
The case against specialized graph analytics engines

Jing Fan
University of Wisconsin
fanj@cs.wisc.edu

Adalbert Gerald
Soosai Raj

University of Wisconsin
gerald@cs.wisc.edu

Jignesh M. Patel
University of Wisconsin

jignesh@cs.wisc.edu

ABSTRACT
Graph analytic processing has started to become a nearly
ubiquitous component in the enterprise data analytics ecosys-
tem. In response to this growing need, various specialized
graph processing engines have been created in recent years.
Sadly, the use of relational database management systems
(RDBMSs) for graph processing is largely ignored in most
enterprise settings. This oversight is surprising since in most
enterprise settings, RDBMSs are already present and used
for a variety of other analytic tasks. This situation then begs
the question of whether the use of RDBMS for graph pro-
cessing is fundamentally lacking in some respect compared
to the specialized graph processing engines. In this paper,
we aim to address this question both from the programmer
productivity perspective and from the performance perspec-
tive. We present Grail – a syntactic layer for querying graph
in a vertex-centric way in an RDBMS, which can be com-
piled to translate graph queries to SQL. In a single node
setting, we also compare Grail to GraphLab and Giraph,
and examine the performance implications of using Grail,
showing that the RDBMS engine is competitive to these
specialized engines. Given that RDBMSs are ubiquitous in
enterprise settings, and have a robust and mature technol-
ogy that has been hardened over decades, and are part of
existing administrative methods in place, we argue that it
is time to reconsider if specialized graph engines have a role
to play in most enterprises.

1. INTRODUCTION
Graph problems have now become mainstream instead of
being an esoteric class of computation. In response to the
growing popularity for graph analyses, a large number of
specialized graph engines have emerged, including Pregel [12],
GraphLab [11], Giraph [1], and GPS [15]. These specialized
graph engines sit in a broader enterprise ecosystem where
there are typically already some existing relational data pro-
cessing platforms (e.g. an RDBMS) for executing “tradi-
tional” data analysis tasks. The idea of using the relational
platform for graph analysis has largely been ignored in favor

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA

of using these newer graph platforms.

The central question we concern ourselves with in this paper
is if this idea of “one size fits one” makes sense for graph an-
alytics. A key feature that these specialized graph engines
have going for them is that they provide a vertex-centric way
of graph programming, which is intuitive for the end (graph
analytics) application developer to use. We concede that the
graph engines have this advantage, but it is possible to pro-
vide much of this programmer convenience using a syntactic
layer on top of SQL that can be run on an RDBMS. We
present a method for Graph Analysis in Legacy Systems
(i.e. Grail) that presents such a syntactic mapping layer.
We present how graph analytics queries using the popular
vertex-centric approach can be expressed in Grail, and also
present how Grail queries can be translated to vanilla SQL.
In addition, we also present techniques to optimize the gen-
erated SQL code to improve the execution of the translated
SQL queries.

We compare Grail to two popular specialized graph engines,
namely GraphLab and Giraph, and demonstrate the Grail
approach is competitive in performance. The Grail approach
generally also allows more graceful scaling to larger datasets,
while the other two systems fall over fairly easily when deal-
ing with datasets that don’t fit in memory.

Finally, we note that – similar to the arguments made for
XML (e.g. [17]), column-stores (e.g. [6]), and JSON (e.g. [8])
– the advantages of extending an RDBMS for “non-core
relational” processing has the usual benefits of leveraging
existing robust mature technology that has already been
hardened, has various well-known manageability tools, and
administrators that know how to deploy the technology at
scale. In addition having one fewer system in the enterprise
ecosystem (i.e. a new graph engine/platform) reduces the
overall cost of managing and administrating the entire en-
terprise ecosystem as it reduces the administration overhead
that tends to grow quickly when one has specialized engines
for each application category.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 describe the systems and the algorithms that
are used in this paper. The Grail approach is described in
Section 4. Section 5 contains experimental results. Section 6
describes related work, and Section 7 contains our conclud-
ing remarks and points to some directions for future work.

1

2. SYSTEM TESTED
In this section, we describe the three engines that we con-
sider in this paper. These engines are representative of three
distinct approaches to graph analysis, namely RDBMS-based,
Hadoop-based, and a specialized native graph engine.

2.1 RDBMS-based Approach: SQL Server
In this study, we use a single-node Microsoft SQL Server
2014 as the RDBMS. It provides T-SQL as the SQL language
surface. We pick SQL Server because it is a representative
mature RDBMS product, but our results should generalize
to other RDBMSs. Like other commercial RDBMSs, SQL
Server has built-in buffer management system to enable ef-
ficient disk-RAM data exchange.

RDBMS engines also scale-out across nodes, and exploring
that performance aspect is a good topic for follow-on work,
and not considered in this initial position paper.

2.2 Hadoop-based approach: Giraph
Apache Giraph is an open-source iterative graph processing
system. Giraph runs jobs on Hadoop and uses HDFS to
store both input and output data. Giraph includes out-of-
core computation, spilling data to disk as needed.

2.3 Native Graph Engine: GraphLab
GraphLab is an open-source graph analytic platform based
on a Gather-Apply-Scatter model. GraphLab is a key ex-
ample of a specialized graph engine.

