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ABSTRACT
The human work involved in data transformation represents a major
bottleneck for today’s data-driven organizations. In response, we
present Predictive Interaction, a framework for interactive systems
that shifts the burden of technical specification from users to algo-
rithms, while preserving human guidance and expressive power.

1. INTRODUCTION
Many of today’s data management challenges stem from the

increasing variety of scenarios where data is being exploited. This
variety has a number of dimensions: breadth of data sources with
varying representation and quality, breadth of use cases for a range
of both technical and popular products, and breadth of people with
varying skill sets who work with data sources to build data products.

The human factors in this context present challenges and oppor-
tunities of increasing urgency for the technical community. Recent
projections on labor markets predict dire shortfalls in the analytical
talent available to realize the potential of “big data” [22]. Technolo-
gists can have significant impact here by developing techniques that
dramatically simplify labor-intensive tasks in the data lifecycle.

In interviews with data professionals, we discovered that a ma-
jority of their time is spent in data transformation tasks, which they
consider to be relatively unsophisticated and repetitive, yet persis-
tently tricky and time-consuming [15]. The most-cited bottleneck
arises in manually wrangling the various sources of data required
for each distinct use case.

The technical challenges of data transformation come from the
unbounded variety of inputs and outputs to the problem, which so
often necessitate custom work. At heart, data transformation is a
domain-specific programming problem, with a strong focus on the
structure, semantics and statistical properties of data. If we make the
specification of data transformation programs dramatically easier,
we can remove drudgery for scarce technical workers, and engage a
far wider labor pool in time-consuming, data-centric tasks.

Data transformation is not a new problem, though it is one of
increasing urgency and complexity. It covers a range of tasks, includ-
ing statistical manipulations (e.g., profiling, outlier handling, impu-
tation), restructuring (e.g., extracting fields from text, (un)nesting,
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data-to-metadata transformations like Pivot/Unpivot), cleaning (e.g.,
standardization, entity resolution, dictionary management), enrich-
ment (e.g., joins and references), and distillation (e.g., sampling,
filtering, aggregation, windowing).

There are a number of recurring themes in previous work on
data transformation. One is to develop new user interfaces for
graphical specification of queries and transforms [11, 23, 26, 32],
and visualization of outputs [3, 19]. A second theme is to innovate
at the data management layer, with domain-specific languages that
are well-suited to data transformation and can be executed in a
scalable, high-performance manner [8, 18, 28]. And despite the
wide-ranging, ad hoc nature of these tasks, there is a persistent
theme in the literature on developing new computational methods
for automation powered by AI, logic and crowdsourcing [5, 7, 29].

Building on this body of work, we take the position in this pa-
per that the burden of specifying data transformation logic can be
lifted via approaches that adopt a thoughtful “trifecta” of these
three research streams of People, Data and Computation. Our goal
here is not to prescribe a specific solution to data transformation.
Rather, we present a general design framework that we call Predic-
tive Interaction, which relieves users from the burden of technical
specification. In Predictive Interaction, the user is not required to
specify the details of their data transformations; they can instead
highlight features of interest in data visualizations. These features
help guide predictive methods to suggest a variety of possible next
steps for their data. The user then decides on the best next step,
and the interaction repeats. We call this the guide/decide loop of
Predictive Interaction. In the field, users have reported order-of-
magnitude productivity gains based on this technology, as well as
the ability to let less-technical end-users wrangle their own data,
avoiding time-consuming back-and-forth discussions with IT pro-
fessionals [30]. In this paper we highlight the benefits of Predictive
Interaction, as well as key design considerations for systems based
on our approach.

1.1 Case Study: Pattern Extraction
We begin our discussion with a concrete example of a small

subtask in data transformation — text pattern extraction — and a
Predictive Interaction approach we developed to address it.

Text pattern specification is a basic step in many data wrangling
tasks, including substring extraction, delimiter identification, and the
specification of filters. Typically, domain-specific pattern languages
like Regular Expressions (REs) are used for this purpose. But REs
are hard for non-experts to specify, and can often be challenging for
experts to read and debug.

