
Combining Databases and Signal Processing in Plato ∗

Yannis Katsis Yoav Freund Yannis Papakonstantinou
ikatsis@cs.ucsd.edu yfreund@ucsd.edu yannis@cs.ucsd.edu

CSE Department, UC San Diego

ABSTRACT
Sensors generate large amounts of spatiotemporal data that
have to be stored and analyzed. However, spatiotemporal
data still lack the equivalent of a DBMS that would allow
their declarative analysis. We argue that the reason for
this is that DBMSs have been built with the assumption
that the stored data are the ground truth. This is not the
case with sensor measurements, which are merely incom-
plete and inaccurate samples of the ground truth. Based on
this observation, we present Plato; an extensible DBMS for
spatiotemporal sensor data that leverages signal processing
algorithms to infer from the measurements the underlying
ground truth in the form of statistical models. These models
are then used to answer queries over the data. By operating
on the model instead of the raw data, Plato achieves signif-
icant data compression and corresponding query processing
speedup. Moreover, by employing models that separate the
signal from the noise, Plato produces query results of higher
quality than even the original measurements.

1. INTRODUCTION
Sensors generate ever increasing amounts of spatiotempo-

ral data that have to be stored and analyzed. However, anal-
ysis of spatiotemporal sensor data is a labor-intensive pro-
cess. In simple cases, the analyst copies (a subset of) the sen-
sor measurements out of the data store to custom software
(typically statistical signal processing algorithms), computes
an underlying real world model, utilizes the model in various
types of analyses, such as predictions, correlations and out-
lier detection and copies the results back into the database.
In such cases, the database is utilized just as a store. In more
complex cases, where the sensor analysis is combined with
the context provided by the conventional alphanumeric data
of the database, the analyst-specified processing pipeline is
effectively a manually provided query plan.

By employing a hardcoded processing pipeline for each
different analysis case, the state of the art in sensor data
processing thus misses all the productivity and performance-

∗This work was partially supported by NSF awards IIS-
1447943 and IIS-1237174.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA..

enhancing features introduced by Database Management Sys-
tems (DBMSs), such as declarative querying, automatic query
optimization and independence of the physical layer (speci-
fying how data are stored and queried) from the logical layer
(describing the view of the data to the analyst).

Though it is clear that a merger of signal processing and
databases would be beneficial, conventional DBMSs cannot
in their current form accomodate spatiotemporal signal anal-
ysis. The reason is a key difference in the founding assump-
tions of databases and signal processing. In contrast to con-
ventional data found in databases, which have a one-to-one
mapping to real world objects, the signal processing commu-
nity assumes that the data are mere measurements (samples)
of the corresponding physical reality. As such, sensor data
are by definition (a) inaccurate, containing apart from the
signal corresponding to the physical quantity measured also
a noise component which is the result of random influences
on the sensor and (b) incomplete, being discrete samples of
a continuous signal. It is easy to see that conventional query
processing fails under either of these properties. Querying
noisy data leads to inaccurate results, without even explain-
ing the extent of the inaccuracy. Similarly, even simple query
operations, such as the join of two relations cannot be di-
rectly applied to incomplete data, since the two relations
being joined may contain measurements that were taken at
slightly different times and locations and thus do not align
in space and/or time.

Plato aims to merge a general declarative DBMS (with
all the associated advantages) with the signal processing
paradigm, by operating on the underlying ground truth in-
stead of the actual measurements. The ground truth in this
case is represented by a model, which is a continuous func-
tion in space and/or time describing the quantity of interest
(e.g., temperature, velocity, acceleration, air pollutant con-
centration etc.). Models have been successfully used in the
signal processing community but have not yet been incor-
porated in DBMSs. The proposed Plato DBMS introduces
models as first-class citizens. This addition not only en-
ables declarative query processing for spatiotemporal sensor
data, but also achieves significant compression compared to
the storage of the actual measurements, which in turn leads
to improved query processing performance. Lastly, using
models that separate the signal from the noise leads also to
improved accuracy of the query results.

In short, Plato proves the value of operating on the reality
(as described by the models) rather than on its projection
(as given by the raw measurements). This separation be-
tween the actual reality and the perceived reality is also the

reason for the system’s name, in an allusion to Plato’s Cave
allegory1. Plato proposes the following novelties:

• A DBMS architecture for spatiotemporal sensor data,
containing a novel infrastructure for the definition of
models through reusable learning algorithm modules.
The models involve a probabilistic aspect that draws
from the foundations of signal processing.

• Two query languages - ModelQL and InfinityQL - for
declaratively querying models. Each language is suited
to analysts of different backgrounds, exposing the mod-
els either as black boxes (best suited to statisticians
and users of systems such as R) or as infinite relational
tables (a good fit for SQL programmers).

• A novel hierarchical data store for models, in which
the components of a model are stored in a compressed
form in order of decreasing importance. This enables:

• A novel query processing algorithm operating directly
on the models that brings significant gains in perfor-
mance and accuracy compared to a naive solution op-
erating on the measurements. The query processing
algorithm leverages the hierarchical data store to fur-
ther cut down query processing time by only utilizing
the components of the model required to reach the
confidence guarantees required by the user.