3. ALGORITHMS
In this section, we describe three common graph analytic
algorithms, and use them to make our argument.

3.1 Single Source Shortest Path (SSSP)
SSSP finds the minimum cost path between a given source
vertex and all other vertices. A parallel variant of the Bellman-
Ford algorithm is commonly used to evaluate SSSP. Initially,
the source vertex distance is set to 0 and it is the only ac-
tive vertex; all other vertices have the initial distance set
to ∞. In each iteration, every active vertex v sends a mes-
sage to each node that is directly connected to the vertex v.
Each such neighbor node, u, receives a message containing
its current minimum distance plus the weight of the edge.
In the next iteration, the vertices that have received mes-
sages become active, and mutate their (vertex) value to the
minimum of its received messages. Updated vertices then
send messages to their neighbors. The program terminates
when no vertices are active and no messages remain in the
system.

As an example, consider the case when the weight of each
edge is 1. Then, the shortest path value of a vertex v is
updated as: SP (v) = min(SP (v),minu∈N(v)(SP (u) + 1)),
where SP (v) is the shortest path value of v, and N(v) is the
set that has an edge pointing to the vertex v.

3.2 PageRank
The PageRank algorithm was designed to rank web pages,
counting the number and quality of links to a page to de-
termine an estimate of how important each page is. In each

Figure 1: Architecture of Grail

User

API

Translator

Optimizer Grail
SQL

RDBMS

Query
Result

Query

Rewritten SQL

iteration, the PageRank of a vertex v is updated as:

PR(v) = d× Σu∈N(v)
PR(u)

L(u)
+ (1− d)

where d is the damping factor, PR(v) is the pagerank value
of v, L(u) is the out-degree of the vertex u. A typical default
value for d is 0.85, and we use that default value.

3.3 Weakly Connected Component (WCC)
WCC computes the maximal subgraph in a directed graph,
such that every pair of vertices in the subgraph is mutually
reachable when replacing the directed edges with undirected
edges. In WCC, all the vertices are initially active and use
their own vertex id as the component id value. In each iter-
ation, each active vertex updates its component id value if
a smaller component id value is found. Each updated ver-
tex then send messages containing its current component id
value to its neighbors. Execution stops when all the vertices
are inactive and there are no new messages.

4. GRAIL
A key feature that the specialized graph engines tout is a
(graph) programmer-friendly API. RDBMS engines provide
SQL, which is not a natural way to express graph analysis
tasks. In this section we present Grail – a syntactic layer on
top of SQL that provides a programmer-friendly interface
for expressing graph analytic queries.

We note that even this area of designing APIs and/or lan-
guages for graph analytics is an active area of research, with
a number of recent Datalog-inspired proposals, such as [16,
18, 7]. But these previous efforts largely end up building
a new data processing platform. We also note that in the
future, it may make sense to generate other APIs/languages
like Grail to map to SQL engines. A goal of this paper is
simply to show that this mapping can be done fairly easily
with vanilla SQL.

4.1 Overview
The architecture of the Grail approach is shown in Figure 1.
There are three parts: an API, a translator, and an opti-
mizer. The API provides a vertex-centric way to express
the query, the translator maps the query to a runnable SQL

2

script, which is T-SQL in our case. An optimizer com-
ponent is used to generate “efficient” T-SQL queries (note
that this optimizer optimizes the translation to suit the spe-
cific characteristics of the underlying RDBMS engine and is
complementary to the query optimizer that sits inside the
RDBMS).

4.2 Data Model
In Grail, the graph data is stored in the underlying DBMS
using a set of tables. In this section we introduce the under-
lying data model.

First, we note that conceptually both Giraph and Graphlab
use separate classes to define the graph using two classes:
Vertex and Edge.

class Vertex { class Edge {
I id; I target;
V data; E data;
List <Edge > edges; }

}

We mirror this model, and store the edges and the vertices
as tables in a RDBMS, using the schema defined in Table
1. In Table 1 there are “permanent” tables to store the base
data, and “intermediate” tables that are used as temporary
relations during the graph computation. The final result is
stored in the next table.

The list above is not complete and in some cases additional
tables are needed based on the variables used in user’s query.
For example, the out cnts table can be created to record out-
degrees of vertices, and the updated table is needed to record
the updated vertices in the current iteration.

4.3 Computation Model
The computation models of Giraph, GraphLab and Grail
differ in the way that vertices communicate with each other
using messages/signals, and the ability/inability of vertices
to extract information from other vertices. Here we briefly
describe the computational models of the two specialized
graph engines and Grail.

4.3.1 Giraph
Giraph is a vertex-centric graph system that uses a message
passing model for communication. Computation is orga-
nized into supersteps (i.e. iterations).