During the design of the data transformation interface in Trifacta,
we developed a Predictive Interaction approach to specifying text
patterns for manipulating data. Figure 1 shows an example of this
design in use on mobile advertising logs. Users are presented with



Figure 1: Predictive Interaction for text pattern specification. The left image shows the interface after the user has highlighted the
string mobile in line 34. The right shows the interface after one more gesture: highlighting the string dynamic in line 31. Note
that the top-ranked suggested transform changes after the second highlight, and hence so do the Source and Preview contents.

Figure 2: A ranked list of regular expressions.

a visual rendering of their data in a familiar tabular grid. They can
guide the system by highlighting substrings in the table, which are
added to an example set. Based on this set, an inference algorithm
produces a ranked list of suggested text patterns that model the set
well. For the top-ranked pattern, the table renderer highlights any
matches found, and shows how those matches will be used.

Figure 1 shows the states of the interface after the user makes each
of two guiding interactions: first, highlighting the string mobile
in row 34, and then highlighting the additional string dynamic in
row 31. The user interface shows the highlighted patterns in the
source (blue), and the outcome of a text extraction transform in a
preview column (tan). The user can choose to view the outputs of
other suggested transforms by clicking on them in the top panel;
they can also edit the patterns directly in a Transform Editor. When
the user decides on the best pattern, they can click the “plus” (+) to
the right of the transform to add it to a DSL script.

In our initial prototype the suggested transforms looked different
than what is shown in Figure 1. Originally, users would see a
ranked list of REs in a traditional syntax, as shown in Figure 2
(corresponding to the ranked list of suggested transforms on the
right of Figure 1). In user studies we found that even experienced
programmers had difficulty deciding quickly and accurately among
alternative REs. It seems that RE syntax is better suited to writing
patterns than to reading them. Hence we changed our DSL to a new
pattern language (compilable to REs) that is better suited to rapid
disambiguation among options.

In essence, we evolved our DSL design to simplify the way that
users can interact with automated predictions. Although simple, this
example illustrates some of the subtleties involved in co-designing
Predictive Interaction across the three streams of traditional research
mentioned above. The visualization has to be informative and the
affordances for user guidance clear; the predictive model has to
receive information-rich guidance from the interactions, and do a
good job of surfacing probable but diverse choices; the DSL has
to be expressive yet sufficiently small for tractable inference and
simple user interaction.

In the remainder of the paper, we provide a general framework for
Predictive Interaction, putting it in context with previous approaches
to visual languages for managing data, and highlighting research
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Figure 3: Lifts. A traditional lift (a): given a map f : X →
Y , and a map g : Z → Y , the lifting problem is to find a
map h : X → Z such that g ◦ h = f . Lifting in the context
of visual specifications (b): rather than write expressions in a
textual DSL, we define a lift to a domain of data visualization
and interactions, such that the interactions in that domain lead
to final outputs: compilation ◦ interaction ◦ visualization = DSL
programming.
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Qualijied  retrieval. Print  the  names of the  employees  who  work 
in the toy department  and  earn  more  than $10000. This is shown 
in Figure 11. Note  the specification of the  condition  “more  than 
$lQl&)O.” One has  the  option  of using any of the following in- 
equality  operators: #, >, >=, <, <=. If no inequality operator is 
used’  as  a prefix, equality is implied. The symbol # can  be  re- 
placed by 1 or I=. 

Partially  underlined  qualijied  retrieval. Print  the  green items that 
start with the  letter I .  This is found in Figure 12. The I in IKE is 
not  underlined,  and it is a  constant.  Therefore,  the  system  prints 
all the  green  items  that  start with the  letter I .  The  user can  par- 
tially underline at  the beginning, middle or end of a word, a sen- 
tence,  or a  paragraph, as in the  example, XPAY, which means 
find a word, a sentence  or a paragraph such that  somewhere in 
that  sentence  or  paragraph  there  exist  the  letters PA. Since an 
example  element  can  be blank, then it word, a sentence,  or a 
paragraph  that  starts  or  ends with the  letters PA also qualifies. 

The partial underline  feature is useful if an  entry is a  sentence  or 
text  and  the  user wishes to  search to find all examples  that  con- 
tain a special word or  root.  If,  for  example,  the  query is to find 
entries with the word Texas,  the formulation’ of this  query is P. x 
TEXAS Y. 

