
Applying WebTables in Practice

Sreeram Balakrishnan, Alon Halevy, Boulos Harb, Hongrae Lee,
Jayant Madhavan, Afshin Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, Cong Yu

Google Research
{sreevb,halevy,harb,hrlee,jayant,rostami,whshen,wilder,wufei,congyu}@google.com

ABSTRACT
We started investigating the collection of HTML tables on
the Web and developed the WebTables system a few years
ago [4]. Since then, our work has been motivated by apply-
ing WebTables in a broad set of applications at Google,
resulting in several product launches. In this paper, we de-
scribe the challenges faced, lessons learned, and new insights
that we gained from our efforts.

The main challenges we faced in our efforts were (1) iden-
tifying tables that are likely to contain high-quality data (as
opposed to tables used for navigation, layout, or formatting),
and (2) recovering the semantics of these tables or signals
that hint at their semantics. The result is a semantically en-
riched table corpus that we used to develop several services.
First, we created a search engine for structured data whose
index includes over a hundred million HTML tables. Sec-
ond, we enabled users of Google Docs (through its Research
Panel) to find relevant data tables and to insert such data
into their documents as needed. Most recently, we brought
WebTables to a much broader audience by using the ta-
ble corpus to provide richer tabular snippets for fact-seeking
web search queries on Google.com.

1. INTRODUCTION
A few years ago we started investigating the collection of

HTML tables on the Web [4], a vast resource that also in-
spired several other research efforts, e.g., [10, 3, 13]. Our
goal was twofold. First, we wanted to characterize the size
and quality of this untapped source of structured data. Sec-
ond, we wanted to create services that would expose this
content to Google users.

In the past few years, we have been tackling the main
challenges concerning this collection: (1) extracting a high-
quality corpus of HTML data and (2) recovering signals that
provide semantic clues about the content of these tables.
Based on our high-quality corpus, we demonstrated that
structured data from WebTables is relevant to a broad set
of services. First, we created a search engine for structured

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA..

data whose index includes over a hundred million HTML
tables and several million tables made public by the users of
Google Fusion Tables, a tool for easily managing and visu-
alizing data [6]. Second, we enabled users of Google Docs to
tap into the table collection and insert data into their docu-
ments as needed. Most recently, we used the table corpus to
present tabular data in the Google.com search result page,
thereby reaching a much wider audience.

This paper describes the challenges we faced to create the
table corpus and use it in the aforementioned applications.
While some of the ideas underlying this work appeared in
our previous research papers [4, 12], here we focus on the
developments that were made and insights that were gained
by applying these ideas in our products.

Section 2 describes how we built the table corpus. Sec-
tion 3 describes how we enriched the corpus with semantics.
Section 4 describes each of the applications and the addi-
tional innovations needed to launch them.

2. EXTRACTING HIGH QUALITY TABLES
The Web contains tens of billions of HTML tables, even

when we consider only pages in English. However, over 99%
of the tables do not contain data, but rather use the HTML
table tag as a formatting mechanism for presentation (see
Figure 1(b)). A more subtle problem we discovered while
looking at many tables is that there is no clear definition of
what makes a good table and the classification can be subjec-
tive. It was not uncommon to have disagreements among the
evaluators of table quality, even when these evaluators had
been studying HTML tables for quite a while. For example,
while most people will agree that the table in Figure 1(a)
provides valuable information, tables in Figure 2 may have
more borderline importance. Such tables tend to be useful
for an extremely small group of people, e.g., Figures 2(a) or
(b), or have useful information in navigational links outside
the table itself, e.g., Figure 2(c).

These characteristics of Web tables created unique chal-
lenges in identifying the (relatively) tiny subset (albeit huge
in absolute numbers) of good tables among the sea of bad ta-
bles. The first concrete technical challenge is that there is an
extreme imbalance of bad to good table examples, thereby
making it difficult to train a machine learning classifier to
recognize good tables. A random sample of tables will in-
variably consist of mostly negative examples, and hence any
technique that classifies every table as bad would have per-
formed quite well. The second challenge was that goodness
of a table could be highly dependent on the application we
were building.



(a) The table shows critical temperature and pressure for various
substances as a tabular data.

(b) The table marked by dotted line includes contents, but its
primary goal is to control the layout.