• Guidelines for inferring reduced-noise models; i.e., mod-
els that separate the noise from the signal and thus
improve on the quality of the original measurements.

2. RELATED WORK
Models as tools for compression. Statistical models,

primarily histograms and wavelets, have been widely used
for compression in the database literature (see survey [1]).
However, in contrast to Plato, these works assume the con-
tents of the database to be the ground truth, rather than
noisy and incomplete measurements thereof. Thus the query
answering algorithms lack a probabilistic aspect. Further-
more, most works do not support arbitrary queries, being
instead tuned to specific query patterns (e.g., approximate
query result size through the use of histograms).

Model-based data infrastructure. The idea of using
models as part of a general DBMS was first presented in
the context of MauveDB [4, 2, 3]. Plato extends these ideas
in several important directions: First, MauveDB argues that
models need to be discretized in the coordinates’ grid, before
they can be queried. In this work we show that a fully virtual
approach, where the model is perceived as a function over
the infinite spatiotemporal domain, is both easier for the
data analyst and more opportune for the query optimizer.
For instance, consider two temporal models represented by
their Fourier transform and a query asking for their corre-
lation. It is most efficient to compute this query directly on
the frequency domain rather than bring it back to the time
domain. Second, while MauveDB showcases some of the

1In Plato’s Cave, a few prisoners are bound, since birth, to
look at a wall where shadows of real world’s objects appear.
The prisoners perceive only the 2-dimensional world of the
shadows and miss the deeper insights that a comprehension
of the full 3-dimensional reality would offer them.

challenges that arise in model-based systems and presents
solutions for specific models, it does not contain a general
framework that would allow one to plug in arbitrary mod-
els (which is one of the main goals of Plato). Lastly, other
works studied particular point problems related to the use
of models to represent sensor data, such as comparing com-
pression ratios or designing indices useful for models [5, 8].
However, they did not present a general extensible model-
based database platform.

Efficient query processing on models. The idea of
evaluating queries directly on the representation of a model
without discretizing them first, was presented in the con-
text of FunctionDB [10]. The work showed that for a broad
class of polynomial functions, faster processing is achieved
by evaluating queries directly on the algebraic representa-
tion of the functions. Plato’s goal is to provide the platform
infrastructure that enables such optimizations for broader
classes of statistical models.

Statistical functions inside DBMSs. Finally, libraries
such as MADLib [7] allow statistical functions to be evalu-
ated inside a DBMS. While this solves the problem of mov-
ing the data out of the database for processing, it couples
model creation with query processing, thus not allowing the
use of functions to generate models that are hidden from the
analyst and used by the system to process arbitrary queries.

3. WHY MODELS?
Plato is based on the observation that sensor data can

be stored and processed much more efficiently by operating
not on the actual measurements but instead on a model of
the underlying reality that can be inferred from the mea-
surements. What is a model? In statistics a model is a
statement about reality, which could be in general of any
form. For instance, a model could be a fundamental law
(e.g., Newton’s law of acceleration, stating that the force

vector ~F can be inferred from the acceleration vector ~a and
the mass m through the formula ~F = m~a) or a statement
about a physical quantity in space and/or time in the past
(e.g., the temperature at the entrance of the computer sci-
ence department at UC San Diego on August 19, 2014 at
9am was between 68 and 70 degrees). But it could also be a
predictive claim about the future (e.g., the average temper-
ature of the earth will increase by at least 5 degrees between
2014 and 2050), or a theory (e.g., a medical theory stating
that the statins decrease the chance of a heart attack by
more than 20%).

Since we are interested in the processing of sensor data
with a spatiotemporal component, in this work we restrict
our focus to quantitative spatiotemporal models; i.e., mod-
els that provide the value of a physical quantity for points
in space and/or time. An example of a quantitative spa-
tiotemporal model is a function outputting the temperature
at the entrance of the computer science department at dif-
ferent points in time. Signal processing has long recognized
the value of operating on models inferred from the mea-
surements, instead of operating on the actual measurements
themselves.

Advantages of models. The reasons for preferring mod-
els over the raw measurements are multifold: Compared to
raw sensor readings, models offer several advantages:

• They are functions with possibly infinite domains. Raw
sensor readings are merely discrete samples of an un-
derlying continuous phenomenon (i.e., they provide
values of the measured quantity only for a finite num-
ber of points in space and/or time). In contrast, mod-
els provide also all intermediate values, intuitively“fill-
ing in” the gaps left by the raw measurements in the
spatiotemporal dimensions. Having the values of the
measured quantity for all points in space and/or time is
especially important when joining two spatiotemporal
signals on their spatiotemporal component, as other-
wise the two signals may not be aligned. For instance,
consider the following two datasets: A dataset contain-
ing air quality measurements taken at various locations
and times at UC San Diego and another dataset con-
taining GPS readings representing the location of a
person walking around campus. If we want to com-
pute the quality of the air the particular person was
breathing during the walk, we would have to join these
two datasets. However a conventional relational join
on the space/time attributes of the two datasets will
most probably yield the empty result, as the person
may have never been at the exact time and location
the air quality measurements were taken. Abstracting
out each of these two sets of measurements through
a corresponding model solves this problem and facil-
itates the join, as each model will provide the values
for every point in space and time.