More specifically, in Giraph vertices communicate directly
with each other by sending messages. In every superstep, a
vertex can execute a user-defined function to receive mes-
sages, do local computation, and send messages. For ex-
ample, the single source shortest path algorithm works as
shown in Figure 2. Here, we are computing the shortest
path from vertex A to every other vertex in the graph. In
iteration (#1), vertex A sends messages to vertices B and C,
and updates its own shortest path distance to be zero. Then,
in iteration (#2), vertices B and C use the messages that
it received (at the beginning of this iteration from vertex
A) to modify their shortest path distance from the vertex
A. In this same iteration, vertex B also sends a message to
vertex D. This message contains the destination vertex, and
the sum of the value of the source vertex and the weight

of the edge between them. Similar processing happens at
vertex C in this iteration (#2), resulting in a message being
sent from vertex C to vertex D. Finally in iteration (#3),
vertex D uses the messages it received from vertices B and
C to update its value (of the shortest path distance from A).
Since vertex D doesn’t have any out-going edges, it doesn’t
send any messages, and the algorithm terminates. Now ev-
ery vertex has the distance of the shortest path from vertex
A. It is important to note that in Giraph the data is moved
to the computation, and the computation is carried out at
the vertices.

4.3.2 GraphLab
GraphLab is based on the Gather-Apply-Scatter model. In
each iteration, GraphLab performs Gather, Apply, and Scat-
ter functions serially for every vertex.

In contrast to Giraph, rather than communicating using
messages, GraphLab employs a signaling mechanism for com-
munication. In each iteration, vertices receiving the signals
get activated, and GraphLab performs Gather, Apply, and
Scatter functions serially for every active vertex, in each
iteration. GraphLab uses a shared-memory view of com-
putation, which means that data on adjacent vertices and
edges are directly accessible by an active vertex, and there
is no need to use messages to transfer these data values. (In
a cluster environment, each vertex has a master node, and
multiple vertices could be mastered by a single node. Fur-
thermore, ghost vertices are created for all vertices that are
adjacent to vertices that are mastered at each node. Then,
signals sent to a ghost vertex results in sending a message
to the corresponding master node.) For example, in Fig-
ure 2, to find the shortest path distance from vertex A to
all other vertices, in iteration (#1), vertex A performs its
gather, apply and scatter functions. This iteration results
in the vertex A signaling the vertices B and C. In iteration
(#2), the vertices B and C become activated. Then, they
read values from their incoming edges, and also data val-
ues from the vertex A (in the gather phase). Finally, they
use these gathered values to update their own vertex values
during the apply phase. A (barrier-based) synchronization
between the gather and the apply phases ensures that the
updates in the apply phase strictly happen after the reads
have completed in the gather phase. The last step in iter-
ation (#2), is the scatter phase (which is also super-seeded
by a barrier synchronization), in which the vertices scatter
their updated values by signaling their neighbors; in this
case vertex D is signaled. Finally in iteration (#3), vertex
D updates its shortest path distance (from the vertex A)
based on the data at vertices B and C and the information
about the incoming edges. It is important to note that in
GraphLab the data is not copied and sent to where it is
used for computation, but rather the data values are simply
accessed when they are needed for computation.

Asynchronous Execution in GraphLab. The above de-
scription for GraphLab was for its synchronous mode of com-
putation. GraphLab can also execute in an asynchronous
mode where the PowerGraph [9] engine can execute compu-
tation for active vertices as and when processor and network
resources become available. To address the problem of non-
determinism that may arise due to asynchronous execution,

3

Table 1: Schema Definitions: In some systems (e.g. SQL Server) next, message and update are reserved
keywords and can be substituted for other names. In the interest of readability, we use these keywords here.

Schema Definition

Permanent
edge(src, dest, data, val) Original directed graph edges. src and dest are the source vertex id and

the destination vertex id of this edge respectively, data contains some
properties of this edge that is irrelevant to the computation (e.g. edge

establishment time), and val represents some property of this edge that is
relevant to the computation (e.g. edge weight).

vertex(id, data, val) Original vertices. id represents the vertex id of the vertex, data contains
some property of the vertex that is irrelevant to the computation (e.g.

vertex description), and val contains some property of the vertex that is
relevant to the computation (e.g. indegree of a vertex).

Intermediate

next(id, val) Values for the vertices in the next iteration. id is the vertex id of the
vertex, and val is the relevant value of the vertex that would be useful in

the next iteration.
cur(id, val) Values for the gathered messages. id is the vertex id of the vertex, and val

is the aggregated value for the vertex.
message(id, val) Messages passed to neighbors. id is the vertex id of the target vertex, and

val is the message value.

Table 2: From Vertex-centric Verbs to Relational Algebra
Vertex Centric Relational Algebra Meaning
Receive Messages cur ←− γid,F0(val)(message) Group by and aggregate

Mutate Value next
u←− πnext.id,F1(other.val)other ./id next oldvalue ← newvalue

Send Messages πedge.B,F2(other.val,edge.val)other ./other.id=edge.A edge Join other table and edge in the sending direction

PowerGraph uses a locking-based protocol to provide strong
serializability guarantees.

