices. This produces hundreds of gigabytes per second of digital data flow on
which further increasingly compute-intensive pattern recognition and selection is performed
by embarrassingly parallel “farms” of thousands of computers.

Typically, the group responsible for each major physics analysis topic is given a budget of how
many collisions per second it may collect and provides the corresponding selection algorithms.
Physicists are well aware of the dangers of optimizing for the“expected” new physics and being
blind to the unexpected. For real time data reduction, all the computing is necessarily performed
very close to the source of data.

3.1.2 Distributed Data Processing and Analysis

Construction of each LHC detector necessarily required that equipment costing hundreds of millions
of dollars be funded and built by nations around the world and assembled in an underground pit at
CERN. The motivation for this consolidation of experimental equipment is clear. However, there
is no corresponding motivation to consolidate computing and storage infrastructure in the same
manner. Instead, for both technical and political reasons, a distributed computing and storage
infrastructure has been the only feasible path to pursue despite some of the complexities involved.

The workflow for HEP scientists involved in an experiment like ATLAS or CMS typically consists
of the following tasks:

1. Reconstruction of likely particle trajectories and energy-shower deposits for each collision
from the individual measurements made by the millions of sensitive devices.

12

Figure 1: Genomic data grows faster than Moore’s Law

(figure courtesy of Katherine Yelick).

increased in size through most of the analysis pipelines. In
addition, all the data is stored in files currently, causing each
processing step to read and write an entire file. Further,
different steps in the pipeline often access data in different
orders, hence requiring data to be sorted frequently. (2) Bioin-
formatics pipelines often involve complex analysis algorithms,
ranging from Burrows-Wheeler transform, to grouping and
complex statistical analysis, to methods based on geometric
operations. Such algorithms are both CPU and IO intensive
and can take days to weeks to run. Such long running al-
gorithms include Mutect [4] for somatic variant calling and
Theta [33] for complex cancer genome analysis, to name a
few. (3) It is not easy to parallelize these pipelines because
different processing steps permit different ways to partition
the data and the decision of whether it is safe to partition
data in a particular way requires deep understanding of how
each algorithm works.

For all above reasons, current pipelines can take 3.4 to
23.4 days to complete for a test sample based on our initial
profiling at the New York Genome Center, where the varia-
tion depends on the complexity of analysis algorithms used.
Such long-running time is far from the desired turnaround
time of one day for clinic use.

3. Most small research labs do not have access to high-
performance pipelines for genomic data analysis. In current
practice, research labs send DNA samples to a commercial
sequencing company, and receives processed results including
short read sequences and detected genomic variants, with
a turnaround time of two months. Many research groups
wish to reduce the long turnaround time, but lack computing
resources and technical know-how to support full pipelines on
high-volume data (100-200 GB per sample) by themselves.

An alternative is to use genome analysis centers that pro-
vide open access to the research community. However, per-
formance problem persist. For instance, the popular Galaxy
system [9] provides a web portal for assembling user pipelines,
but internally uses a simple integration of existing tools with
limited optimization and no parallel processing. Hence, its
performance is not better than the profiling results show
above (in practice, worse due to shared use). National cen-
ters like NCGAS [30] use supercomputers for genome analysis.
However, NCGAS focuses on individual methods, e.g., as-
sembly, but not a deep pipeline. Hence, it neglects problems
related to data transfer between steps and frequent data
shuffling, which is observed to be a main contributor to in-
efficiencies and delays. It further lacks sufficient support
for spreading the data and computation of many analysis
methods to a cluster of nodes.

A final option is to deploy an existing pipeline (e.g., from
Galaxy) on the cloud. However, running existing (unopti-
mized) pipelines in the cloud can incur very high costs for
research labs. In the cloud setting, a long running pipeline
means higher payment as the pricing policy is based on CPU
time and I/O frequency. Our previous experience with Ama-
zon EC2 showed that running experiments for 8 days on 20
extra large instances (4 virtual cores, 15GB memory per in-
stance) costed $3,400, an average of over $400 per day—this
may not be a sustainable plan for most small research labs
doing computational genomics.

Our work was motivated by a valuable lesson that we
learned from big data industry: the success of big data
providers like Google is due not only to their intelligent
search algorithms, but also to powerful infrastructures that

allow engineers to try any new idea, innovative or experimen-
tal, on thousands of nodes and obtain results within minutes
or hours. Such early results and insights can significantly
reduce the cycle of design, development, and validation of
new algorithms. Hence, we anticipate that such powerful
infrastructures, accessed for free or at reasonable costs by
genomics researchers, will be a key enabler of many new mod-
els and algorithms developed for genomics and help advance
this field at unprecedented speed as big data technology did
for Internet companies.

In this project, we bring the latest big data technology to
the genomics domain, and innovate in this new domain to
revolutionize its data crunching power. Our work includes
several main efforts:

1. We develop a deep pipeline for genomic data analysis
and profile it to identify performance bottlenecks. We set out
to implement a full pipeline consisting of alignment, data
cleaning and quality control, various types of variant calling
(SNP, insertions, deletions, and structural variants), and
examples of statistical analysis such as association mining
over a population [41]. We further provide profiling results
showing the CPU and I/O costs of the pipeline execution.
Our profiling results reveal two types of long-running steps:
those steps that are both CPU-intensive, due to expensive
algorithms used, and I/O intensive, due to large files read
and written; and those steps that are mostly I/O intensive,
due to (repeated) sorting of large read files.

2. We parallelize the pipeline in the big data infrastruc-
ture. For those steps that incur high CPU and I/O costs,
we parallelize them using the MapReduce model. In partic-
ular, we choose to use the open-source Hadoop system [13]
for MapReduce processing, which forms the core of a large
ecosystem of freely available software tools for big data ana-
lytics. Our first effort is to port existing genomic analysis
programs into the distributed Hadoop file system (HDFS),
with no or minimum change of existing analysis programs.
To do so, we provide a new storage substrate that supports
the same data access API as in existing programs but works
on HDFS, and new features such as logical data partitioning
and co-location. Our second effort is to parallelize many
processing steps in the pipeline using the MapReduce frame-
work (Hadoop). Such parallel processing supports not only
embarrassingly parallel steps of the pipeline, but also many
processing steps that partition data based on user-defined
criteria (e.g., quality score recalibration). To mitigate I/O
costs dominant in many data cleaning steps, we further ex-
plore streaming technology as a means to reduce I/O as well
as total running time, and also columnar storage to replace
the data files communicated between consecutive steps.

3. We bring the principled approach for query optimization
from the database area to bear on the process of optimizing ge-
nomic pipelines. Query optimization in relational databases
considers alternative equivalent implementations and chooses
the most efficient one for a given workload. We explore
a similar approach to pipeline optimization: We enhance
the Hadoop system with alternative implementations of logi-
cal data partitioning and choose the most efficient one for
each processing step. We propose cost-based optimization
to choose the appropriate level (degree) of parallelism used
in each processing step. We further identify opportunities
in the pipeline where materialized views and across-step
optimization can help reduce computation and I/O costs.

4. Development and use cases. Our system integrates a

1. Preprocessing &
Alignment

3. Variant Calling &
Genotyping

2. Data Cleaning &
Quality Control

4. Deep Analysis - Association
- Casuality

- SNP, INDEL
- CNV,
Inversion,
Translocation

Genomic
Pipeline

DNA sequencers

Read sequences:
FASTQ format

millions to billions of reads
…CATTCAGTAG…!

…AGCCATTAG…!

Aligned reads:
SAM/BAM format

Aligned reads:
SAM/BAM format

Variants:
VCF format

(a) Pipeline overview.