- 
- 

Qualijied  retrieval using links. Print all the  green  items sold by 
the  toy  department.  This is shown in Figure 13.  In this  case,  the 
user  displays  both  the TYPE table  and  the SALES table by gener- 
3ting two blank skeletons on the  screen  and filling them in with 
beadings and with required entries. The significance of the  ex- 
ample  element is best  illustrated in this  query. Here,  the same 
example  element must be used in both  tables, indicating that if 
an  example item such as N U T  is green,  that  same item is also 
sold by  the toy department.  Only if these  conditions are met 
simultaneously does  the item qualify as a  solution. The manual 
equivalent is to  scan  the TYPE table  to find a green item and  then 
scan the SALES table  to  check  whether  that  same item is also 
sold by the toy department.  Since  there is no specification of 
how the  query is to  be  processed or where  the  scan is to start, 
the formulation of this  query is neutral  and  symmetric. 

Figure 13 Qualified  retrieval using links ‘“7-1 
P . E T  GREEN - 

Once  the  concept of a linking example  element is understood, 
the  user can link any  number of tables and  any  number of rows 
within a single table, as in the following examples. 
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Figure 4: Query By Example: qualified retrieval using
links [32].

challenges and opportunities for the community.

2. LIFTING TO VISUAL LANGUAGES
To set the stage for our discussion, we re-examine the more

traditional integration of two of our three themes: visualization
and data-centric languages. There are a number of influential prior
efforts along these lines, including Query-By-Example (QBE) [32],
Microsoft Access, and Tableau. These interfaces take a textual data
manipulation language (e.g., relational calculus) and “lift” it into
an isomorphic higher-level visual language intended to be more
natural for users. Given a visual specification of a query, a system
can translate (“ground”) to the domain of the textual language for
processing. Lifting is a basic idea from category theory, sometimes
used in the design of functional programming languages (Figure 3).

Lifting to a visual domain has proven to be useful for the specifi-
cation of standard select-project-join-aggregate queries. As illustra-
tion, we review two influential systems: QBE and Tableau.

Example 1: QBE. The main idea in QBE is to lift the database



Figure 5: The Tableau interface for query specification.

into a visual representation of relational metadata: table grids with
column headers. The user interacts by starting with an empty
“skeleton” of a table grid, and types a table name at the upper
left of the skeleton, which causes the associated column names
to be populated. The user can then place variables and expres-
sions into the empty cells in the rows beneath the header. The
placement of the variables and expressions in these empty cells
precisely determines a query, which can be compiled to SQL in a
straightforward manner, and executed in a relational database. Fig-
ure 4 shows a query from Zloof’s 1977 paper [32] that illustrates
“qualified retrieval using links”: a query with selection predicates
(TYPE.COLOR = ’GREEN’, SALES.DEPT = ’TOY’) and an
equijoin (TYPE.ITEM = SALES.ITEM). By typing P., the user
has indicated that they wish to print the TYPE.ITEM field in the
output, which is also shown in a tabular format.

Example 2: Tableau. Tableau (Figure 5) is a data visualization
tool rooted in Stolte et al.’s Polaris system [28] for specifying and
visualizing results of pivot table queries. Again, the visual metaphor
focuses on the manipulation of metadata. Users are shown the
schemas of tables, with attributes partitioned into the familiar OLAP
notion of dimensions (categorical types) and measures (numeric
types). Users can drag the names of attributes to “shelves” on a
visual canvas. These actions indicate a desire to group or filter
records, and to visualize them by spatial position (row/column),
color, shape or size. Users can further tailor the results by selecting
aggregation functions and visualized mark types (bars, plotting
symbols, etc) using drop-down menus. Tableau’s interface is a
direct lifting of a DSL called VizQL, an intermediate high-level
language that in turn compiles to both database queries (e.g., SQL
or MDX) and visual encoding procedures.