Figure 1: Example data and formatting tables

(a) Personal note (b) Game information with images (c) Download links

Figure 2: Example tables with subjective value

To address these challenges, we followed a 2-step approach:

1. Simple rules: We manually gathered the most frequent
bad table patterns and designed simple heuristic rules that
filtered tables that were most certainly bad. Examples of
those heuristic patterns include tiny tables (less than 3 rows
and 2 columns), calendar tables, password tables, table-of-
content tables. These heuristics eliminate about 90% of bad
tables. After this step, bad tables still dominate good ones
by factor of 9 to 1, which is much better than the 99 to 1
with which we started.

2. Machine learning classifier: At this point, the de-
cision on which tables are considered good is dependent on
the application for which we intend to use the table cor-
pus. Here is a real example of such a choice. Originally, we
considered tables to be good if they are similar in spirit to
relational tables: they should contain multiple rows, where
each row corresponds to data about a particular entity in
the world (e.g., a location or a movie), and the columns of
the table describe attributes of the row’s entity. When we
started developing tabular snippets for google.com search
(see Section 4.3), however, we realized that a large collec-
tion of vertical tables turned out to be useful as well. Vertical
tables (see Figure 3) typically have only two columns and a
small number of rows. The vertical table lists the properties
of a single entity, and the values in the first column are the
names of the properties.

There are three main aspects in the development of our
machine learning classifiers: feature design, training exam-
ple generation, and model selection. The production fea-
tures we eventually adopted encode both syntactic and se-

mantic information. Semantic features include such signals
as to whether the table content falls into a boilerplate sec-
tion of the page as well as labeling the topic of each column
in the table; Section 3 describes how we generated some of
these semantic features. The structural features include the
number of rows and columns, mean/variance of the number
of characters per cell, the fraction of non-empty cells, the
fraction of cells that are generated using <th> tags and the
number of distinct tokens in a table.

In order to generate training examples we used two sources
of data: a uniform sampling of tables taken after the heuris-
tic filter stage (which includes only a small fraction of good
tables, i.e., about 10%) and an additional uniform sample
taken from tables that were marked good by a simplistic
decision-tree classifier developed earlier [4], which makes use
of the above features. Since the simplistic classifier is only
used as a mechanism to collect training examples for a more
advanced classifier, not as a production model to be deployed
for real use, we did not rigorously evaluate its performance.
It only has the property that a significant fraction (%50+)
of the tables it labels as good are indeed good. Thus, once
the two sources are combined, the final training set contains
a larger proportion of good tables (about 35%), which we
found useful for training a higher recall classifier.

After the training examples are generated, we train two
high-accuracy classification models, one which classifies a ta-
ble as “good horizontal” (e.g., Figure 1(a)) or not, and a sec-
ond which classifies a table as “good vertical” (e.g., Figure 3)
or not. Both models are trained using the multi-kernel SVM
described in [5], which uses an alignment based metric to



Figure 3: An example vertical table

combine three Gaussian kernels with varying bandwidth pa-
rameters. We note the use of a non-linear model is important
as linear models simply did not perform well on this task. On
a benchmark test set containing 26% horizontal tables the
horizontal classifier achieves a precision/recall of 83%/91%
and overall accuracy of 93%, while for a benchmark test set
containing 13% vertical tables the vertical classifier achieves
a precision/recall of 89%/85% and overall accuracy of 96%.

The efforts described above focus on HTML tables. We
note that there are a significant number of tabular data sets
that are not in HTML tables, such as HTML lists and re-
peated patterns on the Web. We developed techniques for
extracting repeated patterns with the goal of including them
in our corpus. However, such data are often noisier than
tables and pose extra challenges in their extraction and an-
notation. Using such data in production requires further
refinement to meet the quality bar.

In addition to classifying tables, a row-level classifier was
used to distinguish between header and non-header rows.
The features for the row-level classifier are similar to those
for the table-level classifiers. They are, however, computed
based on the content of the row. There are also additional
features that are based on (dis)similarity to neighboring
rows and absolute information about the row, (e.g., whether
this is the first row in the table). A standard SVM model
with an RBF kernel is trained base on those features. On
a benchmark dataset containing 4% header rows the model
achieves a precision/recall of 96.6%/85.1%, overall row-level
accuracy of 99.5%.

In summary, we constructed a high quality table corpus
of more than a hundred million tables beginning with tens
of billions HTML tables we originally found. In the next
section, we describe how we annotate these tables with some
of their semantics.