3. Variant Calling & Genotyping

1. Preprocessing & Alignment

1.3 Samtools: index
1.2 Bwa: sampe
1.1 Bwa: aln

3.10 GASV: GASVPro SV Calling
3.9 GASV: SVCalling
3.8 GASV: BAM to GASV
3.7 GATK: SmallVariantCalling
3.6 GATK: TableRecalibration
3.5 GATK: CountCovariates
3.4 GATK: IndelRealigner
3.3 GATK: RealingerTargetCreater
3.2 GATK: VariantFilteration
3.1 GATK: UnifiedGenotyper

2. Cleaning & Quality Control

2.4 Picard: MarkDuplicates
2.3 Picard: FixMates
2.2 Picard: CleanSam
2.1 Picard: AddReplaceGroups

(b) Example processing steps.

1.1 Bwa:aln

1.2 Bwa:sampe

2.3 FixMates

2.4 MarkDup.

...

...

Single Server
core core

core core

...

File System

Pipeline Execution

Disk

File 1

File 2

File 5

File 6

File 7

(c) Existing architecture.

Figure 2: A pipeline for genomic data processing and deep analysis.

web portal, a deep analysis pipeline, and a platform for paral-
lelization and optimization of the pipeline. While our current
development focuses on parallelization and optimization of
individual, expensive steps of the pipeline, in the long run
we plan to deploy and evaluate our system using existing
long-running pipelines (e.g., structural variant calling and
cancer pipelines) at the New York Genome Center. To fully
evaluate our parallel genomic processing pipeline and gain
user feedback: we have planned several use cases, including
variant calling and genotyping, analysis method development
and comparison, population studies, and common disease
studies, which we outline at the end of the paper.

2. A DEEP GENOMIC ANALYSIS PIPELINE
In this section, we outline our design of a deep pipeline for

genomic data analysis, and present profiling results to reveal
major performance bottlenecks.

2.1 A Pipeline for Genomic Data Analysis
To support the data processing needs of most bioinfor-

matics users, we are assembling a pipeline for genomic data
analysis which includes most common processing steps. Fig-
ure 2(a) shows an overview of the pipeline with a number of
main phases of processing. Figure 2(b) shows some of the
detailed processing steps in the first three phases.

The input to our pipeline is a large collection of short
sequence reads for a single genome sample or a batch of
them. There can be millions to billions of short reads for
each genome sample. The input data is typically encoded
in the FASTQ format [5], which is a text-based format for
storing both a biological sequence (a nucleotide sequence)
and its corresponding quality scores. At present, we support
paired end reads encoded in FASTQ.

1. Alignment: After some preprocessing to change the
data format (if needed), the first main task is alignment:
the short reads are aligned against a reference genome, and
each aligned read is assigned one or multiple mapped posi-
tions on the reference genome together with mapping quality
scores. While there are many alignment algorithms available

(e.g., [20, 22, 26]), our pipeline uses BWA [22] as the de-
fault algorithm due to its ability to support multiple aligned
positions in the face of mapping ambiguity. The user can
always customize our pipeline by choosing to use another
aligner. The alignment result is encoded in the standard
SAM/BAM format [42], where SAM includes attributes such
as the mapped location and mapping score for each read,
and BAM is the compressed, indexed binary format of SAM.

Figure 3 shows an example where the sequenced genome
differs from the reference genome with two true mutations,
A → C and C → A. In this example, nine read sequences
are aligned against the reference genome with up to five
mismatches allowed per read—such mismatches must be
allowed in order to detect mutations, which occur in every
person’s genome. The first four reads differ from the reference
genome on the two bases where mutations occur among
others, but the letters do not agree with the true genome.
Most likely these reads have been mis-aligned to this fragment
of the genome. The bottom five reads have the correct letters
for the two bases where mutations occur, but have three
additional mismatches, in relatively close positions, that
differ from the true genome. Such mismatches can either
come from errors in raw data or indicate that these reads
should be aligned somewhere else. Such data quality issues
will be addressed in the next phase of the pipeline.

2. Data cleaning and quality control: After alignment, the
pipeline goes through a number of steps to remove the effect
of noisy data from the rest of processing. For instance, Fix-
Mates (step 2.3 in Figure 2(b)) makes mate pair information
consistent between a read and its pair, which is needed due to
the limitations of alignment software. MarkDuplicates (2.4)
flags duplicate reads that are those pair-end reads mapped
to exactly the same start and end positions. These reads are
unlikely to occur in a true random sampling based sequencing
process, and mostly originate from DNA preparation meth-
ods. They cause biases that will skew variant calling results.
We implement these steps using the Picard tools [38].

3. Variant calling: The next phase detects a range of
variants against the reference genome. Our pipeline includes

G C T T C A A A C T C A T C G A T A C g C t G c T T T G T A T T G C C T T G T C
Reference Genome

True Genome
(2 mutations)

1
2
3
4
5
6
7
8
9

problematic
mismatches

Rows for 9 aligned reads with <= 5 mismatches against the reference genome (shaded letters)

problematic
mismatches

G C T T C A A A C T C A T A G A T A C g C t G c T T T G T C T T G C C T T G T C

Figure 3: Examples of alignments of read sequences against a reference genome.

two branches, for small variant calling and large structural
variant calling, respectively, as described below. The output
of this phase is in the Variant Call Format (VCF) [47].

Small variant calls include single nucleotide variants (SNPs)
and small insertions/deletions (INDELs). Our design of the
pipeline follows the best practice [10] that mixes variant
calling and quality control steps. In particular, the Uni-
fiedGenotyper (step 3.1) calls both SNPs and small (≤20
bp) INDELs. Variant Filtration (step 3.2) flags suspicious
variants based on quality scores, strand biases, etc. and flags
variants in conserved regions. Indel Realigner (steps 3.3 and
3.4) takes the known SNP locations from the knowledge base
and performs local realignment around those locations to
minimize the total number of mismatched bases. Quality
score recalibration (steps 3.5 and 3.6): Quality scores re-
turned by the sequencer often differ from the actual error
rates present in the data because they can be affected by
many covariates such as the machine cycle, the position of a
base within a read, neighboring bases, etc. As such, quality
scores in input data can be recalibrated based on the empiri-
cal error rate in each data group, defined as the data having
the same value of user-defined covariates.

Large structural variants (SV) include copy number vari-
ants (CNVs), inversion, translocation, etc. There is hardly
any commercial software that can detect most of these
variants. We studied the literature of SV detection in-
cluding those techniques surveyed in [1] and other recent
ones [4, 33, 44, 45, 48]. By default, our pipeline calls the
GASV/Pro algorithms [44,45] to detect structural variants
because these algorithms integrate both the pair-end read
signal and the read depth signal to detect structural vari-
ants including deletion, inversion, and translation, and can
achieve much improved accuracy. We are currently investigat-
ing other more complex algorithms (e.g., [4,33]) for inclusion
into our pipeline. The user can customize our pipeline with
any other SV calling algorithm.

4. Deep analysis: The next phase performs sophisticated
statistical analysis over a population and produces high-level
biological information, such as associations or causal relation-
ships between genomic variants and phenotypes, or functional
pathways in response to evolutionary, environmental, and
physiological changes.

For instance, our pipeline includes an advanced genome-
wide association mining algorithm [41]. It improves existing
association mining methods [14, 46] to suit genomic data.

In particular, the genome-wide association study presents
several main differences from traditional association mining
for transaction data: First, as genomic variations are rare
in nature, the extremely low support for such variations
makes existing algorithms highly inefficient or unable to
complete. Second, the interestingness metric for association
rules is usually confidence, which produces too many trivial
and repetitive rules in the genomic domain and hides truly
interesting ones. Third, large structural variants such as
CNVs are never fully aligned across different patients. Hence,
they cannot be used as a fixed vocabulary of items as in
existing algorithms. Instead, they should be divided into
small fragments and mined for association by considering
proximity of these fragments. Our algorithm extends a recent
one [24] to support a new interestingness metric, extremely
low support, and proximity-aware mining. Over the course
of this project, we will add more statistical algorithms based
on the needs of our case studies.