2.1 Discussion
Tableau and QBE (as manifested in commercial variants like

MS Access) have proven to be popular and approachable for both
business and technical users. There are notable benefits to the visual
lifting that they achieve. First, by grounding user interactions in
an underlying DSL, these tools couple graphical specification with
the ability to compile down to widely-deployed scalable execution
engines. Contrast this approach to other interactive data tools that
are not grounded in a DSL, such as OpenRefine: the standalone
nature of those tools limits the data and contexts to which they can
be applied, isolating them from third-party investments in improved
engine infrastructure.

Next, these visual tools can be easier to learn than the correspond-
ing DSLs, due in part to visual affordances: cues in the interface
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Figure 6: Predictive Interaction: The Guide/Decide loop.
We augment previous lifting schemes to guide the system via
ambiguous interaction, visualize a predicted distribution of
next steps, and decide on their desired results. More gen-
erally, compilation ◦ disambiguation ◦ prediction ◦ interaction ◦
visualization = DSL.

that tell users what actions are possible (menus, icons, drag/drop
targets, etc.). These affordances make the significant constructs in
the language readily apparent.

Another advantage of these visual languages is a more flexible
specification style. Textual language expressions are fundamentally
sequential in format, written and read from start to finish. Visual
interfaces can loosen the order in which users construct specifica-
tions — and, critically, can show intermediate results along the way,
to help users assess progress and refine their goals as they go. In
addition, a 2-dimensional layout can allow for better clustering of
concepts and hence aid comprehensibility: for example, tables that
are being joined might be shown close together on screen along with
their associated join predicates.

Visual lifting can be helpful, but it has a significant built-in limi-
tation: it presents a strict isomorphism to a textual language. This
raises multiple problems. Textual languages are often quite rich,
and most visual languages (including QBE and Tableau) provide
visual metaphors for only a subset of their underlying DSLs. For
example, in both these languages, arithmetic expressions and string
manipulation of the sort we saw in the previous section require
explicit textual specification. In essence, the user occasionally hits a
“cliff” of complexity in the user interface, where they fall out of the
visual domain and must work in an underlying DSL.

More importantly, the visual interaction model does not inher-
ently remove the user’s specification burden; it merely changes the
syntax. In order to achieve a certain query, the user must make
visual specifications that are precisely as descriptive as any textual
specifications for that query. Unfortunately, in many instances a
user’s inability to make progress with an interface is not fundamen-
tally a matter of syntax (e.g., typing vs. mousing), but rather an
inability to specify a precise intent. This inability can stem from
technical unfamiliarity (not knowing how to do something), or from
an ambiguity of intent (uncertainty about what to do). Note that
ambiguity is often desirable — it is at the heart of exploratory tasks
where the computer is serving as an aid for the analyst’s creative
process.

Going beyond the inherent limitations of visual lifting requires a
new approach, one in which computational methods assist the user
in the task of specification.

3. PREDICTIVE INTERACTION
The key drawback of both DSLs and lifted visual interfaces is an

intolerance of ambiguity — they ask users for too much technical
specificity, or at best limit expressivity. By contrast, the key draw-
back of automated techniques is the absence of user guidance, which
prevents automated techniques from adjusting to a wide variety of
inputs and outputs. In this section we show how this tension can
be resolved by incorporating aspects of all three of our technical



themes: People, Data and Computation.
Figure 6 shows the basic structure of Predictive Interaction as an

augmentation of our earlier illustration of visual lifting. Rather than
ask users to visually specify exact desires, they provide ambiguous
input to guide predictive methods, and decide on a desired result.
We explain the steps of the diagram with reference to our case study
of text pattern specification in Section 1.1.

Once again, we use visualization to lift from the domain of data
and code into a more intuitive visual domain. In Figure 1, the
data is rendered in a familiar table visualization with each column
augmented with univariate histograms and data quality bars [16].

The next step is user interaction. The first and most prominent
distinction brought by Predictive Interaction is that the visual inter-
actions can be highly ambiguous, merely guiding the system toward
features of interest in the data. For example, in Figure 1, the user
simply highlights substrings in the table visualization, indicating
an interest in certain textual features. Many other aspects of the
visualization are available for interaction as well, including row and
column headers, histogram bars, and data quality summaries.

