
DataXFormer: Leveraging the Web for Semantic
Transformations

Ziawasch Abedjan1, John Morcos2, Michael Gubanov1, Ihab F. Ilyas2,
Michael Stonebraker1, Paolo Papotti3, Mourad Ouzzani3

1 CSAIL MIT, 2 University of Waterloo, 3 Qatar Computing Research Institute
{abedjan,mgubanov,stonebraker}@csail.mit.edu, {ilyas,jmorcos}@uwaterloo.ca,

{ppapotti,mouzzani}@qf.org.qa

ABSTRACT
Data transformation is a crucial step in data integration.
While some transformations, such as liters to gallons, can
be easily performed by applying a formula or a program on
the input values, others, such as zip code to city, require
sifting through a repository containing explicit value map-
pings. There are already powerful systems that provide for-
mulae and algorithms for transformations. However, the au-
tomated identification of reference datasets to support value
mapping remains largely unresolved. The Web is home to
millions of tables with many containing explicit value map-
pings. This is in addition to value mappings hidden be-
hind Web forms. In this paper, we present DataXFormer, a
transformation engine that leverages Web tables and Web
forms to perform transformation tasks. In particular, we
describe an inductive, filter-refine approach for identifying
explicit transformations in a corpus of Web tables and an
approach to dynamically retrieve and wrap Web forms. Ex-
periments show that the combination of both resource types
covers more than 80% of transformation queries formulated
by real-world users.

1. INTRODUCTION
Organizations need to integrate various heterogeneous

data sources, where the same or highly related information
might be expressed in different ways. To allow for tasks such
as schema integration and record linkage, data transforma-
tion tools provide mappings across these pieces of informa-
tion. Examples include mapping stock symbols to company
names, changing date formats from MM-DD to DD-MM, or re-
placing cities by their countries. While some transforma-
tions, such as liters to gallons, can be performed by apply-
ing a formula or a program on the input values, others, such
as company name to stock symbol and event to date, require
finding the mappings between the input and output values
in a repository of reference data. We refer to the former type
of transformations as “syntactic transformations” and to the
latter as “semantic transformations”. Syntactic transforma-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

tions are supported by several tools, including the popular
MS Excel and the more recent Wrangler [17]. However, while
semantic transformations are prevalent in many real-world
integration tasks, as witnessed in workloads of the data cu-
ration tool Tamr [21] and other data vendor companies, to
the best of our knowledge, no automatic system or tool is
available to cover this class of transformations. Semantic
transformations cannot be computed by solely looking at
the input values, for example, by applying a formula or a
string operation. Rather, the required transformations are
often found in a mapping table that is either explicitly avail-
able to the application (e.g., as a dimension table in a data
warehouse) or is hidden behind a transformation service or
a Web form.

While collecting adequate reference data resources for a
specific transformation task is doable, the process requires
tedious crawling and curation exercises that cannot scale
to a large number of transformation tasks covering various
domains and topics. Indeed, the subject matter expert in
a company who is interested in converting its data often-
times does not have access to the reference data or does
not have the skills to code the transformation formula. Ad-
ditionally, when companies need to create dynamic views
to explore their data, they may need to dynamically dis-
cover the desired transformations that allows them to join
multiple sources on a unified attribute. Furthermore, many
transformations, such as currency exchange transformations
or genome to coordinates mappings change over time, mak-
ing previously acquired reference datasets obsolete. Finding
the right transformation resources and applying them to a
data transformation task is the main goal of this paper.

The Web contains many resources, such as tables, ser-
vices, and forms, which can be used to perform syntactic
and semantic transformations. On the one hand, Web ta-
bles are better suited for transforming categorical data [22],
such as product to brand or city to state. Categorical data
has finite domains and often has a small number of pos-
sible values, hence the required transformations are more
likely to be found in tables. On the other hand, Web forms
and Web services provide functions for numerical transfor-
mations, such as unit conversion and currency conversion,
and non-numerical transformations with very large or infi-
nite domain sizes, such as geo-coordinates to location name
and ip address to domain. For simplicity, we limit our defi-
nition of Web resources to two main types: Web tables, and
Web forms. We assume that a corpus of Web tables has been
collected and stored, and that we have a Web form crawling
system in place for accessing available Web forms.