2.2 Performance Issues Revealed in Profiling
We have performed an initial profiling study of the pipeline

to understand its performance. The standard architecture for
pipeline execution is shown in Figure 2(c). Each processing
step takes a set of input files and writes an output file. The
input files can be a combination of the following three types,
depending on the computation needs in a processing step:

1. The reference genome is a digital nucleic acid sequence,
where a letter ‘A’, ‘C’, ‘T’, or ‘G’ is assigned to each
base for up to 3 billion bases. The file of the human
reference genome (build 37) contains 3.2 GB in total.

2. The file of reads is a large set (usually, billions) of
short reads of a test genome, where each base of the
genome is read k times on the average. The number
k is called the “coverage” of the sequencing process,
with typical numbers in the range of 30 to 120 (where
higher numbers are often used for cancer samples). The
files of reads are typically hundreds of gigabytes with
compression, but can also go over a 1 terabyte with
compression.

While the raw reads are usually encoded in the stan-
dard text-based format, FASTQ [5], they are trans-
formed into SAM/BAM format [42] for processing at
the beginning of the pipeline. The SAM format in-
cludes an optional header section and an alignment

Field Brief description
QNAME Pair name
FLAG Integer representation of a bitwise flag
RNAME Chromosome name
POS Leftmost mapping position of the read
MAPQ Mapping quality
CIGAR Relationship between the base sequence of the read and the mapping coordinates
RNEXT Chromosome name of the other read of the pair
PNEXT Position of the other read of the pair
TLEN Signed length of the read pair
SEQ Base sequence of the read
QUAL String representation of quality value for each base of the read

Read 1: 20GAVAAXX100126 \t 99 \t 1 \t 1263352 \t 60 \t 20M \t = \t 1263380 \t 48
\t AAGACGCCTCAGCCACGGCT \t B@BFFABDHDHHDHIGGGIG \n

Read 2: 20GAVAAXX100126 \t 147 \t 1 \t 1263380 \t 60 \t 20M \t = \t 1263352 \t -48
\t TAGTAATAAATTTGCCAATC \t I <<< JIIHHHF?EADAD?; = \n

\t : Tab character, \n : End of line

Table 1: SAM record schema: Each record has eleven mandatory attributes and optional attributes. The table

describes the mandatory attributes and shows SAM records for a read pair.

section. Each line in alignment section is a single read
record. The read record contains eleven mandatory at-
tributes (Table 1) and optional attributes in the form of
key:value_type:value triplet. Blocks (default: 64KB)
from the SAM file can be compressed and concatenated
to create the corresponding BAM file. Thus BAM file
format is the binary, compressed version of the human-
readable SAM file format. If the reads in the BAM file
are sorted by the genomic coordinates, then an index
is created to map the genomic regions to the file offsets
of the blocks in BAM file.

3. The third type of input file contains statistics of the
reads or quality scores of these reads, which are com-
puted from a previous processing step.

The output of a processing step can be one of the following
two cases:

1. A new file of the reads, which contains both the original
reads and additional information such as the mapped
location(s) of each read against the reference genome,
or a flag set to indicate that a read is a duplicate.

2. A new file of data statistics, which are computed from
the reads or their quality scores.

We ran two sets of experiments. The first set of experi-
ments were conducted on a server at UMass Amherst, with
12 Intel Xeon 2.40GHz cores, 64GB RAM, 7200 RPM hard
drive, and CentOS version 6.5. We used the NA12878 whole
genome dataset (64x coverage) as input to the workflow. The
input dataset had 1.24 billion read pairs in two FASTQ files,
with 282GB each when uncompressed. We ran a pipeline
from alignment (BWA), to data cleaning and quality control
(Picard and GATK tools), and to variant calling including
both small variant calls (GATK genotyping) and large variant
calls (GASV/Pro), where data analysis programs were coded
in C or Java. For those steps that have a multi-threaded
implementation, e.g., BWA alignment and GATK genotyp-
ing, we ran the program with 12 threads. We measured
performance using Linux tools sar and perf.

Some preliminary results are shown in Table 2 for some of
the most expensive steps, including the running time, input
and output files and sizes, bytes read and written, and CPU
instructions incurred in each step. In addition, Figure 4(a)

lists the processing steps in the percentage of total time, and
Figure 4(b) shows CPU IOwait throughout the pipeline. Our
main observations include the following.

First, the pipeline takes 12.2 days (293 hours) to complete
for a single genome with 64GB RAM and 12 cores. We
highlight some steps with running time over 10 hours in
Table 2, which are also shown in descending order of time in
Figure 4(a). The cost may increase significantly if we add
complex algorithms that themselves take days to weeks to
run.

Second, the current bioinformatics pipeline is extremely
inefficient with respect to I/O. (1) The read set of hundreds
of GB per sample is not reduced by processing, but rather
updated through many early steps in the analysis pipeline, as
shown in the “Input” and “Output” columns of Table 2. This
is because the reads need to be updated with the mapped
locations, adjusted quality scores, flags, etc., but not aggre-
gated in most steps, and additional processed data can be
added. (2) There is a tremendous amount of data transfer
between the many steps in a pipeline. Since all the data is
stored in files currently, in each processing step an entire
file is read and rewritten even when updates to small parts
of data may suffice. (3) Different steps in the pipeline may
access data in different orders. For instance, the step “Addor-
RplGroups” sorts all the reads by the mapped location, while
the step “FixMateInfo” first sorts data by the read id for
its own processing and then sorts data back by the mapped
location. Such sorting is needed to prepare data in the right
order for the next step. The combination of large files read
and written in each step and a number of full sorts in the
pipeline lead to significant I/O costs, as shown in the “Bytes
(R/W) column” of the table.

Third, some of the processing steps are CPU intensive,
as shown by the number of CPU instructions in the last
column of the table. These operations include: BWA align-
ment step, which uses the Burrows-Wheeler transform and
dynamic programming to match each read to the position(s)
in the reference genome; Quality score recalibration steps
(Base Recalibrator and Print Reads), which uses grouping
and statistical computation over all the data to find the
empirical quality score for the bases of reads; Genotyping,
which looks at overlapping reads at each base of the reference
and calculates likelihood of SNPs and small INDELs; and
BAM to GASV, which runs geometric operations to identify

BAMToGASV)22%)

PrintReads)16%)

BaseRecal)
12%)

bwa<mem)
9%)

FixMate)
8%)

Genotyper)
7%)

AddRplRG)5%)

BAMToGASV)

PrintReads)

BaseRecal)

bwa<mem)

FixMate)

Genotyper)

AddRplRG)

MarkDuplicates)

(a) Breakdown of total running time of 293 hours (12.2 days)
on a whole genome sample (282GB, compressed). The piechart
lists the processing steps in decreasing order the percentage of
time taken. Numbers were obtained from a sever with 64GB
RAM, 12 Intel Xeon 2.40GHz cores.

 0

 10

 20

 30

 40

 50

 60

 70

0 100000 200000 300000 400000 500000 600000 700000 800000

C
P

U
 i
o

w
a

it
 (

%
)

Time elapsed (s)

bwa mem
Picard:SAM To BAM

Picard:AddReplaceReadGroups
Picard:CleanSam

Picard:FixMateInformation
Picard:MarkDuplicates

Samtools Index
GATK:Unified Genotyper

GATK:Variant Filtration
GATK:Realigner Target Creator

GATK:Indel Realigner
GATK:Base Recalibrator

GATK:Print Reads
GATK:Analyze Covariates
GATK:Unified Genotyper

GATK:Select SNP Variants
GATK:Select Indel Variants
GATK:Variant Recalibrator
GATK:Apply Recalibration

GATK:Variant Filtration
GATK:Combine Variants

GATK:Select Variants

(b) CPU IOwait in processing steps throughout the pipeline.

Figure 4: Profiling results of pipeline execution on a whole genome dataset.