3. EXTRACTING TABLE SEMANTICS
In order to serve tables to users, we need to be able to

match tables to relevant queries. However, matching ta-
bles to queries is challenging because most of the semantics
of the table are implicit or embedded in the surrounding

text. Tables on the Web are typically designed so casual
readers (as opposed to machines) can understand their con-
tent. Hence, even when tables do contain header rows, the
attribute names are often obscure, useless, or require un-
derstanding the context of the page. We developed several
techniques to partially recover table semantics by enriching
the table with additional annotations.

Detecting subject columns: We observed that over 75%
of the tables in our corpus contain a column that lists the
entities the table is about, while the other columns describe
properties of these entities. For example, in Figure 1(a), the
table is about substances and properties are critical tem-
perature and critical pressure. Hence, we developed an al-
gorithm for detecting that column, which we refer to as the
subject column. Unlike primary keys in relational databases,
the subject column in a Web table need not be a key of the
table and may contain duplicate values. We note that it
is possible that the subject of the table is represented by
more than one column, but we currently do not attempt to
identify these cases which are also relatively rare in practice.

We model the subject detection as a binary classification
problem and trained an SVM classifier using one thousand
manually labeled tables. This classifier achieved 94% ac-
curacy in our experiments. After identifying the subject
column, we treat the set of header rows in the table as an
ad-hoc schema.

Class labels for columns: Our next annotation is to at-
tach classes to columns of tables. For example, a column
can contain entities such as countries, presidents, or values
like phone numbers. Identifying the class can help eliminate
spurious table matches and aid subsequent analysis steps on
the table.

Our method is based on the following intuition: if a sub-
stantial number of cells in a column A belong to a class C,
we attach C as a class label to A. However, the challenge
is that for many cell values we may not know which classes
they belong to, and they may belong to multiple classes.

We used the Google Knowledge Graph (KG) [1] (whose
schema, and hence set of classes is identical to that of Free-
base) to map cell values to entities, and then to the classes
in the KG to which they belong. Specifically, we derived
two databases from KG. The first is of the form (value, en-
tity, score) which maps a string value to a KG entity with
confidence score. The same string value usually maps to
multiple entities due to ambiguity. The second is an isA
database of the form (entity, class) that maps KG entities
to their classes. For each cell value vj in column A, we first
look it up in the first database to get all possible KG entities
paired with confidence scores, i.e., (vj , ei, si), where ei is an
entity ID in the KG and si is the confidence that vj maps
to ei. Then we replace each candidate entity with each of
its classes by consulting the isA database. The results are
tuples of the form (vj , ci, si), where ci is a class name.

Next, we aggregate all such cell-level candidate classes to
collectively determine the class labels for the whole column.
When we originally developed this general method [12] we
experimented with several aggregation methods because the
isA database we were using was extracted from the Web
using Hearst patterns [9], and hence noisy. Classes in KG
have narrower coverage but are manually curated and of high
quality. Thus, by switching over to the KG classes, we were
able to apply a simple and more computationally efficient



majority voting algorithm, i.e., any class C that applied to
more than 50% of the cells in a column was associated with
the column.

After getting class labels for columns, we use them to re-
fine the linking from cell values to KG entities. For each
cell we filter those candidate entities which does not belong
to any of those column-level classes. If there are still multi-
ple candidate entities left, we pick the one with the highest
mapping score. An important observation of our work is
that considering the structure of the table was extremely
important. To prove the point, we also tried to treat table
content as plain text and apply entity linking techniques,
e.g., [8]. However the performance was not as good mainly
because they do not utilize the table structure information
as effectively. For columns which hold location data, we use
Google Maps API [2] to determine the latitude and longi-
tude coordinates of each cell.

An interesting observation was that being able to assign a
label to a column for the subject column was a very effective
signal for table quality. When semantics can be discovered
for a table, it is more likely that the table contains high-
quality data. Hence, the percentage of cells in a column
that were mapped to the same KG class was one of the
important semantic features for our classifier.

Detecting binary relationships between columns: The
semantic class of the subject column tells us quite a bit about
the contents of the table and sometimes suffices for match-
ing tables to queries. However, it is also important to know
what properties of the subject-column entities are described
in the table, i.e., what are the binary relationships between
the subject column and each of the other columns in the
table.