As user guidance is received, the system can provide a transient
response to acknowledge the user’s interaction (e.g., by highlighting
text during mouse drag). Then, based on a variety of features —
from the interaction, the data, historical information and more —
Predictive Interaction computes a distribution of probable next steps.
This space of next steps is visualized in a manner that allows the user
to explore among them and disambiguate the uncertainty introduced
by prediction. In Figure 1, the user can browse through a ranked
list of DSL statements (Suggested Transforms), and by clicking on
each suggestion they can see its results visually in the table preview.
Once the user decides on the next step, it can be compiled down to
the grounded syntax of the DSL.

Compare this model with the visual lifting systems described in
Section 2. In both cases, the user benefits from visual affordances
and graphical layout. However, with Predictive Interaction users are
freed from the burden of fully specifying their intentions in using
these affordances. Instead, algorithms can help with the specifi-
cation, and users can focus on resolving any resulting ambiguity.
Of course Predictive Interaction also raises technical challenges in
translating user interactions into meaningful specifications.

In Figure 6 we cast Predictive Interaction in the context of visual
lifts, but this viewpoint is not intended to be sacrosanct. In fact,
in our case study of Section 1.1, you can see that we broke out
of the pattern of Figure 6 somewhat. Next steps in Figure 1 are
not purely in the visual domain: they are shown as both grounded
DSL statements (Suggested Transforms) and higher-level visual
previews. Users disambiguate by choosing among these grounded
transforms. Note that the experience of the DSL in Figure 1 is quite
different than the “cliff” we discussed in Section 2.1; thanks to
Predictive Interaction, it provides a smooth learning curve for the
DSL. Novice users can click on the suggested transforms in turn,
and choose the one whose previewed outputs match their desires. As
users gain experience, they can pay more attention to the DSL text
and how it associates with the output they see previewed. Expert
users understand the details of the suggested transforms, and can
optionally edit them — with the added benefit of instantaneously
visualizing the effects of their edits via previews.

Other variations on the model of Figure 6 are natural. For exam-
ple, we need not insist on a purely visual domain of interaction; we
could also allow speech, natural language, and other interface modal-
ities. We may also want to “skip steps”: for example, Proactive
Wrangling [10] is an approach that goes straight from visualization
to suggested next steps without waiting for any interaction.

Independent of specific variations, the core inner guide/decide

loop of Predictive Interaction is the sequence of steps shown in
Figure 6: Visualize, Interact, Predict, Disambiguate, and Compile.
In practice, most transformation tasks require multiple iterations of
this loop in order to get data into usable shape. As a result, it is
helpful for users to be able to fluidly work through the loop with a
relatively consistent user interaction.

In Section 1.1 we saw an example of the guide/decide loop pro-
viding lightweight and intuitive specification of REs. Obviously,
data transformation in the large requires a richer language than
REs. Trifacta is grounded in a DSL we designed called Wrangle,
which builds on a lineage of previous languages in the research
literature [16, 18, 26]. Wrangle includes text selection patterns (in-
cluding REs) as a sub-language, in support of a wide range of tasks:
the single-source transformations supported by Potter’s Wheel and
Data Wrangler, structural transformations for nested data like JSON
and XML, multi-source transformations like joins and unions, data-
to-metadata transformations like Pivot/Unpivot, and various data
cleaning operations for numerical and textual data. Although we
glossed over it in our earlier discussion, Figure 1 shows the Predic-
tive Interaction approach generating complete Wrangle statements
(and outputs): specifically, a variety of “Extract” statements with
embedded text selection patterns.

3.1 Benefits
Predictive Interaction offers many of the benefits of other visual

interaction metaphors, but the addition of predictive methods in the
interface adds significant advantages.

By freeing the visual language from providing full coverage of the
textual language, Predictive Interaction allows the interface designer
to keep the affordances for specification lean. This enables designs
where data visualizations can remain a consistent, predominant
interface during all phases of the guide/decide loop — including
interaction, previews of possible next steps, and disambiguation. It
fits naturally with interfaces for directly manipulating data tables
and visualizations, rather than more traditional interfaces that focus
on schemas, workflows, menus and textual languages. The resulting
experience promotes a fluid, agile working style in a unified visual
environment.