Step Time (hours) Input (in bytes) Output (in bytes) Bytes (R/W) Instructions

Bwa mem 26.26 FASTQ (6.04E+11), SAM1 (7.83E+11) 1.393E+12 2.955E+15
Reference (3.15E+09)

Picard: SAM To BAM 14.31 SAM1 BAM1 (2.36E+11) 1.019E+12 1.880E+14
Picard: AddOrRplGroups 14.83 BAM1 BAM∗

2 (1.57E+11) 1.013E+12 1.814E+14
Picard: CleanSam 8.52 BAM2 BAM3 3.11E+11 1.120E+14
Picard: FixMateInfo 23.07 BAM3 BAM∗

4 (1.61E+11) 1.581E+12 2.376E+14
Picard: MarkDuplicates 14.45 BAM4 BAM5 (1.63E+11) 6.374E+11 2.407E+14
Samtools Index 0.74 BAM5 BAI1 (9.02E+06) 1.555E+11 9.809E+12
Gatk: Unified Genotyper 4.53 BAM5, Ref. VCF1 (1.09E+09) 1.651E+11 4.332E+14
Gatk: Variant Filtration 0.05 Reference, VCF1 VCF2 (1.12E+09) 1.972E+09 5.652E+11
Gatk: Realigner Target 0.37 Reference, VCF2 Intervals1 (1.42E+07) 3.802E+08 7.935E+12
Gatk: Indel Realigner 12.93 BAM5, Ref., Intervals1 BAM6 (1.63E+11) 3.174E+11 1.882E+14
Gatk: Base Recalibrator 34.83 BAM6, Ref., DBsnp1 Recal1 (9.02E+05) 1.703E+11 7.506E+14
Gatk: Print Reads 46.57 BAM6, Ref., Recal1 BAM7 (3.29E+11) 4.929E+11 9.400E+14
Gatk: Unified Genotyper 20.37 BAM7, Ref. VCF3 (1.03E+09) 3.302E+11 2.777E+15
Gatk: Select Variants 0.03 Ref., VCF3 VCF4 (8.82E+08) 8.144E+08 4.028E+11
BAM To GASV 65.25 BAM7 PR disc. (2.174E+09), 2.302E+11 1.406E+15

PR conc. (2.076E+10)
GASV/Pro 6.05 PR disc., PR conc. SV, Coverage 2.117E+10 9.655E+13

Table 2: Performance measurements of a pipeline for variant calling. (∗ indicates a sorting step.)

concordant and discordant reads needed for structural vari-
ant discovery. Among them, the BWA aligner and genotyper
were run with 12 threads, with reduced running time.

Finally, by combining the measurements in Table 2 and
in Figure 4(b), we observe that the expensive steps in the
pipeline roughly fall into two classes: (1) One class of long
running steps are both CPU intensive (due to the algorithm
used) and I/O intensive (due to large files read and writ-
ten). Examples are the processing steps that run expensive
algorithms on large data files, as mentioned above. For such
steps, parallel execution with a large number of nodes will
help reduce the running time, which we will discuss in §3.1.
(2) Another class of long running steps involve large files and
often a full sort, but are less CPU intensive in the analysis.
These steps mostly perform data cleaning and quality control,
such as AddRplReadGroups, FixMatesInfo, and MarkDupli-
cates. This set of steps exhibit high measurements of CPU
IOwait, as shown in Figure 4(b), as well as of high disk
queue lengths. To fix these I/O issues, we need to replace
the current use of large files for data communication between
processing steps and reduce sorting overheads, which we

discuss in §3.2 and §3.3.
We also ran similar variant calling pipelines at New York

Genome Center (NYGC) using five nodes, each with 20 dual-
core 2.80GHz Intel Xeon processor and 256 GB RAM. Time
measurements and profiling results on IO and CPU costs
confirmed our observations above: The most expensive steps
both CPU-intensive, due to expensive algorithms used, and
I/O intensive, due to large files read and written; there are
also a number of disk-based sorting steps (using NovoSort)
of large read files. The NYGC team also ran special cancer
analysis pipelines, involving complex algorithms that take
long to run. Such long running algorithms include Mutect [4]
for somatic variant calling and Theta [33] for complex cancer
genome analysis, to name a few.

3. PARALLELIZATION AND OPTIMIZATION
In this section, we present our efforts to develop an op-

timized parallel processing platform for executing genomic
pipelines using a cluster of compute nodes. Before delving
into the details, we first articulate the key design criteria

for parallelization and optimization of genomic pipelines,
which were suggested by colleagues at the New York Genome
Center. These design criteria fundamentally distinguish our
work from other recent work that takes different approaches
to parallelizing and optimizing genomic pipelines [19,28,39].

Complexity. Regarding parallelism, bioinformatics pipe-
lines can be far more complex than is often realized. Such
pipelines often consist of dozens of steps: (1) Some of the
steps are not embarrassingly parallel: chunking the genome
in different ways results in different results. As an exam-
ple, the BWA aligner [22] is not completely locus-specific.
If the genome is chunked in different ways, we can get dif-
ferent results, primarily because decisions about the best
placement of reads with multiple mappings depends, in part,
on where other reads are placed. (2) Some steps require
that many genomes be processed together, rather than one
at a time. Some steps, including the widely used GATK
single nucleotide variant caller [10], process many genomes
at once. The latest version suggests that joint genotyping
be performed on all genomes in a project together, which
can include thousands of genomes. That process requires
splitting the genomes into small regions, and processing a
single region of all genomes together. Co-processing subsets
of the genomes together, and combining the results, pro-
duces different results. The co-processing eliminates false
positives and provides verification for variant calls with in-
sufficient quality or depth. Some structural variant callers
like GenomeStrip [40], do the same.

Analysis Methods. The infrastructure for paralleliz-
ing and optimizing these pipelines must permit any analysis
methods that a scientist needs. Given the complexity of the
genomic pipelines, one may wonder whether it is a good
idea to build new methods that are more amenable to par-
allelization. The problem with this approach is that almost
all of existing analysis methods are probabilistic (i.e., there
is no known “right” answer), and numerous heuristics are
often embedded in these algorithms to handle idiosyncrasies
of genome sequence found over time. As a result, no two
aligners produce the same results. Variant callers, and par-
ticularly somatic variant callers and structural variant callers
provide even less consistency. To overcome these issues, the
common practice as used in the New York Genome Center is
to run multiple somatic variant callers and structural variant
callers on every cancer sample, compare them, and then
use custom filtering methods to combine the results. In a
concrete instance [16], after a deletion had been found in
RNA from 10 patients, 3 different structural variant callers
were required to validate the deletion in the 10 DNA genome
samples. No two of those callers found all 10. It is therefore
very important to scientists to use the methods they most
trust. Substituting one variant calling method for another
is not a simple matter: for many scientists, that requires
months of validation and the results are often not accept-
able. Thus, optimization approaches that require building
new analysis methods are not considered acceptable to many
scientists and genome research facilities.

Data Formats. A related question is whether we can
improve the data formats to better enable parallelism and
optimization. A single whole genome sequence file, at suffi-
cient sequencing depth for cancer analysis, is often 500GB.
In some formats, it is standard for such files to be over a TB,
compressed. There is no question that these formats are inef-
ficient, in both storage and processing capabilities. There are

standards groups working on improvements to these formats
(e.g., [11]). In many cases, from a purely technical viewpoint,
databases would be better. But there are many standard
methods in use throughout the bioinformatics community,
and changing the pervasive data format standards requires
changing all of those analysis methods that scientists depend
on to get the best results available. Until such time as new
formats are agreed upon, developing new methods that use
new formats is unlikely to gain adoption in the bioinformatics
community.

Effect of Hardware Advance. As CPU and memory
capacities improve as per Moore’s law, we would like to
improve performance of the pipelines by utilizing all the cores
and keeping as much data as possible in memory. However,
as described above, there are very standard methods that
require the analysis of hundreds to thousands of genomes
together. They can appear as one step in the middle of a
long analysis pipeline, in which some of the steps use one
genome at a time, and yet other steps use multiple genomes
at a time, but not chunked in the same ways, or not using the
same set of genomes. These characteristics make in-memory
processing models suitable only for reducing I/O in “local”
parts of the computation, but unlikely to be applicable to
full genomics pipelines. A general infrastructure for genomic
pipelines still needs to be designed with full capacity to process
most data to and from disks.