• They offer predictive abilities. In addition to providing
values for points in space and/or time between those
for which there exist raw measurements, models may
also provide predictions for future points in time, thus
allowing users to ask predictive queries. For instance,
an air quality model may support queries about the
expected air quality tomorrow. Intuitively, the pre-
dictive nature of the models stems from the fact that
instead of focusing on the actual measurements, mod-
els instead capture the (typically recurring) pattern of
the underlying phenomenon.

• They improve accuracy. By capturing the pattern of
the underlying phenomenon, models may also be able
to separate the noise (inevitably introduced in raw
measurements due to the limited accuracy of sensors
and other random factors) from the actual signal, lead-
ing to values that are more representative of the actual
reality than the sensor measurements themselves. We
will discuss in Section 5 how models may separate the
noise from the signal returning values that are more
accurate than the original raw measurements.

• They capture uncertainty information. Even if a model
cannot completely separate the noise from the signal,
it can explicitly capture the uncertainty that exists in
the reported value for the measured quantity. This
uncertain information is then leveraged by the query
processing algorithms to generate query answers that
themselves capture uncertainty. We will outline in Sec-
tion 4.3 different ways in which a model can capture
uncertainty and describe their relationship to existing
works in uncertain and probabilistic databases.

• They can be represented compactly. Finally, models
can be most of the time represented more compactly

Measurements Tables Compressed Model Tables

Sensor T Temp

s1 10:00 67
s1 11:00 72
s2 10:00 65 …

temp_meas

Haar

Data

Model
Admin

Storage Layer

Queries

SELECT sm1.Sensor, sm2.Sensor
FROM sensor_models AS sm1, sensor_models AS sm2
WHERE correlation(sm1.Model, sm2.Model) > 0.9 Data

Analyst

Sensor Model

s1 m1
s2 m2

sensor_models
…

Query Layer

Learning Algorithms

Domain
Expert

Extensibility Layer

ARMA SVD ….

Type
Haar

Coefficients
�1 = 0.85
�2 = 0.2

Type

Haar �1 = 0.72

Coefficients

FFT ….

Figure 1: Plato’s Architecture

than raw measurements. This not only reduces the
storage requirements for the - typically large - sensor
datasets, but leads in many cases also to more efficient
query execution, as queries can often be evaluated di-
rectly on the compressed model representation, as we
will discuss in Section 6.

We next describe how Plato incorporates models and their
associated advantages into a relational DBMS.

4. PLATO: A MODEL-AWARE DBMS
Plato enables declarative and efficient querying of spa-

tiotemporal data through the architecture shown in Figure 1.
The system interacts with three different types of users: Do-
main experts with knowledge of statistics and signal process-
ing write learning algorithms, which given raw data create a
model over the data using a particular statistical technique
(e.g., Wavelets, Fast Fourier Transform, etc). Out of these
registered learning algorithms, model administrators with
knowledge of a particular dataset, choose a learning algo-
rithm and instantiate its parameters to create a good model
for the particular data set. Finally, data analysts query the
generated models using a declarative query language. We
next present the components of Plato enabling this work-
flow. As our running example, we will be using temperature
data collected from sensors placed in offices across UC San
Diego’s campus, in the context of the Energy Dashboard
project2.

4.1 Preliminaries
In this work we consider sensor measurements with a spa-

tial and/or temporal component. Let Dxyzt be the spa-
tiotemporal domain that includes the 3D space and the
time dimension and Ddesc a subspace thereof. The sub-
script desc in Ddesc describes the dimensions included in
the subspace together with any range restrictions. For in-
stance, Dxy:(x−x0)2+(y−y0)2=r2 contains all 2D points within
a circle centered at (x0, y0) with radius r. Finally, let X, Y ,

2http://energy.ucsd.edu

Z, and T be the relational attributes corresponding to the
three spatial and the temporal component, respectively.

Storing raw measurements. We consider sensor mea-
surements that are stored together with their coordinates in
conventional relational tables, which we refer to as measure-
ments tables. A measurements table contains among others
a subset of the spatiotemporal attributes X, Y , Z, and T to-
gether with a numerical attributes containing values of one
or more measured quantities.

EXAMPLE 4.1. For instance, table temp_meas(Sensor,

T, Temp) of Figure 1 is a measurements table containing
tuples of the form (s, t,m), denoting that temperature sensor
s provided the temperature measurement m at time t. 2

4.2 Deterministic Models
To enable declarative querying of spatiotemporal data,

Plato allows the creation of models on top of the raw mea-
surements. For now, we focus on deterministic models (i.e.,
models that do not contain any uncertainty), before show-
ing how the concept of a model can be extended to capture
the uncertainty inherent in sensor data. A deterministic
model is intuitively a mathematical representation of the
world that predicts a quantity of interest (e.g., temperature)
at every point of the spatiotemporal domain. Formally:

Definition 4.1. A deterministic model is a function f :
D 7→ R from a spatiotemporal domain D ⊆ Dxyzt to the set
R of real numbers. 3