These relationships are typically expressed in text sur-
rounding the tables. However, the text can be quite long
and detecting the specific phrases that refer to these rela-
tionships can be tricky. To that end, we have recently devel-
oped a dictionary of attributes that exist in search queries
and Web text [7]. For example, for the class Countries we
mine thousands of attributes that may be associated with
countries, ranging from common ones such as gdp and cap-
ital to longer-tail ones, such as coffee production and
corruption index. We then use this collection to find
prominent words in the surrounding text that could refer
to the attributes of the subject column. These annotations
are already in our corpus but are not applied to production
applications yet due to their recent addition. Our prelim-
inary analysis shows that they enable us to recover much
more of the table semantics. We expect the new addition to
have production impact in the near future.

Finally, we extract captions, and the text surrounding a
table. Often times, captions and text surrounding the table
describe some of the semantics of the table such as the units
used for numerical columns, relationships between columns
as described above, or some constraint that applies to the
entities in the table (e.g., that the table has data collected in
2013, or contains only countries in the southern hemisphere).
To extract surrounding text we obtain a window of text
before and after the table. To extract the caption of the
table, we analyze the DOM structure of the page to identify
prominent fragments (e.g., header text) and use syntactic
signals such as the distance from the table.

Figure 4: Current table search results page

4. APPLICATIONS OF WEB TABLES
Now that we have a high-quality corpus, we set out to

incorporate it into Google services and we were pleasantly
surprised at the breadth of applications for WebTables at
Google. We describe these services in the order they were
created.

4.1 Table Search
Our first major application was the one we anticipated at

the start of the project: we want to make all the high quality
tables available to the users through a data-specific search
engine. That led us to Google Tables1, a highly customized
table search engine that is designed to provide our users the
ability to quickly find tabular data on the Web relevant to
their information needs.

The system extensively leverages Google’s scalable search
infrastructure, including compartmentalized indexing and
scoring infrastructure, which allows for easy injection of data
and scoring signals into the serving system. The infrastruc-
ture also provides scalable keyword based retrieval and pro-
cessing infrastructure that allows a large number of docu-
ments to be fetched based on the query keywords and scored.
The key contributions of this system, however, lie in two ma-
jor aspects. The first is the table-specific ranking signal that
we designed and incorporated into the serving system that
ensures relevant table results are returned to users. The sec-
ond is the auxiliary data and functionalities we added to the
search engine that provide an enhanced experience.

The ranking signals come from three main aspects. The
page-level signals include the usual suspects that are bor-
rowed from Web document ranking and are not specific to
tables. Those signals include pagerank, link analysis, and
we simply apply the existing (internal) techniques from the
Web document ranking.

The second major set of signals come from the structure
of the tables. Starting from the corpus of over 100M high-
quality tables, we create an index that identifies each token
that appears in a table. This indexing structure pinpoints
the tables and cells in which the token appears in, and more
importantly, whether the token appears in a header row or a
subject column (or both) and whether the token appears in
some relevant context of the table (such as table captions or
titles). This indexing structure not only allows us to retrieve
the set of tables containing tokens that match the user’s
keyword query, but also allows us to rerank the resulting

1https://research.google.com/tables



tables based on where the query hits appear in the table.
During scoring time, we consider hits on the schema, hits
on table cells that are in columns deemed important, and
the context surrounding the table. The contributions from
different hits are combined via a linear weighted sum model,
where the weights are learned via simple linear regression.

The third major set of signals come from the semantic
annotations (Section 3). In addition to the original tokens
from the table content, we further index tokens that come
from annotations on the content. To leverage those anno-
tation tokens, we also perform semantic annotations on the
queries to supplement raw query tokens with correspond-
ing rewritten annotation query tokens. Similarly to IR-style
text normalization, both table content token and query to-
ken are normalized via common annotations and matched
together and those matches provide this third major set of
ranking signals.

Presenting table search results turns out to be more chal-
lenging than we expected. Snippets, i.e., the little piece of
text comes after each result title/URL, are integral parts of
modern search results. One of the major differentiators of
our table search engine is that it provide auxiliary informa-
tion that significantly enhances the user experience beyond
simply finding relevant table results. These auxiliary infor-
mation are reflected in two ways: table snippet and table
import. Once a table is retrieved, instead of simply showing
the first few rows or columns of the table, we use query hits
on the table to generate a preview of the table that is most
relevant to the query, by projecting and selecting the rows
and columns where the hits occur. Each hit is ranked based
on how much it matters to the table snippet. The signals
we use include the number of cells the same hit appears in,
whether the hit is in a header row or subject column, and
whether the hit belongs to a group of hits in the same cell,
row or column.