We assume that a data steward has identified a transfor-
mation task, and specifies it to DataXFormer, as a variable-
size collection of examples, giving the entire input X and
some examples of the desired output Y . The following are
examples of a airport code to city name transformation:
{(LHR,London), (ORD,Chicago), (CDG,Paris)}. As a
general rule, the steward will have a column in a data set
that he wishes transformed (such as airport code), from
which he has chosen example elements (X, Y). The goal
is to find the transformations (values of Y) for the remain-
ing values. In most cases, the user provides the names of
the input and output values for the desired transformation,
which we denote by IX and IY , but this is not necessary.

We say that a Web resource “covers” a transformation if
it contains more than a user-defined threshold τ of the ex-
ample cases. A näıve approach would be to test every Web
form and Web table for coverage, and then use the resource
to fill in as many missing values as possible. When multi-
ple resources cover a transformation and provide conflicting
values, a resolution scheme would be required to choose the
best result. Obviously this solution is linear in the number
of Web forms and Web tables, and hence cannot scale. A
scalable solution to the above problem requires:

1. indexing a large corpus of Web tables to support ef-
ficient retrieval of Web resources that cover a given
transformation task;

2. developing a platform that judiciously uses the two
types of resources (tables and forms) given their very
different access and response time characteristics;

3. effectively involving a crowd of experts (expert sourc-
ing) to guide the transformation tasks, where neces-
sary; and

4. consolidating the possibly inconsistent mapping results
from the relevant transformation resources.

To this end, we present DataXFormer, an interactive sys-
tem that leverages Web tables and Web forms to perform
transformations based on the given transformation exam-
ples. In addition, DataXFormer provides users with direct
feedback on their transformation results, and allows them
to add more examples or to choose from possible transfor-
mation alternatives. In particular, we make the following
contributions:

• We present an inductive filter-refine approach for in-
dexing and retrieving a large corpus of Web tables to
efficiently answer transformation queries.

• We show how relevant Web forms can be retrieved from
the Web and (semi) automatically wrapped using the
input transformation examples and human experts.

• We present an analysis of the coverage of our system
based on 50 real-world transformations.

An online version of DataXFormer can be found on the
project’s website at http://www.dataxformer.org

2. DataXFormer OVERVIEW
The architecture of DataXFormer is illustrated in Fig-

ure 1. It consists of two complementary transformation en-
gines: one based on locally-stored static Web tables and
another based on dynamically discovered Web forms. The

Solution Integration

Forms
Wrappers

Form Retrieval

Wrapper
Generator Index Corpus

Table Query
Transformer

Query:
(Input values X, Examples E)

 Web Forms
Subsystem

Web Tables
Subsystem

The Web

Table Retrieval

Augment

Form Query
Transformer

E
valuation

Refinement

Result: F={(x1,y1), (x2,y2), …(xn,yn)}

Candidate
Tables

Wrapped
Forms

Figure 1: DataXFormer architecture

user starts by submitting a query, such as the query in Sec-
tion 1 that transforms airport codes to city names. DataX-

Former converts the user query into an internal form for
each of the retrieval components, which return candidate
Web tables and Web forms, respectively. While the ta-
ble retrieval component works on top of a local repository,
the form retrieval component uses the entire Web to find
relevant Web forms. We assume that the user provides
as input a set X of n values and a set E of m example
pairs, E = {(xi, yi) | xi ∈ X, 1 ≤ i ≤ m}. The goal is
to discover the missing Y values and output a solution F ,
F = {(xi, yi) | xi ∈ X, 1 ≤ i ≤ n}.

Using an inverted index, the table retrieval algorithm re-
trieves a set of relevant candidate tables for the given user
query. Candidate results are further analyzed by the re-
finement component, which verifies the coverage of the can-
didate tables with respect to the query examples. If the
coverage is above the user-defined threshold, DataXFormer

extracts the rest of the required transformation values. In
the case of web forms, we first use a Web search engine to
retrieve relevant URLs. By examining the results of the
web search, we identify candidate Web forms. Then, for
each candidate form, we generate a“wrapper”that will allow
DataXFormer to query the form and to obtain the transfor-
mation values. Candidate Web forms are then queried using
the examples present in the user query. Those with sufficient
coverage are then invoked with the remaining input values.