4.3.3 Grail
Grail’s overall computational model structure is similar to
the message passing model in Giraph. The difference is that
in an RDBMS, vertex data, message data, and edge data are
all stored in relational tables. Furthermore, the basic exe-
cution paradigm needs to leverage set-oriented processing.
For example, while executing the single source shortest path
analysis in Grail, the values of the next and message tables
for the three iterations are shown in Figure 3. The values
of the vertex and the edge tables remain the same across all
iterations, and they are also shown in Figure 3. The ver-
tex table contains the vertex id and the initial value of each
vertex. The edge table contains the source id, destination
id and the value of the corresponding edge. In iteration 1,
vertex A updates its own value and sends messages to ver-
tices B and C. This step can be seen in the next and message
tables shown for iteration (#1). The value for vertex A is
updated to zero since the distance from vertex A to itself is
zero. The values for other vertices B, C, and D, remain at
100 (which represents infinity in this example). The message
table in iteration (#1), shows that there are two messages
that are generated during this iteration: one for the vertex
B with value 1 and another for the vertex C with value 2.
In iteration (#2), the vertices B and C update their values
in the next table to 1 and 2 respectively, using the messages
that they received from the vertex A, at the start of this
iteration. The message table shows the two messages that
are generated by the vertices B and C during this iteration.
Finally, in iteration (#3), the vertex D updates its value in
the next table using the messages it received from the ver-
tices B and C at the start of this iteration. The vertex D

has no out-going edges, and so no messages are sent during
this iteration, and the algorithm terminates.

4.3.4 Cost Evaluation
In this section, we compare the computational model that is
used in Giraph, GraphLab, and Grail. Giraph and Grail use
the same message passing-like computational model, while
GraphLab adopts the Gather-Apply-Scatter model. How-
ever, GraphLab needs to send signals to its neighbors, which
functionally is similar to sending messages, except that the
data associated with a vertex is not transferred. Suppose
that in iteration i, Giraph and Grail receive Mi messages at
the beginning of the iteration. Similarly, the number of sig-
nals received by GraphLab should also be Mi. Assume that
the number of vertices in this iteration that need to do work
(i.e. the “active” vertices) is Ai. Furthermore, assume that
Mi+1 new messages or signals are generated for the next it-
eration, and that the average number of neighbors that are
touched in the Gather phase in GraphLab is k. Then, we
can model the time that is used by these three systems in
iteration i as shown below. The unit time cost to handle,
gather, compute and send messages are shown in Table 3.
Of course, each of these steps can have different physical
costs based on the implementation, creating opportunities
for implementation-based optimizations.

Let the execution time for Grail, Giraph, and GraphLab (in
synchronization mode) be denoted as TGr, TGi, TGL respec-
tively. Then:

TGr = handle ∗Mi + compute ∗Ai + gen ∗Mi+1

TGi = handle ∗Mi + compute ∗Ai + gen ∗Mi+1

TGL = handle ∗Mi + gather ∗Ai ∗ k
+ compute ∗Ai + gen ∗Mi+1

4

A
0

B
100

C
100

D
100

1

3

2

Iteration 1

active vertex message / signal

A
0

B
1

C
2

D
100

1

3

2

Iteration 2

A
0

B
1

C
2

D
3

1

3

2

Iteration 3

edge with weight w
w

2
2 2

Figure 2: Execution of the Single Source Shortest Path algorithm with Giraph and GraphLab. The distance
between the connected vertices are shown as labels on the edges. The distance of the shortest path of each
vertex from the source vertex A is written below the name of the vertex. A distance value of 100 is assumed
to represent infinity.

src dest val

A B 1

A C 2

B D 2

C D 3

edge

id val

A 100

B 100

C 100

D 100

vertex

id val

A 0

B 100

C 100

D 100

message

next

id val

B 1

C 2

Iteration 1

id val

A 0

B 1

C 2

D 100

message

next

id val

D 3

D 5

Iteration 2

id val

A 0

B 1

C 2

D 3

message

next

id val

Iteration 3

Figure 3: The tables used by Grail for the Single Source Shortest Path algorithm are shown here. The vertex
and the edge tables are shown only once since they have the same values in all the three iterations. The
instances of the next and the message tables are shown for each iteration.

Name Meaning
handle Time taken to handle a message/signal
gather Time taken to gather a value from a neighbor

compute Time taken to do local computation
gen Time taken to generate & send a message/signal

check Time taken to check whether to send a signal

Table 3: Unit Time Definition

GraphLab can reduce the number of signals in some circum-
stances. For example, in the shortest path algorithm, in the
scatter stage, a vertex can compare the neighbor value with
its value plus the edge value; then, if the former value is
smaller, the vertex can choose not to signal the neighbor.
Let us assume that this optimization can reduce the num-
ber of signals in iteration i by M ′

i . Thus, one can reduce
at most M ′

i active vertices in a current iteration, but this
optimization will require M ′

i more checks in the previous

iteration. So, the GraphLab’s time cost becomes:

TGL ≥ handle ∗ (Mi −M ′
i)

+ gather ∗ (Ai −M ′
i) ∗ k + compute ∗ (Ai −M ′

i)

+ gen ∗ (Mi+1 −M ′
i+1) + check ∗M ′

i+1

Thus, Grail and Giraph have the same high-level cost model,
while GraphLab’s cost model has some variations. GraphLab
can trade off some check time for number of messages. But
the total complexity of all three models is similar.