EXAMPLE 4.2. For instance, function f : Dt:2012≤t≤2013

7→ R is a model for temperature, which given a point in time
t between 2012 and 2013 returns a real number correspond-
ing to the predicted temperature at time t. 2

Generating models. Instead of writing models by hand,
the model administrator creates models through learning al-
gorithms, which take as input the measurements and poten-
tially background knowledge about the real world and return
a model fitting those measurements. The signal processing
community has proposed a set of learning algorithms that
have been shown to be applicable to a wide range of do-
mains [9]. These include among others algorithms for learn-
ing ARMA (Autoregressive-moving-average) models (which
are suitable for representing natural phenomena, such as
temperature, where the present value depends on the recent
past), SVD (Singular Value Decomposition) models, FFT
(Fast Fourier Transform), Haar wavelets etc. Plato comes
preloaded with several such learning algorithms and can be
extended by domain experts with additional algorithms.

Definition 4.2. A learning algorithm g has the general
form g(R; p̄), taking as input a measurements table instance
R and a (variable-length) tuple p̄ of parameter values and
returning a model.

The variability of the length of p̄ is crucial to ensure that
the learning algorithm can be adapted to different scenarios
(e.g., domains of different dimensionality).

3Although, for ease of exposition we restrict ourselves to
models that return a single numeric value for each point in
D, in general a model could return values for more than
one numerical attributes, i.e., a model could be a function
f : D 7→ Rn, n ≥ 1.

EXAMPLE 4.3. For instance, the learning algorithm
haar(R; 〈Ācont;Ameas〉) takes as input a measurements ta-
ble R together with the set Ācont of attributes of R that
correspond to the spatiotemporal attributes and the attribute
Ameas of R that corresponds to the measurement attribute of
interest and creates a Haar model f : D 7→ R, where D is the
subspace of the spatiotemporal domain defined by attributes
Ācont. 2

Incorporating models into relational tables. To en-
able the seamless combination of models with standard re-
lational data, Plato allows models to be used as values in
tables. In addition to SQL’s data types (e.g., string, inte-
ger, etc.), Plato also provides a new model data type that
comes with an associated model signature D 7→ R. An at-
tribute of such a type is called a model attribute and accepts
as values models conforming to the corresponding signature.
We will refer to a table that contains at least one model at-
tribute as a model table. Model tables are defined by SQL
view definitions that involve learning algorithm invocations.

EXAMPLE 4.4. The following statement creates out of
the measurements table temp_meas the model table sensor_

models, containing sensor IDs and Haar models, describing
the predicted temperatures of the corresponding sensors:

CREATE MATERIALIZED VIEW sensor_models AS

SELECT Sensor, haar(G; <T; Temp>) AS Model

FROM temp_meas GROUP BY Sensor AS G(T, Temp)

For ease of exposition, we use an extension of SQL that al-
lows the creation of nested tables. In particular, the GROUP
BY operator creates for each sensor in the measurements
table temp_meas a nested table G with all measurements for
that sensor. This nested table is given as input to the Haar
learning algorithm to create the corresponding model. 2

Similarly to conventional views, a model table may be vir-
tual or materialized. In practice, the model administrator is
motivated to materialize models (and the respective model
tables) in order to benefit from the data compression that
models enable, as we will discuss in Section 5. This can
be achieved by using the MATERIALIZED keyword in the
model table definition as shown above.

4.3 Probabilistic Models
For ease of exposition, models have been defined above as

functions returning absolute values. However, since they are
inherently statistical approximations of the underlying pro-
cess (as they are based merely on measurements), models
should have a probabilistic component. Adding probabilis-
tic information to a model can be done in several ways. We
next outline three alternatives, explain their connection to
prior works in probabilistic databases and signal processing,
and argue for the one we adopt in Plato. In the subse-
quent definitions we assume that the domain of the model
is D ⊆ Dxyzt and its intended range (leaving aside the prob-
abilities for a moment) is R.

Model as a probability distribution over functions. A function-
probability model is a probability distribution over all func-
tions f : D 7→ R. Drawing an analogy with probabilis-
tic databases, a function-probability model corresponds to a

probabilistic database defined as a probability distribution
over the set of database instances that constitute the set of
possible worlds.4 Although this definition of probabilistic
databases is very general and thus guaranteed to cover any
use cases, we are not aware of any practical system employ-
ing it. Similarly, we argue that function-probability models
are merely of theoretical interest.

Model as a probability distribution over values. A value-
probability model is a function from D to probability distri-
butions over R. Continuing our analogy, this corresponds to
probabilistic databases where each tuple has a set of possi-
ble instantiations with associated probabilities that are inde-
pendent of those of the other tuples. Since each point in D
is assigned a probability distribution independently of the
other points, value-probability models are strictly less ex-
pressive than function-probability models. However, value-
probability models are still too general for practical use as
they may attach an arbitrary probability distribution to a
point in the domain D. These probability distributions may
be hard to infer from the data, hard to represent in a com-
pact way and more importantly, they may contain more in-
formation than is really needed to reason about the data. In-
deed, statisticians and practitioners often argue that know-
ing the exact probability distribution of the possible values
for a point in D is not of practical importance. In order to
make decisions based on the data, it suffices to know the
range in which a value almost certainly will fall. This leads
to the third definition of probabilistic models, inspired from
statistics.