3.1 Parallelizing the Pipeline
We next discuss how we parallelize our pipeline over a

cluster of nodes. This will improve performance, especially
of those CPU and I/O intensive steps as described above. In
this work, we choose to use the MapReduce (MR) cluster
computing model, in particular, the open source Hadoop
system [13]. This is because MR systems free the user from
worrying about system-level details, such as partitioning,
scheduling, and fault tolerance, while having proven success
to scale to tens of thousands of cores. In contrast, existing
genomic processing systems often require user manual work
to do so: NCGAS [30] requires the user to parallelize his
method using the MPI interface for supercomputers, and
GATK [7] requires the user to partition the dataset manually
in order to launch GATK instances on different nodes. In
addition, Hadoop forms the core of a large ecosystem of
open-source analytics products, which provides a zero-cost
offering to the bioinformatics community for data analytics.

A New Distributed Storage System. To run existing
software on Hadoop, the first issue to resolve is the incompat-
ibility between the file system used in existing software and
the distributed file system used in Hadoop. Modifying every
existing software tool is not a realistic solution. To address
this issue, we have developed a new storage substrate that
provides the same data access interface, e.g., PicardTools’
API for accessing SAM records, as for the current file system
used in existing software, but directs the actual data access
to the distributed Hadoop file system (HDFS). This solution
uses a byte input stream that is created over HDFS and
is passed to the constructor of a SAM record reader that
existing analysis methods use.

The second issue is that the common data format for
aligned reads, SAM [42], is often used in its binary com-
pressed and indexed format, called BAM. As we place BAM
data into the distributed HDFS, it is important that the
binary compressed data be partitioned properly without cor-

rupting the content. In our implementation, we deal with
a range of issues, including making BAM header informa-
tion available to all data nodes, handling those compressed
BAM blocks that span two Hadoop chunks, and fixing BAM
indexes to provide correct mapping from coordinates over
the reference genome to the Hadoop chunks that contain
read sequences that overlap with those coordinates. While
our approach to porting BAM data into HDFS is somewhat
similar to HadoopBAM [32], certain technical details differ.
More importantly, we prefer to maintain our own implemen-
tation so that we have full flexibility to extend this storage
substrate to support additional features, including logical
partitioning and co-location, as discussed below.

Another important issue is that many processing steps
of a genomic pipeline permit parallel processing based on
logical data partitioning (which is formally defined shortly),
e.g., by chromosome. Such partitioning is not supported by
HDFS as chunks physically placed in a data node do not
correspond to any logical partition of an input dataset. Our
storage substrate provides logical partitioning by ensuring
that the HDFS chunks placed in a data node corresponds to
a user-defined partitioning criterion. This requires tagging
each HDFS chunk with a logical-id and modifying the HDFS
placement policy interface to control the placement of those
chunks. In addition, our storage substrate can be extended
to support co-location [8], e.g., co-locating HDFS chunks
from different genome samples that belong to the same log-
ical partitioning, which will be important for performance
optimization in many processing steps that involve a (large)
number of genome samples.

Finally, it is important to note that our storage substrate
does not require the change of the SAM/BAM formats widely
used in genomic analysis methods. In addition, the actual
change of the programs of analysis methods is minimum.

Parallel Processing on Hadoop. To achieve scalability,
a fundamental mechanism that MR systems use is (data) par-
titioned parallelism: input data is split into partitions, and
these partitions are processed on different nodes in parallel.
In the simplest case, data can always be simply partitioned
based on the order in which it is stored, which is referred
to as physical partitioning of the data. However, many pro-
cessing steps may require data to be partitioned based on a
logical condition that is specific to the analysis algorithm,
and then further analysis can be performed in parallel in the
logical partitions. This form of data partitioning is referred
to as logical partitioning. Our parallel processing platform for
genomic pipelines supports both forms of parallelism through
the MR programming model, by encapsulating analysis soft-
ware in a series of map and reduce functions. Then in a
shared-nothing architecture, the MR system automatically
implements: (1) parallel processing of map() on input par-
titions using a set of map tasks (mappers) in the cluster,
which is a form of physically partitioned parallelism; (2)
grouping the 〈key, value〉 pairs from all map output by key
and sending grouped data to reducers; (3) parallel processing
of reduce() on different groups using a set of reducers, which
is a form of logically partitioned parallelism.

A key challenge in parallelizing a genomic pipeline is that
most processing steps require logical partitioning of data.
First of all, there is a wide range of opportunities to explore
for parallelizing a genomic pipeline based on data partition-
ing, as summarized in Figure 5. Regarding the sequencing
process, a run of a sequencer can produce billions of reads

Single Run

Lane

Stream
Segment

Chromosome

Interval

Gene

Cluster

Node

CPU core

Computation
Resources

Sequence
Data

Genome
Segments

Grouping
Criteria

By Read
Identifier

By User
Co-variates

…...

Genome

Figure 5: Opportunities for partitioned parallelism.

of multiple genome samples. The full set of data from a
single run can be further partitioned into subsets according
to the number of lanes (e.g., 96) used in sequencing. The
per-lane data set can be further partitioned into steam seg-
ments. When the sequencing data is later separated for each
genome sample and further aligned to the reference genome,
we can also partition the per-genome data based on biologi-
cal concepts, such as chromosomes, large intervals within a
chromosome, and specific genes. Some analysis algorithms
also have specific grouping requirements, e.g., group by read
id in FixMateInfo, and group by user-defined covariates in
BaseRecalibrator.

A second challenge is to determine the level (degree) of
parallelism that each processing step should use. A first
related question to ask is which level of parallelism is safe for
a processing step, i.e., producing the same output as single-
node execution. To answer this question, we are currently
analyzing the most important steps used in our pipelines,
by reading the algorithms described in the bioinformatics
papers and consulting domain experts. This process can be
expedited later if when publishing a new analysis method,
a bioinformatician is asked to annotate the method with
the finest granularity of partitioning that is deemed safe.
Once we understand the safe way to partition a dataset,
e.g., at the genome-level, we actually obtain a hierarchy of
possible ways to partition data, e.g., by chromosomes, by
large intervals within a chromosome, or by genes. Which
level of parallelism to choose is another important question to
answer. For maximum degree of parallelism within a step, we
would like to choose the smallest granularity of partitioning.
However, if we examine multiple steps within a pipeline, we
may prefer to choose a larger granularity that is common to
multiple consecutive steps, which will avoid data shuffling
between steps in order to partition data in different ways.
Hence, there is an optimization issue that we need to address
(which is discussed more in the next section).

Finally, to port the entire genomic processing pipeline into
the MR framework, we need to break the pipeline into a
series of MR jobs, where each job consists of a map() and
a reduce(). Specifically, our parallel processing platform
encodes a number of decisions for the pipeline, including: (1)
the number of MR jobs needed, (2) in each job, which subset
of attributes from input data serve as the key for logical
partitioning, and (3) in each job, which processing steps
permit physical partitioning and hence can be encapsulated
in map(), and which subset of steps require logical partitioning
and hence should be encapsulated in reduce().

3.2 Techniques for Reducing I/O
As our profiling results show, a number of data cleaning

and quality control steps are I/O intensive. Paralleling these
steps using more nodes will not resolve the issue that the

!"#$%#&%'()(*+)$*' !"&*#,*%'()(*+)$*'

!""#"# "# !""#

Bustard2Sam
Sam2FastQ
BWA aln
BWA sampe

BWA sam

MergeBam

Time Time

Figure 6: Visualization of compute progress in the stan-

dard pipeline (299 sec in total) vs. the streamed pipeline

(163 sec).

CPUs are mostly idle due to outstanding I/O activities. In
our project, we explore a number of techniques to effectively
reduce I/O.