4.4 Grail: Translating to SQL
In Giraph, in every superstep (iteration), each vertex does
three things: Receive messages, Mutate values, and Send
messages. These verbs enable vertex-centric programming.
Our approach is to map these primitives to relational algebra
(RA) using the transformation rules that are shown in Table
2. With the RA mappings, its fairly easy to generate the

5

corresponding SQL statement1. Thus, with Grail we can
map vertex-centric programming to SQL.

Notice that in Table 2 the current result set is stored in the
table cur. Updated values in each iteration are stored in the
table next. A table join is used to generate new messages and
“pick the direction”in which to send the messages. There are
three options for the direction – namely, to out-going edges,
to in-coming edges, and to all edges. This direction is chosen
by picking the “right predicate” for the join operation (the
Send Messages operation shown in Table 2). If messages
are sent through out-going edges, then the join should be
on the src attribute of the edge table; if messages are sent
through in-coming edges, then the join should be on the dest
attribute of the edge table; if messages are sent through all
edges, then we should use a “union all” operation to union
the messages sent through out-going edges and in-coming
edges.

Next, we illustrate and compare Grail with the traditional
vertex-centric method for the SSSP analytics. Listing 1
shows the supersteps in Giraph, and the corresponding RA
transformation is shown in Listing 2. Here the table up-
date is used as flow control, and we join the update and the
edge tables using update.id = edge.src as we want to send
messages to the vertices that are connected by the outgoing
edges. (The program in the Grail API is discussed below.)

4.5 Grail API
The basic Grail API is shown in Table 4. The language is
simple and intuitive as users are freed from specifying low-
level operations like joins, and simply defining the task in
each iteration from a vertex-centric perspective.

Listing 1: Pseudocode for SSSP in Giraph
// Combine Message
foreach (int msgVal : messages) {

minDist = Math.min(minDist , msgVal);
}
if (minDist < vertexValue) {

// Mutate Value
mutateValue(minDist);
// Send Message
foreach (edge e : outEdges) {

sendMessage(e.target , minDist + e.val);
}

}

Listing 2: Relational Algebra for SSSP in Grail
cur ← γid,MIN(val)(message)
update← πcur.id,cur.val

(cur ./cur.id=next.id AND cur.val<next.val next)

next
u←− πnext.id,update.valupdate ./id next

message← πedge.dest,update.val+edge.val

(update ./update.id=edge.src edge)

1The translation shown in Table 2 is simplified. There are some
nuance as the “Mutate Values” and “Send Messages” component
may require additional joins if the query requires a more complex
“MutateAndSend” function that is described in Table 4. Thus,
the actual Grail translation is slightly more complicated.

4.6 Example
SSSP can be expressed in Grail as follows:

VertexValType: INT

MessageValType: INT

InitiateVal : INT_MAX

InitialMessage : (1, 0)

CombineMessage: MIN(message)

UpdateAndSend: update=cur.val<getVal()

if (update) {

setVal(cur.val)

send(out, cur.val+1)

}

End: NO_MESSAGE

The Grail generated T-SQL is shown in Listing 3.

Listing 3: T-SQL Ouput for SSSP
1 DECLARE @flag int;
2 SET @flag = 1;
3

4 SELECT vertex.id, 2147483647 AS val
5 INTO next
6 FROM vertex;
7

8 CREATE TABLE message(
9 id int ,

10 val int
11);
12 INSERT INTO message values (1,0);
13

14 WHILE (@flag != 0)
15 BEGIN
16 SELECT message.id AS id,
17 MIN(message.val) AS val
18 INTO cur
19 FROM message
20 GROUP BY message.id;
21

22 DROP TABLE message;
23

24 SELECT cur.id AS id,
25 cur.val AS val
26 INTO update
27 FROM cur , next
28 WHERE cur.id = next.id
29 AND cur.val < next.val;
30

31 UPDATE next
32 SET next.val = update.val
33 FROM update , next
34 WHERE next.id = update.id;
35

36 SELECT edge.dest AS id,
37 update.val + 1 AS val
38 INTO message
39 FROM update , edge
40 WHERE edge.src = update.id;
41

42 DROP TABLE cur;
43

44 DROP TABLE update;
45

46 SELECT @flag = COUNT (*)
47 FROM message;
48 END

6

Table 4: Grail API
Name Description Example Meaning Usage
VertexValType The vertex data type INT The vertex data type is int N/A
MessageValType The message data type INT The message data type is int N/A

InitiateVal
The initial value of the
vertex at the beginning
of the computation

id
All vertices should be initiated
with vertex id

Initiate

InitialMessage Initial message
(1, 0)

Sending message to vertex 1
with message value 0 Initiate

(ALL, 0)
Sending messages to all vertices
with message value 0

CombineMessage
The aggregate function
to combine messages

MIN(message)+1
Use the MIN aggregation oper-
ator on all incoming messages

Combine mes-
sage

MutateAndSend

The operations to up-
date the vertex in this
iteration, and determine
the messages to send for
the next iteration

update=cur.val < getVal()
if (update) {
setVal(cur.val)
send(out, cur.val/out cnts)
}

Create the table update with
two attributes cur.id and
cur.val. Update the values for
each vertex, and send messages
to all out-going neighbors

Mutate Value
Send Messages

End End condition
(ITER, 10) Stop after 10 iterations

Loop control
NO MESSAGE

Stop when there are no new
messages.