Table snippets (Figure 4) gives our users a nice preview
over the table. Just previewing the data, however, may not
be the end goal of users; they often wish to import the data
and perform analytical tasks. Thus, table search aims to
serve as a launching pad for completing such tasks using the
found data. As a first step in that direction, we added sup-
port to import tables found in table search into Google Fu-
sion Tables or Google Sheets. Once imported, the user can
query and visualize the data, combine it with other sources
and export it to other tools for further manipulation.

Today, Google Tables is used by hundreds of thousands of
users and table import is a very popular feature.

4.2 Docs and Presentation
Google Research Tool, as part of Google Docs and Google

Presentation, is a tool that provides users a convenient way
to search for information while they are working on their
documents. For example, users can insert citations, links,
and images into the document directly from the tool. Search-
ing for tabular data turned out to be a natural new feature
for Research Tool and was requested by our users.

We integrated Google Tables into the Research Tool by
incorporating table search as part of the Everything Search
tab as well as the Table Search tab, collectively called Ta-
bles in Research Tool. For the Everything Search tab, which
presents results returned by regular Google Web search, we
inject a table snippet into a Web result’s summary (i.e.,
snippet) if the Web result contains a high quality table that

Figure 5: Research tool in Google Docs

would have been returned by Google Tables for the same
query. The Table Search tab, on the other hand, is essen-
tially another interface for Google Tables. Furthermore, the
user can then view the entire content of the table by clicking
on the table snippet and easily drag it into the document
being edited. The same import functionality is similarly
available in Research Tool as well if the user would like to
add the table to Google Fusion Tables or Spreadsheets.

Compared to users of Google Tables, who intentionally
came to the table search engine to find relevant data, typi-
cal users of Research Tool are likely to be less familiar with
tabular data and may not want to scroll over many results
pages to find the data they want. Thus, we are more selec-
tive in the search result and apply a higher bar for search
quality. We considered only a subset of our table corpus,
which is roughly 10% of the table search corpus. We se-
lected those higher-quality tables by applying a few simple
rules, such as a much higher goodness or verticalness scores,
presence of both header rows and subject columns, and, for
non-vertical data tables, presence of numerical columns or
columns with sufficient semantic annotations.

The other challenge for Tables in Research Tool is to se-
lect the best sub-table to return to the user, since the space
in the Research Tool is much more limited. We used the
same method described in Section 4.1, but adopted a higher
bar for hit selection and augmented the table snippet by
also highlighting the cell that is relevant to the user’s query
when appropriate. For example, for the query “india mus-
lim population”, we highlight the cell, which contains the
requested information, at the intersection of the “India” row
and “Muslim” column (Figure 5).

Tables in Research Tool is very well received by the com-
munity at its launch2 nearly a year ago. Today, it is one of
the most commonly used features in the Research Tool of
Google Docs and Google Spreadsheet.

4.3 Tabular Results in Web Search
To bring a much larger benefit from Web tables, we em-

barked on direct integration of WebTables into Google.com
search results. Our key goal was to highlight that certain
Web results include tabular data and help guide our users to
those pages. We mainly focus on fact seeking queries, i.e.,
entity-property queries, such as “literacy rate of Malaysia”,
“american airlines baggage fees”, or “critical temperature
of krypton”. The queries impacted typically belong to the
longer-tail content that are not suitable for curation and

2https://plus.google.com/+GoogleDrive/posts/e7qsYrUC9ur



may not be stored in the KG.
The integration with Google search raises multiple chal-

lenges. First, we need to identify queries that are fact seek-
ing. Second, when a query is fact seeking, we need to find
pages that contain relevant tables and when there are multi-
ple such tables, choose which one to highlight in the result.
Finally, we need to design a UI that is most effective in the
limited space.

Given a web query, when appropriate, we create a tabular
snippet on top of the search results with selected rows and
columns from a Web table. This enables people to easily
find pages that contain tables that are very likely to answer
their question. Currently, we examine the top few results in
the search ranking and decide whether any of them contain a
Web table that is relevant to the query. Note that restricting
to the top results already imposes a very high quality bar on
the possible tables we consider and also about the relevance
of the table to the query.