Streaming through the Pipeline. Our first effort fo-
cuses on streaming data through a pipeline as a means of
reducing I/O as well as completion time for the pipeline,
without requiring alteration of existing software. We have
implemented simple streaming protocols that send the out-
put from one step directly to the servers running the next
step, using Unix named pipes. Our initial tests, run on the
first 5 steps of the pipeline, as depicted in Figure 6, showed
an almost 50% decrease in latency, with almost no impact
on throughput when the servers were not fully loaded. In
addition, streaming allows different steps to run concurrently:
as step 1 produces results, step 2 can start to make progress;
the output of step 2 can trigger the processing of step 3, and
so on—this is called pipelined parallelism, another form of
parallelism our platform supports. Currently, we are build-
ing a prototype of a streaming scheduler that allows for
pipelined parallelism throughout our analysis pipeline. An
initial version is available online [12]. However, the current
scheduler does not optimize for CPU utilization and other
factors, which we plan to continue to work on in this project.
We will further address issues such as controlling the rates
of streaming from different steps.

Using A Column Store. The second effort is to a dis-
tributed, column-based storage system to replace the existing
file system for transferring data between processing steps.
To understand the benefits of a column store, consider a
SAM file for aligned reads [42]. In the file, a collection of
SAM records are stored consecutively, and each record for
an aligned read contains 11 mandatory fields, including the
read sequence, the quality scores of its bases, the aligned
position, etc. In a column store, each attribute (or each
disjoint partition of attributes, called a column family) of all
the SAM records are stored together in a separate file. When
a program needs to access only a subset of attributes of the
SAM records, the column store has an efficient way (based
on merge-sort) to combine the files to serve the data to the
program. Of course, the exact savings depend on the number
of attributes read and updated in each processing step of the
pipeline. This change of storage architecture will provide
benefits including reduced I/O, and effective compression.
We are currently experimenting with a range of columnar
storage choices, including HBase [15] and Parquet [35], that
are available in the Hadoop family of software tools.

3.3 Pipeline Optimization
A main part of our research is to optimize genomic pro-

�

��

��

��

��

���

� ��� ��� ��� ���� ���� ����

��
�
�
��
��
�
�
��
�
�

����������������

��������
�����������

������
���������

Figure 7: Quality score recalibration: the hash approach

outperforms sort-merge for logical partitioning.

cessing pipelines on our parallel processing platform. We
propose to bring the principled approach to query optimiza-
tion from the database area to bear on the process of pipeline
optimization. In particular, our efforts include:

1. Enhance Hadoop with alternative implementations of
partitioned parallelism and choose the best one for each pro-
cessing step. Our prior work [21] showed that logical parti-
tioning, i.e., “grouping data by key”, is an expensive operation
because it requires re-arranging all the data in the cluster
into logical groups and distributing those groups to various
reducers. Most MR systems, including Google’s MR system
and Hadoop use a sort-merge approach to the grouping op-
eration. This sort-merge approach can incur high CPU and
I/O overheads in the grouping operation, especially if the
analysis in reduce() does not require data in sorted order.
An example in our pipeline is quality score recalibration,
which requires logical data partitioning but not data sorting.

To avoid unnecessary overheads, we have implemented
an alternative, hash-based approach to logical partitioning
in Hadoop [21]. This approach uses a series of hash-based
algorithms in mappers and reducers to guide data shuffling
to reducers and recognition of different groups of data in the
reducers. Our initial effort to apply this hash approach to
quality score recalibration showed 50% reduction of running
time and dramatic reduction of I/O cost, as depicted in
Figure 7. In current work, we are examining all processing
steps in our pipeline, and choose the appropriate implemen-
tation between hashing and sort-merge based on the data
partitioning and order requirements of those steps.

2. Explore across-step optimization in the pipeline. Our
profiling results in §2.2 showed that different data access
patterns used in different steps trigger global re-arrangement
of data. If we can group several processing steps that share
the same data access pattern, e.g., accessing reads in order
of the aligned position, we can minimize the frequency of
data re-arrangement through the pipeline. In our work, we
examine the interaction among steps and re-group them when
possible, to share data access patterns across steps—this is
similar to re-ordering operators based on commutativity in
relational databases. Further, we observe that although
some processing steps require logical partitioning but not
full sorting, if we use the sort-merge approach to logical
partitioning, the sorted order will benefit the subsequent step.
An example is MarkDuplicates that does not require sorting,
but sorting all the reads based on the aligned position not only
supports its required logical partitioning but also offers the
right data access order for subsequent genotyping—this effect
is similar to query optimization based on “interesting orders”.
We explore all for these opportunities in optimization.

3. Address Degrees of Parallelism. As mentioned in Sec-
tion 3.1, it is challenging is to determine the best level (de-

III. MapReduce Execution & Communication

IV. Storage Mgmt

HDFS

II. Pipeline Compiler/Optimizer

I. Galaxy Web Portal

HBase
(column)

Storage Mgmt

HDFS

Node 1
core corecore

Node n
core core core

User Pipeline + Latency Req. + Annotations
User choose, customize,

& annotate

User Pipeline

Execution Plan

1.1 Bwa:aln 1.2 Bwa:sampe

2.3 FixMates 2.4 MarkDup. ...

...

Hadoop Logical Partitioning
(hash/sort-merge) Streaming

Pipeline Execution Plan on MapReduce

Map()
- call 1.1;
- call 1.2;

MR
Job
1:

Group by
ReadID

Reduce()
- call 2.3;

hash / sort incr. / not

Map()
;

MR
Job
2:

Group by
Position

Reduce()
- call 2.4;

hash / sort incr. / not

streaming / not

HBase
(column)

Private Cluster

Private
Cloud

Public
Cloud

Deployments

Figure 8: System architecture with a parallel processing

backend.

gree) of parallelism that each processing step should use.
For maximum degree of parallelism within a step, it may be
better to choose the finest granularity of partitioning that
an analysis method permits. However, if the next processing
step employs a different level of parallelism, data needs to be
repartitioned and shuffled over the cluster to prepare for the
next step. Sometimes, the overhead of such data shuffling
can outweigh the performance benefit that the previous step
gained. In this case, if we examine multiple steps within a
pipeline, it may be better to choose a larger granularity that
is common to multiple consecutive steps, which will avoid
data shuffling between steps in order to partition data in
different ways. How to make appropriate choices for a long
pipeline of processing steps poses an optimization problem.
The approach that we are exploring is cost-based optimiza-
tion, where we model the performance gains of each step
using a particular level of parallelism, as well as the cost
of data shuffling if the next step uses a different level of
parallelism. Then cost-based optimization can suggest the
best plan (or at least avoid the bad plans) for choosing the
level of parallelism for each processing step.

4. Explore materialized views. Materialized views are an-
other important mechanism for supporting different data
access patterns. For instance, if the genome dataset is first
sorted by the mapped location, then grouped by read id,
and finally sorted by the mapped location again, it may be
beneficial to store the the first sorted file as a materialized
view and reuse it when such sorted order is required again.
The difficulty lies in the fact that the processing step in
between may have updated some attribute of a subset of
records, and hence such updates must be reflected in the
materialized view. A more general problem is that different
sorting or grouping requirements can be considered as dif-
ferent “views” defined on an input genome dataset, and we
would like to have the dataset (including the most recent
updates) available in any view that the current processing
step takes. This problem is an interesting extension of prior
work on the view update problem as it mixes different data
models, e.g., the relational model and the sequence model,
and different data arrangement requirements. In our work,
we will address these issues in the context of column stores.