4.7 Optimization
There are optimizations that can be performed during the
code-generation part of Grail to produce an “efficient” T-
SQL program. We describe these optimizations next.

4.7.1 Index Creation
The generated (SQL) code has joins involving the tables
next and edge. To speed up the join, we create an index
on the id attribute of the next table, and an index on the
edge table based on the direction in which the message is
to be sent. When the message is sent to neighbors with
an out-going edge, the index should be created on edge(src,
dest); for neighbors on the in-coming edge the index should
be created on edge(dest, src); for neighbors on both types of
edges, both indices are created. These indices allow the SQL
server optimizer to consider index-based query plans, and
generally speed up the query processing. (As part of future
work, it would be good to make this optimization cost-driven
either in the code generation component of Grail, or directly
inside the RDBMS optimizer.)

4.7.2 Avoiding Materializing the Messages Table
The default code generation results in materializing the mes-
sage table (e.g. lines 36–40 in Listing 3), and then running
an aggregation operation on this table (e.g. lines 16–20 in
Listing 3). We can merge these two parts as follows:

SELECT edge.dest AS id, MIN(update.val+1) AS val

INTO cur

FROM update, edge

WHERE edge.src = update.id

GROUP BY (edge.dest)

4.7.3 Reduce the Update Cost
In the original query, we use tuple updates to mutate values.
For algorithms that mutate all vertex values in each iteration
(such as PageRank), the updates can be expensive. For
such algorithms, Grail inserts new records into the table cur

updating table next. After the insertions, we rename the
table cur to next as follows:

INSERT INTO cur

SELECT *

FROM next

WHERE NOT EXISTS(

SELECT * FROM cur

WHERE cur.id = next.id

)

EXEC sp_rename "cur", "next"

4.8 Extensions
Extensions to the discussion above is needed to support some
complex graph analytics algorithms, as described below.

4.8.1 UDT and UDAF
The expressiveness of Grail is dependent on the available
data types and the aggregate functions. Thus, User-defined
Data Types (UDTs) and User-Defined Aggregate Functions
(UDAF) are needed for some graph analytics. For example,
to compute the vertex value as val =

∏
m∈messagesm.val,

we need to define a corresponding UDAF.

UDAFs can also be generalized to consider multi-attribute
aggregation. For example, the following two (Giraph-based)
functions require multi-attribute aggregation functions on
the attributes msgVal and vertexVal. (We note that these
examples aim to illustrate the difference in the expressive
power of Giraph and SQL with traditional UDAFs. How-
ever, we do not know of any real graph analytics that would
require such multi-attribute UDAFs.)

foreach (int msgVal : messages) {

mutateValue(getValue()/msgVal+1);

}

7

int sum = 0;

foreach (int msgVal : messages) {

if (msgVal * getValue() > 0) {

sum += msgVal * getValue();

}

}

mutateValue(sum);

4.8.2 Edge Mutations
To avoid modifying the original vertex table, we create the
table next as a copy, and use it for computation. If we want
to allow for edge mutations, then we also need to make a
copy of the edge table.

5. EXPERIMENT SETUP
In this section, we present results from an empirical evalua-
tion.

5.1 System Setup
Each experiment was run on a single server. We use two
servers with the same hardware configurations, one run-
ning Windows Server 2012 R2 (for SQL Server) and the
other running Ubuntu 14.04 LTS with Linux kernel 3.13.0-
24-generic (for GraphLab and Giraph). Each machine has
16 physical cores spread across two Intel(R) Xeon(R) CPU
E5-2450L 1.80GHz processors. The machine has 96GB of
main memory. We use Giraph v. 1.1.0, GraphLab v. 2.2,
and SQL Server 2014. The Linux system runs Hadoop 1.2.1,
jdk1.7.0 55. Giraph reads input from and writes output to
HDFS, and Graphlab uses the local disk. SQL Server reads
and writes directly from disk-based tables.

In the performance test, we set the max parallelism for SQL
Server to 16. The log level is set to “Simple” to avoid log
writes slowing down the query. For Giraph, we can start
multiple workers and multiple threads for each worker. A
worker is more expensive than a working thread as it has to
keep additional data structures. However, multiple threads
can lead to contention, and thus slow down the program.
In the experiment, we use different settings for different
datasets for Giraph, picking the optimal point for each (Gi-
raph is quite brittle in this way in terms of finding its op-
timal setting). We also set parameters to allow Giraph to
spill to disk if needed, and disable checkpointing. GraphLab
has similar issues with parameters, and we report the op-
timal time that we observed below (the key parameter in
GraphLab is the degree of parallelism). We note, that such
tuning of Giraph and GraphLab for each task is likely to be
a hinderance in practice.

5.2 Datasets
Table 5 shows the datasets that we use, obtained from [2, 3,
4, 5]. The datasets grow from small to “large.” We note that
both Giraph and GraphLab insist on loading the dataset
before running each program (they do not have a way to
cache or pre-load the data). They also need a large amount
of space to load the data as the raw data is prepared (i.e.
internal data structures optimized) for the graph analysis.
For example, for the 24GB Twitter dataset, GraphLab needs
about 90GB of working memory to prepare the data. Giraph
has a similar mode of operation.