In a final step, the solution integration component con-
solidates and ranks multiple transformation solutions for a
given query, as obtained from the two subsystems, and out-
puts the desired transformation. When automatic reconcil-
iation of values cannot be performed, the expert sourcing
system is invoked.
DataXFormer dispatches the transformation query simul-

taneously to both transformation engines. While the two
subsystems differ in their respective retrieval interface, re-
sponse time, and coverage, we are currently taking the
straightforward approach of engaging both systems simul-
taneously. As a future extension, we plan to develop a
new scheduler that will take into account information such
as query characteristics, run-time constraints, and coverage
statistics to develop integration strategies that would maxi-

mize query coverage while minimizing the cost incurred from
finding and wrapping Web forms.

3. USING WEB TABLES
As discussed in Section 1, a table T is relevant to a trans-

formation query if it contains at least τ of the examples
provided in that query, where τ is a predefined threshold.
Based on the number of contained examples, DataXFormer
assigns scores to the tables. These scores weigh in when
reconciling conflicting transformations of different tables to
ensure high quality results, as we show in Section 3.2.

airport City

BER Berlin

JFK New York

ORD Chicago

HBE ?

IST ?

FRA ?

BOS ?

DFW ?

.. …

code location

FRA Frankfurt

JFK New York

ORD Chicago

BOS Boston

BER Berlin

… … airport city

… … FRA Frankfurt

… … DFW Dallas

… … JFK New York

… … BER Berlin

… .. … …

User query Table 1

Table 2

Table 3

apc location

JFK New York

BER Berlin

ORD Illinois

FRA Hessen

… …

Table 4

Filter	 Web	 tables	

Refine	

X Y Score Lineage

FRA Frankfurt 0.83 T1,T2

BOS Boston 1 T1

DFW Dallas 0.67 T2

FRA Hessen 0.67 T4

… … … …

Query	

1	 2	

3	

……
..

4	

airport City

BER Berlin

JFK New York

ORD Chicago

FRA Frankfurt

BOS Boston

DFW Dallas

HBE ?

… ….

Result	

Augment	 	
database	

Augment	
query	

FRA Frankfurt

BOS Boston

DFW Dallas

airport City

BER Berlin

JFK New York

ORD Chicago

FRA Frankfurt

BOS Boston

DFW Dallas

apc city …

DFW Dallas …

HBE Alexandria …

IST Istanbul …

FRA Frankfurt …

Figure 2: Workflow of DataXFormer’s filter-refine ap-
proach

Scanning every table in the corpus for the given examples
can be prohibitively expensive. To mitigate such a cost,
DataXFormer uses a filter-refine approach as illustrated by
multiple steps in Figure 2. In Step 1, a query is submitted
to the Web table repository, which maintains millions of n-
ary relations. Step 2 corresponds to the filter phase. Here,
DataXFormer locates a candidate set of relevant tables. To
enable the candidate generation, we need to tackle two major
challenges:

1. We have to store and index the tables in a way that
allows to retrieve them by examples, without accessing
too many irrelevant tables. At the same time, we want
to preserve helpful structure information of the tables,
such as column and row correspondence of values.

2. It is necessary to reach tables that are relevant to a
transformation task but do not contain the initial given
examples.

In Figure 2, Tables 1,2, and 4 cover τ = 2 examples and are
therefore candidate tables. The filter phase significantly af-
fects the recall of the results. For example, a coarse-grained
index will return many false positives while a very restric-
tive query can result in low recall because it misses relevant
tables.

In the refine phase (Step 3 in Figure 2), we validate the
row correspondences of found examples and compute scores
of found transformations and tables that contain them. We
follow an iterative and inductive approach. An iteration

refers to one pass of filter and refine. Since the initial exam-
ples might not be representative or might have a low recall,
we use newly discovered mappings as examples in subse-
quent iterations. When the iterations converge, the final
transformation results are presented to the user (Step 4 in
Figure 2). Furthermore, if the user is satisfied with the re-
sult or any subset of the results, she can trigger the system
to store the results as a new table with a higher initial con-
fidence score in the database.