4. DEVELOPMENT AND USE CASES

We are developing a full-fledged software system that im-
plements our proposed platform and pipeline. Our system
employs an architecture shown in Fig. 8. It integrates: (1)
the popular Web portal, Galaxy [9], for building genomic
data pipelines; (2) a pipeline compiler and optimizer, which
transforms the user pipeline into an execution plan, which
uses a (minimum) number of MapReduce jobs, and is op-
timized with the decisions for each step including the key
for logical partitioning, degree of parallelism used, imple-
mentation of logical partitioning (hash versus sort-merge),
and streaming output or not; (3) a Hadoop-based process-
ing platform, which runs the parallel execution plan of the
pipeline over a cluster of nodes, and employs extension of
Hadoop with a new hash implementation for logical data
partitioning, incremental processing, and streaming; (4) a
storage system, which includes the Hadoop Distributed File
System (HDFS), a columnar storage system such as Hadoop
Database (HBase) or Parquet, and our new storage substrate
that sits on top of HDFS and HBase/Parquet and supports
existing analysis methods with minimum change, as well
as additional features such as logical data partitioning and
co-location in distributed storage.

Use Cases: Besides internal evaluation, we are building
a set of real use cases for deployment and evaluation.

1. Variant calling for individual samples: Much of bioin-
formatics research is associated with the need to identify
variants in individual genomes and to compare these vari-
ants across individuals. These variants can be SNPs, small
INDELs, or large structural variants such as CNV (copy-
number variants), inversion, translocation, etc. Our genomic
data analysis pipeline will include algorithms for calling most
types of variants. Such variant calling is relevant to a large
number of biology and bioinformatics research labs.

2. Analysis method development and comparison: One of
the major functions of the bioinformatics group at NYGC
is development of new methods and comparisons of exist-
ing analysis methods to determine accuracy, sensitivity, and
specificity of each under varying circumstances. In one re-
cent comparison of variant callers, we have less than 30%
overlap in calls under some circumstances. Understanding
the differences is key to making accurate calls and finding
the true causal variants in a disease. One of our current
projects is to use this analysis to build a method that uses
calls from multiple methods and combines their results to
improve accuracy. One major hurdle we face is that some
of those initial methods take over two weeks to run on one
genome. If every iteration of an experiment takes two weeks,
getting to the final results seems interminable. The algo-
rithms are not embarrassingly parallel, hence not amenable
to simple partitioning. The new techniques in our system
for parallelizing these methods and pipelines will be applied
to support this research.

3. Population studies: In population studies, large num-
bers of genomes or exomes are analyzed to identify a “refer-
ence genome” for a population, that is, to identify variants
in the genome that are more common or less common in
this population than in others. NYGC recently processed
over 600 whole exomes from one population. The scientists
running the study had a deadline of 45 days to complete the
analysis, from initial DNA samples through variant calling,
requiring both high-throughput and reasonably fast turn-
around times to accomplish. Furthermore, often in large
studies such as this, some initial sequencing will fail, requir-

ing a second round of sequencing. The faster that early stages
of analysis can detect problems, the faster re-sequencing can
be initiated, impacting final delivery of results. We will
evaluate our parallel processing for both throughput and
response time. When a user deadline is coming up, we will
also use streaming to optimize for latency of his results.

4. Common disease studies: Our last use case shows the
broader application of our work beyond basic biology research.
Finding the variants that lead to susceptibility to common
diseases such as diabetes, autism, and Alzheimer’s disease
can require studies of thousands or even tens of thousands of
samples. Variant calling and structural variant calling phases
of analysis can require that hundreds of samples be processed
together, leading to very large data sets in analysis. Currently
the leading variant callers take days to complete analysis of
just one step on one hundred genomes. End-to-end analysis
from raw data through variant calls can take weeks, and
the need to analyze the samples together can make simple
partitioning of data untenable. We can evaluate our system
using batches of genome data and report in both throughput
and response time of each batch of data.

5. RELATED WORK
National projects on genomic data processing. Re-

cent projects on developing genomic processing software take
different approaches or have different focuses from ours. The
National Center For Genome Analysis Support (NCGAS) [30]
focuses on genome-level assembly and analysis software run-
ning on supercomputers. Our approach differs fundamentally
as (1) we support a deep pipeline, not just individual tools
like assembly, and (2) our underlying processing infrastruc-
ture is the“big data” infrastructure, which uses a large cluster
of hundreds of nodes with commodity hardware and open-
source software that deals automatically with parallelization
and load balancing. In contrast, for most analysis methods,
NCGAS requires users to parallelize using the MPI program-
ming interface. Galaxy [9] is an open, web-based platform
for biomedical research. However, its processing backend is
merely an integration of existing software tools with limited
innovation for high performance, scalability, or low latency.

Parallel genomic data processing: In earlier work,
Simpson et al. [43] used ABySS to assemble a human genome
using a cluster of 168 cores (21 computers), in about 3
days of wall clock time, and Jackson et al. [17] assembled a
Drosophila melanogaster genome from simulated short reads
on a 512-node BlueGene/ L supercomputer in less than 4
hours of total elapsed time. These efforts require access to a
specific type of hardware resource, hence not widely applica-
ble. More recent work explored MapReduce and in particular,
Hadoop for parallel genomic data processing. Crossbow [19]
implements a parallel pipeline for alignment and SNP detec-
tion using Hadoop. However, it supports only two specific
algorithms, Bowtie for alignment and SOAPsnp for SNP
calling. Furthermore, its implementation requires some mod-
ification of existing software and avoids porting SAM/BAM
data properly into HDFS, hence very inefficient regarding
I/O. Similarly, Seal [39] supports three specific processing
steps, alignment using BWA, mark duplicates, and base qual-
ity score recalibration, using significantly modified code and
without porting data into HDFS. In comparison, our sys-
tem offers a general parallel framework for supporting many
other processing steps, a full storage system based on HDFS,
as well as new optimizations. GATK [7, 29] supports the

MapReduce interface but not distributed parallelism. It can
parallelize within a single multi-threading process, or asks
the user to manually divide data based on the chromosome
and then run multiple GATK instances. Hadoop-BAM [32]
provides access to reads in binary, compressed BAM format
stored in HDFS, which is similar to our HDFS-based storage,
but without advanced features such as logical partitioning
and co-location. ADAM [28] provides a set of formats, APIs,
and processing stage implementations for genomic data. The
implementation uses Avro for explicit data schema access,
Parquet for columnar storage, and Spark for in-memory
processing of genomic data. While the initial results are
promising, ADAM requires reimplementing genomic analysis
methods using Scala and RDD’s (in-memory fault-tolerant
data structures used in Spark). As discussed in §3, our col-
laboration with the New York Genome Center results in
fundamentally different design criteria: we aim to provide a
general parallel processing framework that can take any anal-
ysis method that a scientist provides, with no or minimum
change of the data format and program used.

Cloud computing for genomic data processing: Most
of published work on porting genome analysis to the cloud has
focused on single analysis tools, e.g., alignment [19]. In prior
work, a team at the Broad Institute ported into the Amazon
cloud individual steps in the Picard primary pipeline [38],
the GATK unified genotyper, and GenomeStrip structure
variant caller, but not a full pipeline. The study discovered
that porting entire pipelines introduced numerous challenges
not previously identified, including frequent data shuffling
due to different data access and partitioning requirements in
various steps, as well as effects of virtualization and shared
resources. We plan to address these issues in this project.

Big data analytics using MapReduce (e.g., [3,34,36])
has been intensively studied lately. This line of work differs
from ours in several key aspects: (1) It does not focus on the
specific data model and computing algorithms for genomic
data analysis. (2) It usually deals with a single task, such as
a query computing aggregates or a data mining algorithm,
but not a full pipeline of steps with different data processing
needs in terms of CPU resources needed, data access patterns,
and types of parallelism permitted. Hence, our project is
addressing a new problem in the MapReduce framework, for
the specific genomic data type and processing needs.

6. CONCLUSIONS
In this paper we presented the initial design of a test ge-

nomic processing pipeline, performance measurements that
reveal bottlenecks in current pipeline execution, and a gen-
eral Hadoop-based parallel platform for pipeline execution
and optimization. We also shared fundamental design cri-
teria when parallelizing large genomic data pipelines, and
highlighted the key research questions to consider in par-
allelization and optimization. We finally presented some
initial results on parallel execution and optimization of a test
pipeline, as well as a number of real use cases that we are
currently developing for deployment and evaluation.