Table 5: Datasets
Dataset # Nodes # Edges Size
web-Google (GO) 9K 5M 71MB
com-Orkut (OR) 3.0M 117M 1.6GB
twitter-10 (TW) 41.6M 1.46B 24GB
uk-2007-05 (UK) 100M 3.3B 56GB

5.3 Queries
Our queries are the operations described in Section 3 . For
SQL Server, we use the optimized query generated by Grail.
For Giraph, we use their existing PageRank, SSSP and WCC
implementations. For Graphlab, we run experiments under
both synchronous mode and asynchronous mode and report
both results. We use their existing SSSP and WCC im-
plementations, and the fixed-number-iterations version of
PageRank. All PageRank programs are terminated after
10 supersteps/iterations.

5.4 Experiment Results
The key results are presented in Figure 4 where there is one
figure for each of the four datasets. For these experiment,
we note that the GraphLab asynchronous mode is gener-
ally more expensive that the synchronous mode, due to the
lock contention in the asynchronous mode. From this figure
we also observe that sometimes the specialized engines are
faster than the Grail-on-SQL Server approach – for example,
with the GO dataset the GraphLab (synchronous) approach
is 2.5X faster than the Grail approach for the SSSP analysis
(though the Grail approach is 2.5X faster than Giraph on
that same problem). As the dataset size increases, the Grail
approach catches up; for example, compare the GO and the
OR results. Furthermore, as the dataset size increases even
further (to the TW and the UK datasets), the other systems
start to fail. In fact, neither Giraph or GraphLab can run the
UK dataset which is only 56GB in size – both these systems
need far larger amount of space (for the data representation
and intermediate data structures) than the original data,
and they do not scale gracefully when there isn’t enough
memory. The Grail approach is far more robust.

5.5 On Other Related Reported Experiments
In a recent experiment for Pregel-like systems by Han [13],
they use 32 EC2 machines to run the algorithms that we
use here. For the TW dataset, on 32 machines Giraph took
1-3 minutes to setup, and 10 minutes to run 30 iterations of
PageRank. GraphLab took 3 minutes to setup and about 10
minutes to run. Taking the number of iterations into con-
sideration, the cluster runs 10+ times faster than a single
node SQL Server. But 32 machines are used in that ex-
periment. If we take into consideration all the costs such
as hardware amortization cost, power cost, administration
cost, SQL Server may be a better choice for graph analysis
at this scale. Thus, while a lot of attention has focused on
scale-out behavior of specialized graph engines, and the fact
that papers report cluster numbers when the datasets are
smaller than what can fit in typical single node today, we
note that systems like RDBMSs that can deal with out-of-
memory scenarios well are far more versatile and likely far
more cost-effective than methods that demand an always-
in-memory approach.

8

SSSP WCC PageRank
0

20

40

60

80

100

T
im

e
 i
n

 (
s
)

S
S

G
ir

G
L-

sy
n
c

G
L-

a
sy

n
c

S
S G
ir

G
L-

sy
n
c

G
L-

a
sy

n
c S
S

G
ir

G
L-

sy
n
c

G
L-

a
sy

n
c

GO

Computation Time Loading Time Other Time

SSSP WCC PageRank
0

60

120

180

240

300

360

420

480

S
S G

ir

G
L-

sy
n
c

G
L-

a
sy

n
c

S
S

G
ir

G
L-

sy
n
c G

L-
a
sy

n
c

S
S

G
ir

G
L-

sy
n
c

G
L-

a
sy

n
cOR

SSSP WCC PageRank
0

500

1000

1500

2000

2500

3000

3500

S
S

G
ir

S
S

S
S

G
ir

TW

SSSP WCC PageRank
0

2000

4000

6000

8000

10000

12000
UK

S
S

S
S

S
S

Figure 4: Comparison of the three graph engines, on the four datasets (GO, OR, TW and UK) with one
figure for each dataset. SS stands for SQL Server, Gir for Giraph, GL-sync for GraphLab synchronous
mode, and GL-async for GraphLab asynchronous mode. For each algorithm the time is broken down into the
“Computation”, “Loading,” and “Other” times. Giraph and GraphLab need to load the data each time, where
as SQL server can benefit from a warm buffer pool. The load times for SQL Server reported here are warm
numbers, but the load time only goes up by about 10% if the buffer pool is cold. The “Other” component
includes the cost of building indices (in SQL Server), the shutdown and the setup time (for Giraph), while this
component does not exist for GraphLab. For the TW and the UK datasets, some bars are missing because
the corresponding graph engines don’t finish/crash on those tasks.

6. RELATED WORK
There has been a flurry or recent work on graph analysis
using database systems. Han et al. [13] have experimen-
tally compared Pregel-like graph processing systems and
have shown that Giraph and GraphLab’s synchronous mode
execution has good all-round performance, but they do not
consider an RDBMS-based approach.

Marc et al. [14] have studied different platforms for graph
processing including a relational approach, but do not con-
sider a graph programmer-friendly API. They also did not
compare with popular engines like Giraph and GraphLab
that have been created more recently.