In our experiences with novice users, we have seen both anec-
dotally and empirically that the tolerance of ambiguity inherent
in Predictive Interaction helps users overcome conceptual hurdles:
suggestions help them see what is possible [10]. We have also seen
Predictive Interaction help experienced users save significant time:
in most cases they can simply gesture a general intent, and have
the computer synthesize detailed specifications. In controlled user
studies [16], we found that even for very small data amenable to
manual manipulation, a Predictive Interaction approach led to sig-
nificant performance benefits (at least 2x faster on median) over
traditional approaches. In our experience in the field, experienced
data transformation users have attested to over 10x improvements
in task completion upon adoption of a Predictive Interaction solu-
tion [30]. This directly addresses a common complaint regarding
the drudgery involved in data transformation, by shifting the burden
of specification from users to algorithms.

Perhaps most interestingly, users have commented that Predictive
Interaction enables much more free-wheeling exploration: starting
by highlighting interesting features of the data, they can explore the
effects of a variety of transformations that relate to those features.

4. DESIGN CONSIDERATIONS
We believe that Predictive Interaction models can be used to

alleviate a wide variety of data-centric problems where users face
technical bottlenecks of programming or scripting. Addressing new



problems will require different design choices than the the ones we
have made to date for data transformation. Predictive Interaction
provides a framework for making these design choices.

The basic prescription for designing a new Predictive Interaction
system is to co-evolve all three aspects of the technology. First,
choose or design a target DSL for the domain, which is amenable
to agile, stepwise specification. Second, choose an intuitive lifted
domain for the data, with affordances for input to guide predictions,
and to decide on next steps. Third, design and train prediction
models that take inputs from the data and interface and produce
a distribution of candidate steps in the DSL. In our experience
designing systems like Data Wrangler and Trifacta, the co-design
of these three aspects is best served by an iterative design style, as
changes in one aspect often require changes in another.

At a finer level of detail, domain-appropriate Predictive Interac-
tion systems raise a number of design challenges across human-
computer interaction, database languages and systems, and machine
learning methods. We outline a number of those challenges here.

4.1 Data: Grounding to a DSL
A well-designed DSL is key to reining in the complexity of the

guide/decide process for both people and computation.
Domain-specific languages aid critically in the tractability of

our prediction problems. In the context of Predictive Interaction,
keeping the DSL small helps considerably with the development
of inference algorithms for predicting user desires. A small lan-
guage makes for a smaller search space in which to do inference;
well-orthogonalized language constructs make it easier to train a
model that effectively separates the constructs. And the simpler
the language, the easier it is to compile to scalable data processing
engines — preferably multiple such engines for portability.

From a human perspective, a good DSL helps with the conceptual
challenge of disambiguation. In his introduction to DSLs, Hudak
notes:

A user immersed in a domain already knows the domain
semantics. All the DSL designer needs to do is provide
a notation to express that semantics [13].

Hudak’s paper is focused on traditional textual specification with a
DSL, but his comments apply even more to the Predictive Interaction
context. If the DSL is a good match to the domain (data transforma-
tion, in our case), then the user gets the same benefits as the inference
algorithm: a relatively small number of visual outcomes are pos-
sible, so they are easy to disambiguate. Clean interface design for
disambiguation can often follow relatively naturally. For example,
candidate statements in a small, well-orthogonalized language are
easy to disambiguate in interfaces like N-best lists — whether they
are represented literally (as in the Suggested Transforms of Figure 1),
or via icons. Similarly, if the space of possible outcomes is small
and well differentiated, then previews of those outcomes should be
easy to distinguish visually — via exploration (as in Figure 1), or
via small-multiple visualizations of many alternative outcomes.

4.2 People: Visualization and Interaction
The user interface for any Predictive Interaction system has to inte-

grate design aspects along two dimensions. Functionally, it needs to
enable users to perform both the guide and decide tasks — the former
being an ambiguous specification, and the latter a unique specifica-
tion. Visually, it needs to provide users with both data visualization
and data manipulation features. Customizing for the cross-product
of these dimensions (guide/decide × visualization/manipulation)
leads to as many as four different interaction designs, one for each
pairing. However, we might prefer to drive to a single user experi-
ence that supports agile movement through the guide/decide loop,

with a unified “direct manipulation” experience for visualizing and
manipulating data. Prior work has tended toward multi-modal inter-
faces targeting a mixture of these four design points. These design
tradeoffs deserve further study.