Acknowledgements. This work was supported in part
by the NSF grant, DBI-1356486, and research grants from
UMass and MGHPCC.

7. REFERENCES
[1] C. Alkan, B. P. Coe, and E. E. Eichler. Genome structural

variation discovery and genotyping. Nature reviews.
Genetics, 12(5):363–376, May 2011.

[2] M. Baker. Next-generation sequencing: adjusting to data
overload. Nature Method, 7(7):495–499, 2010.

[3] B. Chattopadhyay, L. Lin, W. Liu, et al. Tenzing a SQL
implementation on the MapReduce framework. PVLDB,
4:1318–1327, 2011.

[4] K. Cibulskis, M. S. Lawrence, S. L. Carter, et al. Sensitive
detection of somatic point mutations in impure and
heterogeneous cancer samples. Nature Biotechnology,
31(3):213–219, 2013.

[5] P. J. A. Cock, C. J. Fields, et al. The Sanger FASTQ file
format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids Research,
38(6):1767–1771, Apr. 2010.

[6] T. I. H. Consortium. The international hapmap project.
Nature, 426:789–796, 2003.

[7] M. A. DePristo, E. Banks, R. Poplin, et al. A framework for
variation discovery and genotyping using next-generation
dna sequencing data. Nat Genet, 43(5):491–498, 2011.

[8] M. Y. Eltabakh, Y. Tian, F. Özcan, et al. Cohadoop:
Flexible data placement and its exploitation in hadoop. Proc.
VLDB Endow., 4(9):575–585, June 2011.

[9] Galaxy: An open, web-based platform for data intensive
biomedical research. https://main.g2.bx.psu.edu/.

[10] Best practice variant detection with gatk.
http://http://www.broadinstitute.org/gatk/.

[11] The global alliance for genomics and health.
http://genomicsandhealth.org.

[12] Pipeline execution manager with streaming.
https://github.com/nnovod/PEMstr.

[13] Hadoop: Open-source implementation of mapreduce.
http://hadoop.apache.org.

[14] J. Han and J. Pei. Mining frequent patterns by
pattern-growth: Methodology and implications. SIGKDD
Explorations, 2(2):14–20, 2000.

[15] Hadoop database (hbase): A distributed, column-oriented
data store. http://hadoop.apache.org.

[16] J. N. Honeyman, E. P. Simon, N. Robine, et al. Detection of
a recurrent dnajb1-prkaca chimeric transcript in
fibrolamellar hepatocellular carcinoma. Science,
343:1010–1014, 2014.

[17] B. Jackson, P. Schnable, and S. Aluru. Assembly of large
genomes from paired short reads. In Proceedings of the 1st
International Conference on Bioinformatics and
Computational Biology, pages 30–43. Springer-Verlag, 2009.

[18] M. Kasahara and S. Morishita. Large-scale Genome
Sequence Processing. Imperial College Press, 2006.

[19] B. Langmead, M. Schatz, J. Lin, et al. Searching for SNPs
with cloud computing. Genome Biology, 10(11):R134+, Nov.
2009.

[20] B. Langmead, C. Trapnell, M. Pop, et l. Ultrafast and
memory-efficient alignment of short dna sequences to the
human genome. Genome biology, 10(3), 2009. R25.

[21] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy. A
platform for scalable one-pass analytics using mapreduce. In
SIGMOD Conference, pages 985–996, 2011.

[22] H. Li and R. Durbin. Fast and accurate short read alignment
with burrows-wheeler transform. Bioinformatics,
25(14):1754–1760, 2009.

[23] H. Li and R. Durbin. Fast and accurate long-read alignment
with burrows-wheeler transform. Bioinformatics,
26(5):589–595, 2010.

[24] J. Li, A. W.-C. Fu, and P. Fahey. Efficient discovery of risk
patterns in medical data. Artificial Intelligence in Medicine,
45(1):77–89, 2009.

[25] R. Li, Y. Li, X. Fang, H. Yang, et al. SNP detection for
massively parallel whole-genome resequencing. Genome
Research, 19(6):1124–1132, June 2009.

[26] Y. Li, A. Terrell, and J. M. Patel. Wham: a high-throughput

sequence alignment method. In SIGMOD Conference, pages
445–456, 2011.

[27] K. Lindblad-Toh, M. Garber, and O. Z. et al. A
high-resolution map of human evolutionary constraint using
29 mammals. Nature, 478(7370):476–482, Oct. 2011.

[28] M. Massie, F. Nothaft, C. Hartl, et al. Adam: Genomics
formats and processing patterns for cloud scale computing.
Technical Report UCB/EECS-2013-207, UC Berkeley, 2013.

[29] A. McKenna, M. Hanna, E. Banks, et al. The genome
analysis toolkit: A mapreduce framework for analyzing
next-generation dna sequencing data. Genome Research,
20(9):1297–1303, 2010.

[30] National center for genome analysis support.
http://ncgas.org/.

[31] T. C. G. A. R. Network. Comprehensive genomic
characterization defines human glioblastoma genes and core
pathways. Nature, 455(7216):1061–1068, Sept. 2008.

[32] M. Niemenmaa, A. Kallio, A. Schumacher, et al.
Hadoop-BAM: directly manipulating next generation
sequencing data in the cloud. Bioinformatics (Oxford,
England), 28(6):876–877, Mar. 2012.

[33] L. Oesper, A. Mahmoody, and B. Raphael. Theta: Inferring
intra-tumor heterogeneity from high-throughput dna
sequencing data. Genome Biology, 14(7):R80, 2013.

[34] C. Olston, B. Reed, U. Srivastava, et al. Pig latin: a
not-so-foreign language for data processing. In SIGMOD
Conference, pages 1099–1110, 2008.

[35] Parquet: a columnar storage format for the hadoop
ecosystem. http://parquet.incubator.apache.org.

[36] A. Pavlo, E. Paulson, A. Rasin, et al. A comparison of
approaches to large-scale data analysis. In SIGMOD
Conference, pages 165–178, 2009.

[37] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian
path approach to dna fragment assembly. Proceedings of the
National Academy of Sciences, 98(17):9748–9753, 2001.

[38] Picard tools: Java-based command-line utilities for
manipulating sam files. http://picard.sourceforge.net/.

[39] L. Pireddu, S. Leo, and G. Zanetti. Mapreducing a genomic
sequencing workflow. In Proceedings of the 2nd Int’l
workshop on MapReduce and its applications, MapReduce
’11, pages 67–74, 2011. ACM.

[40] H. RE, K. JM, N. J, and M. SA. Discovery and genotyping
of genome structural polymorphism by sequencing on a
population scale. Nature genetics, 43:269–276, 2011.

[41] A. Roy, Y. Diao, E. Mauceli, et al. Massive genomic data
processing and deep analysis. PVLDB, 5(12):1906–1909,
2012.

[42] Sam: a generic format for storing large nucleotide sequence
alignments. http://samtools.sourceforge.net/.

[43] J. Simpson, K. Wong, S. Jackman, et al. Abyss: a parallel
assembler for short read sequence data. Genome Research,
19:1117–1123, 2009.

[44] S. S. Sindi, E. Helman, A. Bashir, and B. J. Raphael. A
geometric approach for classification and comparison of
structural variants. Bioinformatics, 25(12), 2009.

[45] S. S. Sindi, S. Onal, L. Peng, et al. An integrative
probabilistic model for identification of structural variation
in sequence data. Genome Biology, 13(3), 2012.

[46] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. In SIGMOD Conference,
pages 1–12, 1996.

[47] Variant call format.
http://vcftools.sourceforge.net/specs.html.

[48] R. Xi, A. G. Hadjipanayis, et al. Copy number variation
detection in whole-genome sequencing data using the
Bayesian information criterion. Proceedings of the National
Academy of Sciences, 108(46):E1128–E1136, Nov. 2011.

[49] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo
short read assembly using de bruijn graphs. Genome Res.,
18(5):821–9, 2008.