Teradata Aster 6.0 (Aster 6) [19] introduced support for
large-scale graph analytics. They have a specialized graph
engine similar to Pregel [12]. Aster 6 provides a SQL-like
interface where the graph analytic functions can be accessed
and executed using SQL queries. Their graph analytics func-

tions can also operate on relational tables, just as Grail does.
Alekh et al. [10] also have an approach of exposing vertex-
centric APIs on top of a relational DBMS. They expose the
same APIs as Pregel [12], and sketch out at a high level how
the APIs work. However, these previous works have not
considered GraphLab. They have also not explored the par-
allels between the relational engines and specialized graph
engines to draw out the similarities and differences in the
execution models, and build from that analysis to make a
case for the use of relational database engines for graph an-
alytics. Collectively this body of work does points to in-
creasing awareness and interest in using relational database
management systems for graph analytics, instead of using
specialized graph engines.

7. CONCLUSION
The use of RDBMS as a platform for graph analytics has
largely been ignored, encouraging a flurry of specialized graph
engines/platforms. We argue that this specialization does

9

not make sense for two reasons. First, the programming
convenience offered by these systems can easily be mirrored
using a syntactic layer on SQL and a code generation tool
that converts the graph program to SQL. In fact, we present
such a method called Grail in this paper. Second, the perfor-
mance of the Grail-based RDBMS approach is comparable
to the specialized engines, and the Grail approach allows
handling of datasets that are large (e.g. don’t fit entirely in
memory), and brings production-quality systems that have
been hardened over time making actual deployment far more
manageable and cost-effective. Thus, the case for specialized
graph analysis engines in most enterprises (that also have
other analytical needs) is tenuous.

There are a number of directions for future work, including
determining if there are ways to tune RDBMS engines to
improve their performance for Grail queries (e.g. by creating
special set-oriented operators that optimize the creation of
messages for each iteration), exploring far larger datasets
and scale-out behavior with these datasets, and considering
applications holistically in an enterprise which typically need
to run both graph analytic queries and other queries on the
same data.

8. ACKNOWLEDGMENTS
This research was supported in part by a grant from the
Microsoft Jim Gray Systems Lab (GSL), and by the Na-
tional Science Foundation under grants IIS-0963993 and IIS-
1250886.

9. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.

[2] Snap: Stanford network analysis project.
http://snap.stanford.edu/.

[3] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Ubicrawler: A scalable fully distributed web crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[4] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In
Proceedings of the 20th International Conference on
World Wide Web (WWW), pages 587–596, 2011.

[5] P. Boldi and S. Vigna. The webgraph framework i:
Compression techniques. In Proceedings of the 13th
International Conference on World Wide Web
(WWW), pages 595–601, 2003.

[6] N. Bruno. Teaching an old elephant new tricks. In 4th
Biennial Conference on Innovative Data Systems
Research (CIDR), 2009.

[7] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen,
N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, 2012.

[8] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON
document stores in relational systems. In Proceedings
of the 16th International Workshop on the Web and
Databases (WebDB), pages 1–6, 2013.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In C. Thekkath and
A. Vahdat, editors, 10th USENIX Symposium on
Operating Systems Design and Implementation

(OSDI), pages 17–30, 2012.

[10] A. Jindal, P. Rawlani, E. Wu, S. Madden,
A. Deshpande, and M. Stonebraker. VERTEXICA:
your relational friend for graph analytics! Proceedings
of the VLDB Endowment (PVLDB), 7(13):1669–1672,
2014.

[11] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence
(UAI), July 2010.

[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the ACM International Conference on Management
of Data (SIGMOD), pages 135–146, 2010.

[13] H. Minyang, D. Khuzaima, A. Khaled, Ã. M. Tamer,
W. Xingfang, and J. Tianqi. An experimental
comparison of pregel-like graph processing systems.
Proceedings of the VLDB Endowment (PVLDB),
7(12):1047–1058, 2014.

[14] M. Najork, D. Fetterly, A. Halverson, K. Kenthapadi,
and S. Gollapudi. Of hammers and nails: An empirical
comparison of three paradigms for processing large
graphs. In 5th ACM International Conference on Web
Search and Data Mining (WSDM), 2012.

[15] S. Salihoglu and J. Widom. Gps: A graph processing
system. In Proceedings of the 25th International
Conference on Scientific and Statistical Database
Management (SSDBM), pages 22:1–22:12, 2013.

[16] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: A datalog-based language for large-scale
graph analysis. Proceedings of the VLDB Endowment
(PVLDB), 6(14):1906–1917, 2013.

[17] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying xml documents: Limitations
and opportunities. In Proceedings of the 25th
International Conference on Very Large Data Bases
(VLDB), pages 302–314, 1999.

[18] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries
in a next-generation datalog system. Proceedings of the
VLDB Endowment (PVLDB), 6(12):1258–1261, 2013.

[19] D. E. Simmen, K. Schnaitter, J. Davis, Y. He,
S. Lohariwala, A. Mysore, V. Shenoi, M. Tan, and
Y. Xiao. Large-scale graph analytics in aster 6:
Bringing context to big data discovery. Proceedings of
the VLDB Endowment (PVLDB), 7(13):1405–1416,
2014.

10