As the first step in interaction, the input affordances for the guide
phase deserve special attention — particularly because input ambi-
guity is a difficult design goal to scope. From a usability perspective,
there are advantages to keeping the guidance interface minimal.
Still, the user needs to feel that they can control the software in an
intuitive and repeatable fashion. This problem is compounded by the
potential feature space being quite large. To form sentences in our
DSL, we might want users to highlight data features (the objects of
sentences) or behaviors (the verbs), or both. Data highlighting can
range from the small (e.g., example values or substrings) to the large
(e.g., visualizations or textual representations of statistical patterns),
potentially across both data and metadata. Depending on the user
persona we design for, we need to balance a variety of concerns
including what helps the user (ease of learning and memorization,
efficiency of operation) and what’s good for the predictive algorithm
(ease of prediction, clear diversity of options for disambiguation.)

The visual language of the decide phase also merits discussion.
There are many ways to visually surface a single suggested trans-
form: by showing the transform itself (e.g., DSL syntax or iconogra-
phy), by visualizing the data after the transform, or even visualizing
the change to the data performed by the transform (e.g., visual diffs
or animation). This design space becomes more complex when
considering multiple suggested transforms that the user needs to dis-
ambiguate. In general, the goal is to help the user make an informed
choice among the transforms, and adapt them as needed.

In our work we have often chosen to show both transforms and
data for aiding in disambiguation. This coupling makes for a more
information-rich user experience, at the expense of apparent com-
plexity. We have considered hiding the textual transform specifica-
tions beneath an expert mode switch, but even moderately sophisti-
cated users appreciate understanding some details of the transforms,
and as noted in Section 3 there are learning-curve benefits for novice
users in gradually observing transforms and their associations with
outputs. In Section 1.1 we illustrated our work on the readability
of Trifacta’s syntax for text patterns, which was designed to break
up complex patterns into composable clauses (on, before, after,
etc.) When choosing to show transforms in any syntax — and es-
pecially when choosing to allow transform editing — it is useful to
refer to the Cognitive Dimensions of Notations [9] as a broad-brush
framework to both inform and evaluate alternative designs.

4.3 Computation: Predictive Methods
Domingos describes Machine Learning with the equation “Learn-

ing = Representation + Evaluation + Optimization” [6]. The learning
problems in Predictive Interaction are rendered unique largely by
their representation space: sentences in a DSL. As mentioned above,
a critical component to the tractability of our learning task is the
simplicity of this DSL.

As Domingos points out in the same paper, “feature engineering is
the key” to practical Machine Learning [6]. In Predictive Interaction
systems, we can acquire features immediately from user interac-
tions over the data they are transforming. We can also leverage
features from the past: previous data and user interactions, previous
user selections for next steps, previous transformation scripts, etc.
Finally, we can impact the features we will receive in the future
by controlling the user interface: in an Active Learning style [27],
we can drive the user to highlight features that will make learning
more efficient. The design of the user interface can have significant
impact on what features we gather, and in what order.



Evaluation is a particularly challenging problem in Predictive
Interaction. Traditional optimization goals like error rates or pre-
cision/recall can be hard to pin down in this context. Given that
many tasks span multiple statements in the DSL, it is not clear on a
statement-by-statement basis whether the prediction model is guid-
ing the user in the right direction. And in some cases the user’s
goals may be ambiguous to begin with. Other metrics like diversity
of results are an important ingredient in the evaluation.

One design advantage of Predictive Interaction over certain other
prediction problems (e.g., ranking results for web search queries) is
the presence of the DSL as a fallback: in the worst case, advanced
users can override bad predictions by typing in their intended spec-
ifications in detail. This fallback mechanism can be very helpful
in allowing developers of Predictive Interaction systems work in a
more agile fashion: while tuning their predictive models, they can
continue refining the DSL and user experience. Co-design across
components moves more quickly when the components can evolve
side-by-side. As mentioned in Section 2.1, depending upon DSL
specification too often in practice can lead to hazardous “cliffs” in
the UI experience. This is why it is important to have an agile pro-
cess and methods for learning from user experimentation. Horvitz’s
principles for mixed-initiative interfaces [12] are a useful source of
design guidance here.