Model as a set of prediction intervals. A prediction-interval
model is a function from D×P (where P the set of allowable
p-values) to the set Rinterval composed of triples of the form
(v,−ε1,+ε2), where v, ε1, ε2 ∈ R. The semantics are the
following: Let d be a value in the domain D, p a p-value in
P and (v,−ε1,+ε2) the interval returned by the model for
(d, p). Then, according to our current knowledge, the value
corresponding to point d is in the interval [v − ε1, v + ε2]
with probability at least 1 − p. The p-values are typically
chosen from a set of values close to zero (commonly below
10%). Since the p-value p is close to zero, the probability
1 − p of the value being in the specified interval is close to
one, making this an almost certainly true statement.

The inclusion only of statements that are almost certainly
true is a fundamental departure from probabilistic databases,
where one is interested in the probability of all possible
events, however small that probability might be. Although
general probabilistic databases have certainly their place in
many scenarios (e.g., they are ideal candidates to store in-
ferences made by bayesian networks), in this work we will
adopt this restricted form of probabilities, as it has been
proven in statistics to work well for decision support that
leads to actionable items.

Note, that in addition to almost certainly true facts (i.e.,
facts that are true with probability at least 1− p), a model
may also include almost certainly false facts (i.e., facts that
are false with probability at least 1− p). This is essential in
order to create a model that is closed under queries involving
negation (which could start from a set of almost certainly

4In an even wider interpretation, a propability function char-
acterizes the entire database and allows the expression of
dependencies across different tuples and models.

true facts and infer a set of almost certainly false facts).
The signal-processing community has successfully used a

special case of this model, briefly explained below.

Model as a combination of signal and noise. A signal-noise
model is a special case of the prediction-interval model,
where the intervals (v,−ε1,+ε2) for each (d, p) pair in D ×
P are not given explicitly, but instead described indirectly
through two components: (a) the center of the interval (i.e.,
the value v) at any point in D and (b) a gaussian distribu-
tion N(0, 1) together with its amplitude at any point in D,
which are used to compute the range of the interval (i.e., the
values −ε1 and +ε2) at any point in D. The first component
represents the signal, while the second represents the noise.
In particular, for a given p-value a signal-noise model is a
function f(i) = s(i)+α(i)n(i), ∀i ∈ D, where s : D 7→ R is a
non-probabilistic function representing the signal, n is white
noise (i.e., the well-known gaussian distribution N(0, 1) [9])
and α : D 7→ R is a function representing the amplitude of
the noise at any point in D.

Plato employs the prediction-interval probabilistic model
and its signal-noise specialization as their value in capturing
real use cases has been successfully proven by the signal
processing community. Moreover, the latter approach allows
models that separate the signal from the noise, leading to
high quality data, as we will discuss in Section 5.

4.4 Queries
A key success factor of DBMSs has been declarative query-

ing. Plato brings declarative querying to model tables through
two declarative query languages aimed at two different classes
of analysts. ModelQL exposes model attributes as black
boxes on which statistical functions can be applied. This
makes it perfect for analysts of a statistical background,
who currently perform statistical analyses using statistical
packages, such as R, SPSS, etc. InfinityQL on the other
hand is best suited for SQL programmers that want to write
standard SQL queries without having to worry about the
existence of model attributes. To this end, InfinityQL ex-
poses model attributes as nested relational tables with a
conceptually infinite number of tuples. We next describe
both query languages over non-probabilistic models, before
showing how they can be extended to prediction-interval
probabilistic models. Query processing is discussed in Sec-
tion 6.

ModelQL: Querying models through functions. Mod-
elQL allows analysts to query model attributes through model
functions. A model function is a statistical function that
takes as input a set M̄ of models and returns a scalar, a
tuple, a set of tuples, or a new model. For instance, a corre-
lation function cor(M1,M2) takes as input two models M1
and M2 and returns a scalar between 0 and 1 representing
their correlation. Plato supports many common statistical
functions and can be extended with additional functions.
Given a set of model functions, a ModelQL query is defined
as follows:

Definition 4.3. A ModelQL query is any valid SQL query
augmented with model functions that does not include in the
projection list a model attribute.

The restriction on the projection list guarantees that the

result of any ModelQL query is a standard relational table.

EXAMPLE 4.5. Continuing our running example, one
can utilize the correlation function cir(M1,M2) to compute
all pairs of temperature sensors whose models have a strong
(i.e., greater than 0.9) correlation as follows:

SELECT sm1.Sensor, sm2.Sensor

FROM sensor_models AS sm1, sensor_models AS sm2

WHERE correlation(sm1.Model, sm2.Model) > 0.9 2

Although a perfect fit for statistical functions, ModelQL
is not well-suited to relational operations, such as joins, se-
lections, projections, etc. on models. Implementing each
relational operator as a model function and writing a rela-
tional query as a composition of such functions is certainly
possible in ModelQL. However, to offer a more suitable lan-
guage for users coming from a SQL background, Plato offers
a second query language for relational operations on model
attributes, as described next.