To decide whether a table is relevant, we perform a struc-
tured matching between the query and tables where the en-
tity in the query identifies relevant rows in the table and
the property in the query constraints the relevant columns.
As an example, given a query “critical temperature of kryp-
ton” and the Web table in Figure 1(a), we can potentially
match “krypton” to a cell in the subject column and “crit-
ical temperature” to the Critical temperature column,
and thus identify the table cells that are most relevant to the
query. We can then present, to the user, a subset of rows and
columns that include those most relevant cells. Performing
such matching with high degree of accuracy requires good
understanding of both the query and table. As mentioned
in Section 3, Web tables schema information is inherently
vague and we therefore consider various sources of informa-
tion including page context (title, caption) to understand
the table as well as the table itself.

5. RELATED WORK
There has been a rich body of work on extracting HTML

tables from the Web, annotating their schema, and searching
Web tables e.g., [4, 12, 3, 13, 10]. Pimplikar and Sarawagi
proposed a structured search engine based on Web tables
which returns a multi-column table in response to a query
consisting of keywords describing each of its columns [10].
They defined a query segmentation model for matching key-
words to table columns, and a mechanism of exploiting con-
tent overlap across table columns. Yakout et al. presented
three core operations, namely entity augmentation by at-
tribute name, entity augmentation by example and attribute
discovery, that are useful for information gathering tasks
on a Web table corpus [13]. To achieve higher precision
and coverage, they considered indirectly matching tables as
well. Adelfio and Samet improved the schema extraction
task and proposed a classification technique based on con-
ditional random fields in combination with a novel feature
encoding method called logarithmic binning [3].

Several recent studies aim to respond to user queries with
Web tables or a knowledge base system. Sarawagi and Chakrabarti
developed techniques to present a ranked list of quantity dis-
tributions for queries whose target is a quantity with natural
variation [11]. Yang et al. studied how to find highly rel-
evant patterns in a knowledge base for user-given keyword
queries to compose table answers [14].

6. CONCLUSIONS
Since we started building the WebTables repository, we

have made significant efforts to apply WebTables in prac-
tice. Table data now appears in three different products and
more is coming soon. In this paper, we discussed challenges
faced, lessons learned, and new insights that we gained.

While these applications are a great success, they also
highlighted major areas for developments for the future.
First, we aim to build an even larger corpus based on other
structured data and implicitly structured data. Second, we
need better understanding of table semantics and query se-
mantics to improve coverage.

7. REFERENCES
[1] Google Knowledge Graph. http://www.google.com/

insidesearch/features/search/knowledge.html.

[2] Google Maps API.
https://developers.google.com/maps/.

[3] M. D. Adelfio and H. Samet. Schema extraction for
tabular data on the web. Proc. VLDB Endow.,
6(6):421–432, Apr. 2013.

[4] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu,
and Y. Zhang. WebTables: exploring the power of
tables on the web. VLDB, 2008.

[5] C. Cortes, M. Mohri, and A. Rostamizadeh.
Algorithms for learning kernels based on centered
alignment. The Journal of Machine Learning
Research, 13(1):795–828, 2012.

[6] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, and W. Shen. Google fusion
tables: data management, integration and
collaboration in the cloud. In SoCC, 2010.

[7] R. Gupta, A. Halevy, X. Wang, S. Whang, and F. Wu.
Biperpedia: An ontology for search applications.
VLDB, 2014.

[8] X. Han, L. Sun, and J. Zhao. Collective entity linking
in web text: a graph-based method. In SIGIR, pages
765–774, 2011.

[9] M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In COLIN, 1992.

[10] R. Pimplikar and S. Sarawagi. Answering table queries
on the web using column keywords. VLDB, 2012.

[11] S. Sarawagi and S. Chakrabarti. Open-domain
quantity queries on web tables: Annotation, response,
and consensus models. In SIGKDD, 2014.

[12] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. VLDB, 2011.

[13] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: entity augmentation and
attribute discovery by holistic matching with web
tables. In SIGMOD, 2012.

[14] M. Yang, B. Ding, S. Chaudhuri, and K. Chakrabarti.
Finding patterns in a knowledge base using keywords
to compose table answers. In VLDB, 2015.