5. RELATED WORK
There is a long tradition of research and development in data

transformation, visualization and interactive querying—some refer-
enced above, most beyond the scope of this paper. Here we highlight
some specific prior work that is related to Predictive Interaction.

Tableau’s lifted interaction based on VizQL was one inspira-
tion for this work. The current Tableau product offers a variety of
non-predictive techniques to ease the difficulty of specifying visu-
alizations. For example, it will automatically choose mark types
and scale transforms based on features of data. These decisions are
applied automatically based on deterministic rules, so there is no
ambiguous visual “guide” step in Tableau’s interface akin to that
of Predictive Interaction, nor any probabilistic prediction to disam-
biguate. Tableau’s “Show Me” [20] feature provides something
of a visual “decide” interface, using its rules to generate multiple
alternative visualizations for a set of dimensions and measures.

There is a wide variety of work on “wrappers” and “mediators”
that addresses a specific form of data transformation focused on
mappings, often from irregular tree-shaped web sources to struc-
tured databases. The text by Doan, Halevy and Ives covers a variety
of this work [4], including sections on interactive and learning meth-
ods. This is useful background material for considering Predictive
Interaction designs. This body of work is rather light in its treatment
of interaction design; the focus is largely on the design of infer-
ence algorithms for identifying extraction rules from tree-structured
sources like the DOM. One example that discusses a specific inter-
action proposal is the CLIDE system, which provides an augmented
version of a Microsoft Access-like schema-level UI for specifying
wrappers that guides users through the wrapping process [24]. A
representative example of a more predictive, direct-manipulation
approach is the work of Irmak and Suel [14].

Abouzied, et al. describe a visual, learning-based trial-and-error
interface called DataPlay for specifying and “tweaking” complex
quantified queries in SQL [1]. The interface provides the user with
both schematic and direct manipulation interfaces. The schematic
specification language in this work is non-ambiguous, but the idea
is that user specifications are often effectively ambiguous by be-
ing incorrect guesses. As a result, DataPlay allows the user to
“tweak” their specification via iteratively scoring candidate answers

and “non-answers”; a learning algorithm drives this feedback in
concert with the user [2]. This model of “ambiguously incorrect
specifications” is an interesting twist on the idea of approach.

The lifting in Predictive Interaction need not be to a visual do-
main; any high-level interaction model with ambiguity fits. Natural
language interfaces are one potential alternative [25], perhaps cou-
pled with recent work on translating queries and data to natural
language at the output [17]. Gesture-based interfaces are another
recently-proposed interface modality for query specification where
Predictive Interaction could potentially be relevant when coupled
with visualization [21].

Programming By Example (PBE) is a traditional paradigm for
simplifying programming tasks by having users specify input/output
pairs. Unlike Predictive Interaction, it does not include any aspect of
lifting into another domain like visualization. A vein of recent work
has applied PBE to data transformation tasks; the most relevant
to this paper is the recent STEPS work of Yessenov et al. [31]. In
addition to traditional PBE, STEPS presents an interface to highlight
features of the textual inputs and outputs as “clues”, and choose
among potential statements in a DSL.

6. CONCLUSION
As Moore’s Law progresses, human bottlenecks become the over-

arching cost for the vast majority of organizations working with data.
The technical community has an imperative to tackle problems of hu-
man efficiency: productivity for expert data professionals, and acces-
sibility of data technology for a broader population. Breakthroughs
will not come solely from new UIs; the Database community has
much to offer and to learn from both HCI and AI on these fronts. A
persistent challenge in this context is that so much work with data is
bespoke: customized to specific data sets and a specific target usage.
We see Predictive Interaction as a promising framework for making
custom solutions easier to specify, assess, and productionalize in
scalable infrastructure. Beyond data transformation, we also see
potential for Predictive Interaction in statistical analysis, large-scale
graph processing, data modeling and visualization, and processing
of unstructured data types such as free text, photos and videos.
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