InfinityQL: Querying models as infinite tables. In-
finityQL allows analysts to query model tables by consider-
ing model attributes as nested tables with an infinite num-
ber of tuples. In particular, a model f : D 7→ R from vector
(x, y, z, t) to r (conceptually) gives rise to an infinite table
with schema f(X,Y, Z, T,R), where (X,Y, Z, T) is the pri-
mary key. Intuitively, this table contains a tuple predicting
the value of the quantities R for each value in D. Given the
definition of infinite tables, an InfinityQL query is defined
as follows:

Definition 4.4. An InfinityQL query over a set of model
tables is a nested SQL query over these tables, where model
attributes are interpreted as nested infinite tables.

EXAMPLE 4.6. For instance, each Haar model in our
running example can be seen as an infinite table over schema
(T, Temp). Thus the model table sensor_models is concep-
tually a table over schema sensor models(sensor, (T, Temp)),
where (T, Temp) is the schema of the nested table corre-
sponding to the model. Using this representation, one can
ask for the temperature of all sensors at midnight of 05/05/2012
through the following InfinityQL query:

SELECT sm1.Sensor, m1.Temp

FROM sensor_models AS sm1, sm1.Model AS m1

WHERE T = 2012/05/05#00:00:00 2

Although InfinityQL queries may in general return infinite
tables, to allow the visualization of query results, Plato sup-
ports only InfinityQL queries that are guaranteed to return
a finite result. Such queries are called safe:

Definition 4.5. An InfinityQL query is safe if for every
database instance it returns a finite result.

Queries over probabilistic models. Both query lan-
guages can be extended to operate on prediction-interval
probabilistic models. To adapt ModelQL and InfinityQL
to probabilistic models, we make two revisions to the def-
initions presented above: First, we add a “WITH CONFI-
DENCE”clause that allows the analyst to specify the desired
probability of the output being correct. Second, we change

the output of the queries from tuples of simple values to tu-
ples of values of the form (v,−ε1,+ε2), such that each value
v is guaranteed to be in the interval [v − ε1, v + ε2] with
confidence p.

EXAMPLE 4.7. The query of Example 4.6 can be mod-
ified to return results with probability at least 0.95 as follows:

SELECT sm1.Sensor, m1.Temp

FROM sensor_models AS sm1, sm1.Model AS m1

WHERE T = 2012/05/05#00:00:00

WITH CONFIDENCE 0.95 2

Given the desired confidence p of the query result, Plato’s
query processor automatically computes the p-value that
should be used for each of the models that appear in the
query’s FROM clause in order to reach the desired confi-
dence in the query’s output.

5. COMPACT MODEL REPRESENTATION
As we discussed, models enable query processing on spa-

tiotemporal sensor data. However, models also serve two
other important roles: First, being succinct descriptions of
the data, they can be represented compactly, leading to sig-
nificant data compression. This leads not only to decreased
storage requirements but also to improved query processing
performance, since as we will see in Section 6, many queries
can be evaluated directly on the storage representation. Sec-
ond, by abstracting out from the specific data values, models
can also separate the signal from the noise, leading to higher
quality data compared to the original measurements.

Compression, noise and models are closely related. Good
models allow Plato to achieve high compression ratios. In
turn, high compression ratios indicate that Plato has cor-
rectly identified significant patterns in the data and removed
the noise. We next review the state of the art in compression
and describe the compression techniques employed in Plato.

5.1 State of the art in data compression
Compression methods are distinguished into lossless and

lossy, depending on whether they retain or lose information
from the input data, respectively.

Lossless compression. A lossless compression method
(such as gzip and compress) can accurately reconstruct the
original measurements. Looking at it as a statistical model
over the data, its expected compression ratio is determined
by the distance between the statistical model and the empir-
ical distribution of the data (as measured by the Kullback-
Leibler divergence). However, most of the time this com-
pression ratio is around 2 to 4, as the lossless compression
in order to accurately capture the entire input, models both
the true state of the world (i.e., the signal) and any random
influences on the measurements (i.e., the noise).

Lossy compression. In order to reach higher compres-
sion ratios, it is common to use lossy compression. Lossy
compression is based on the assumption that the input data
is a point in Euclidean space. For instance, let x = (x1, x2,
. . . , xt) be a sequence of real values representing the mea-
surements arriving from a (single) sensor. Similarly, let x̂ =
(x̂1, x̂2, . . . , x̂t) be the reconstruction of the sequence from
the compressed version. If the compression is lossy, the dif-
ference r = x−x̂ (called the residual) is non-zero. For a lossy

compression to be considered good, the size of the residual,
also known as the distortion, should be small. The most
common measure of distortion is the L2 error, also called

root-mean-square-error or RMS : RMS (x̂,x)
.
=

√∑t
i=1 r2i
t

.
Lossy compression methods such as jpeg2000 for images and
mp3 for audio can achieve compression ratios of 100 or more
with no perceptible degradation in quality.

5.2 Data compression in Plato
In this spectrum of compression options, Plato achieves a

novel tradeoff: It achieves a high compression ratio (simi-
lar to lossy approaches), while simultaneously retaining suf-
ficient information about the input data (similar to loss-
less approaches). Moreover, this information is arguably of
higher quality than even the original measurements.

Reduced-noise models. This is achieved through reduced-
noise models; i.e., models that separate the signal from the
underlying noise. Instead of trying to minimize the am-
plitude of the residual (measured through the RMS), the
learning algorithms employed by Plato make sure that the
residual is white noise. For linear models one can check
whether this is the case by considering the auto-correlation
function for each residual and the cross-correlation between
each pair of residuals. The residual is considered white noise
when the auto-correlation consists of a single delta-function
at zero and the cross-correlation functions are close to zero
everywhere. Once the learning algorithm has successfully
separated the signal from the noise, it creates a model of
the form f(i) = s(i) + α(i)n(i), as described in Section 4.3,
that retains the signal s, the description of the noise n (e.g.,
gaussian) and its amplitude α. By losing only the noise, the
reduced-noise model is lossy (yielding a high compression
ratio), but also retains high quality data (arguably exceed-
ing the quality achieved by lossless models).

Improving models and compression by exploiting
dependencies. The compression ratio can be further im-
proved by building models that cover a set of proximate sen-
sors, behaving similarly. For instance, consider our running
example of temperature measurements taken from rooms in
office buildings. Since neighboring rooms usually show sim-
ilar temperature readings, it is beneficial for compression
purposes to build a single model for all of them. Unfortu-
nately, the space of models that capture all possible depen-
dencies between sensors is extremely large and hard to learn
fully automatically. Therefore, it is the role of the model
administrator to specify the set of possible correlations that
should be considered by the system to improve compression.

Accelerating query processing through additive mod-
els. Some of the most commonly used models for lossy com-
pression, such as FFT, Wavelets, and SVD are composed of
components that can be ordered according to their effect on
the RMS measure. We call such models additive. Formally:

Definition 5.1. A model is said to be additive when it
is a sum of components x̂ =

∑k
i=1 ci s.t. the following two

conditions hold: (a) the best model for k2 > k1 shares the
first k1 components with the best model using k1 components
and (b) the reduction in the distortion is largest for the first
component and decreases monotonically as k increases.

Additive models lend themselves to an incremental com-

pression scheme. Starting by setting the residual to the orig-
inal measurements r ← x, we can create an additive model
by performing the following procedure:

until r corresponds to white noise do
Find the vector c that minimizes the RMS: RMS (c, r)
Subtract the identified component from the residual:

r = r− c

By ordering the model components in decreasing order
of importance, the query processing algorithm can perform
incremental query answering, producing approximations of
the result of ever increasing accuracy, as described next.

6. QUERY PROCESSING
In this section, we describe how queries are evaluated. For

ease of exposition we use a variant of our running example
involving a ModelQL query. However, similar ideas apply to
the processing of InfinityQL queries.

EXAMPLE 6.1. Consider a variant of our running ex-
ample, where the temperature models are created through an
FFT (Fast Fourier Transform) algorithm and stored as sets
of frequency-amplitude pairs. In this setting, the following
query asks for pairs of highly correlated temperature sensors.

SELECT sm1.Sensor, sm2.Sensor

FROM sensor_models AS sm1, sensor_models AS sm2

WHERE correlation(sm1.Model, sm2.Model) > 0.9 2

To evaluate such a query, Plato offers two different query
processing methods, depending on the information that is
available about the functions involved in the query.

Processing queries by materializing model values
on a grid. The baseline approach of processing queries is
by materializing the values returned by each model on a spa-
tiotemporal grid. This is similar to the approach proposed
by MauveDB [4]. However, while in MauveDB the analyst
has to manually specify the grid granularity, Plato automat-
ically infers it, based on the query’s desired confidence.

EXAMPLE 6.2. The query of Example 6.1 is executed
using the grid-based evaluation method as follows:

SELECT sm1.Sensor, sm2.Sensor

FROM sensor_models AS sm1, sensor_models AS sm2

LET grid_start = min_coord(sm1.Model, sm2.Model)

LET grid_end = max_coord(sm1.Model, sm2.Model)

WHERE correlation(grid(sm1.Model, grid_start, grid_end,

60), grid(sm2.Model, grid_start, grid_end, 60)) > 0.9

where the function grid(f, l, u, s) reduces the model f to a
discrete model fd that is only defined on the grid specified
by the start l, the end u and the step s. 2

Processing queries directly on the model repre-
sentations. Instead of discretizing models on the grid and
subsequently applying the statistical functions, many func-
tions can be evaluated directly on the storage representation
of a model, therefore reaping the benefits of compression.
For instance, the correlation function in Example 6.1 can be
executed faster directly on the frequency representation.

To enable query processing directly on the storage repre-
sentation of the models, the designer of a learning algorithm
has to also provide corresponding implementations of the
registered statistical functions. Plato’s query processor au-
tomatically uses the appropriate implementation (e.g., cor-
relation on the frequency domain), reverting to grid-based
evaluation only when no suitable implementation is found.

Exploiting additive models. Evaluating the query di-
rectly on the model representations also allows the system
to exploit the additive structure of the models. Given an
additive model, Plato can compute the query result by first
computing a rough approximation using the most important
components and subsequently improving it by taking into
account the remaining components. This enables the follow-
ing three important features: (a) Improved query processing
performance for queries with low to medium confidence, (b)
Anytime query processing (i.e., answer queries with a strict
deadline in an approximate manner) and (c) Online query
processing, similar to online aggregation works [6], where a
query returns a continuous result of ever increasing accuracy.

7. MODEL SELECTION
In Section 4.2 we saw how the model administrator can

create models by employing learning algorithms that have
been added to Plato. However, this assumes that the model
administrator has a-priori knowledge of which type of model
best fits the data to select the corresponding learning algo-
rithm. For instance, in our running example this assumes
that the administrator knew that a Haar model would be
a good fit for temperature data. Although this assumption
may hold in some cases (as the administrator may know
that the particular phenomenon exhibits a periodicity that
makes it a good candidate for Haar), in general, choosing
the model that is the best fit for the raw measurements is
a complex task that typically involves trying out different
models and comparing them based on how well they fit the
measurements.

Loss functions. The quantification of how well a model
fits the data is typically done through loss functions. A loss
function is a function that given as input a set of measure-
ments and a corresponding model returns a non-negative
real number, representing how well the model fits (i.e., pre-
dicts) the measurements. A low loss value indicates that the
measurements validate the model, while a high loss value
corresponds to falsifying the model by the data. The ab-
solute value of the loss function is usually not important.
It is the relative performance of each model w.r.t. the loss
function that is important. Given a set of candidate mod-
els, their loss on the same data are compared and the best
model (i.e., the model with the lowest loss) is chosen.

As we discussed in Section 5, the most commonly used
loss function is RMS (root-mean-square-error). RMS is the
square root of the sum of the squares of the difference be-
tween the predictions provided by the model and the actual
outcomes. It is typically used when the model predicts real-
valued quantities (e.g., the temperature as in our running
example).

It is important to note however that other loss functions
can be employed as well. The choice of loss function typically
depends on the type of data described by the measurements.
For instance, if the measurements are classifications of data

into discrete categories, RMS is obviously not a very good
metric of how good of a fit a model is w.r.t. those measure-
ments. In this case, one usually employs as the loss function
the fraction on mistakes (i.e., misclassifications) made by
the model on unseen data.

The space of candidate models. Given a loss func-
tion suitable for the type of measurements at hand and
a set of measurements, the model administrator wants to
choose the model that best fits the measurements accord-
ing to the particular loss function. To find such a model,
the model administrator has to explore a variety of learning
algorithms (potentially with different instantiations of their
parameters), as they may lead to models of differing loss.
For instance, Wavelets may be a better fit than FFT for a
particular dataset (and vice versa).

Although this process is currently done manually, Plato
has the potential of semi-automating it. In particular, if the
space of candidate models is finite (which may not be the
case, if for instance one has to consider an infinite amount
of possible instantiations for the parameters of a learning al-
gorithm), one could instruct Plato to automatically explore
this space by creating all candidate models, and choosing
the one with the lowest loss. We plan to investigate as part
of our future work, whether this space of options is finite in
practice and if this is the case, devise a language that allows
the model administrator to compactly describe the space of
candidate models that have to be explored.

8. CONCLUSION
As we have explained, combining signal processing and

databases enables DBMSs that not only support spatiotem-
poral data but also leverage reduced-noise additive models
to offer efficient and noise-free query processing. In the fu-
ture, we plan to investigate whether models can be used not
only as intermediate blocks enabling query processing but
also as query results that provide insights into the structure
of the data (e.g., correlations, dominant frequencies, etc.).

9. REFERENCES
[1] G. Cormode, M. Garofalakis, P. J. Haas, and

C. Jermaine. Synopses for massive data: Samples,
histograms, wavelets, sketches. Foundations and
Trends in Databases, 4(1-3):1–294, 2011.

[2] A. Deshpande, C. Guestrin, and S. Madden. Using
Probabilistic Models for Data Management in
Acquisitional Environments. In CIDR, 2005.

[3] A. Deshpande, C. Guestrin, S. R. Madden, J. M.
Hellerstein, and W. Hong. Model-driven Data
Acquisition in Sensor Networks. In VLDB, 2004.

[4] A. Deshpande and S. Madden. MauveDB: Supporting
Model-based User Views in Database Systems. In
SIGMOD, pages 73–84, 2006.

[5] T. Guo, T. G. Papaioannou, and K. Aberer.
Model-View Sensor Data Management in the Cloud.
In BigData Conference, pages 282–290, 2013.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In SIGMOD, pages 171–182, 1997.

[7] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib Analytics Library
or MAD Skills, the SQL. PVLDB, 5(12), 2012.

[8] N. Q. V. Hung, H. Jeung, and K. Aberer. An
Evaluation of Model-Based Approaches to Sensor Data
Compression. IEEE TKDE, 25(11):2434–2447, 2013.

[9] J. Stein. Digital Signal Processing: A Computer
Science Perspective. Wiley-Interscience, 2000.

[10] A. Thiagarajan and S. Madden. Querying Continuous
Functions in a Database System. In SIGMOD, 2008.