We elaborate on how DataXFormer handles the filter ap-
proach by showing the index design and query formation in
Section 3.1 and on how the refine phase of DataXFormer as-
signs scores and reconciles conflicting results in Section 3.2.

3.1 Candidate generation: The filter phase
The simplest way to identify the tables that support a

transformation is to use an inverted index that maps ex-
ample entries to the indexed tables and columns. Since
we are interested in finding only the two relevant columns,
a column-based solution naturally suits our problem. We
adopt a two-phase approach: (i) identify relevant tables
and then load their content to validate the examples, and
(ii) produce transformations for the remaining values. We
implemented this scenario in two different storage systems:
a relational column-store database with a star schema and
a document index where each column is represented by a
document.

Web table storage and indexing.
Since Web tables are heterogeneous, differ in schema and

size, and some even lack column labels, we store the tables
within a universal main table (relation Cells in Figure 3)
where every cell of a Web table is represented by a tuple
that records the table, column and row IDs, along with the
tokenized, stemmed form of its value. The relation is ordered
by tableid, columnid, rowid, simultaneously achieving two
advantages: (i) every column from a web table is stored
contiguously, and (ii) the space requirement of this schema
can be alleviated by compression, which is provided by most
modern column-stores.

In the current prototype, we store our Web tables in a
multi-node Vertica instance. Vertica employs projections
on tables in place of an inverted index. A projection is a
specialized materialized view that is efficient to maintain
and load. We use a projection on relation Cells that is
sorted on the tokenized values.

Besides table content, we store other metadata such as
the number of rows in a table in order to easily prune ta-
bles with fewer rows than the required number of covered
examples. Additional dimension tables are maintained (Fig-
ure 3). Relation Tables stores meta-data of tables, such as
the URL where the table came from, the table title and
an initial table weight that may vary depending on the au-
thoritativeness of the table. The initial weight influences
the confidence score that is computed later to rate trans-
formation results. We will refer to the score computation,
when talking about reconciliation of conflicting results in
Section 3.2. Although the table title and the URI are not
being used in the current prototype, we maintain them for
future work that might incorporate the provenance of stored
tables. Relation Columns stores columns meta data, such
as column headers.

A second option for implementing the inverted index is to

tableid	 colid	 rowid	 term	 term	
tokenized	

1	 1	 1	 FRA	 fra	

1	 1	 2	 JFK	 j-	

…	 …	 …	 …	 ….	

3	 2	 1	 Dallas	 dallas	

….	 …	 …	 …	 ….	

4	 2	 4	 Hessen	 hessen	

tableid	 colid	 header	

1	 1	 Code	

1	 2	 Loca>on	

…	 …	 …	

4	 1	 apc	

4	 2	 Loca>on	

…	 ….	 …	

tableid	 url	 >tle	 ini>al	
weight	

1	 www..	 World	
airports	

0.8	

2	 hHp…	 -‐	 0.5	

3	 hHp…	 airports	 0.5	

…	 …	 …	 0.5	

Cells

Tables Columns

term	
tokenized	

tableid	 colid	 rowid	 term	

ber	 1	 1	 5	 BER	

ber	 2	 1	 4	 BER	

ber	 4	 1	 2	 BER	

berlin	 1	 2	 5	 Berlin	

…	 …	 …	 …	 …	

ord	 1	 1	 3	 ORD	

Projection on Cells:
Sort order from left to the right

Figure 3: Schema for storing Web tables in a
column-store in correspondance with the example
in Figure 2

use a document index and to treat the problem as a keyword
search problem over documents. For the document index,
the simplest way to create index entries from the corpus
of tables is to store each column of a table as a separate
text document. This approach, while achieving high recall,
obscures important structure information that can be used
to prune irrelevant tables. However, since values are more
likely to be repeated in the same column, data compres-
sion gives us the added benefit of a smaller index size. In
Section 6, we report on the performance of both storage
systems.

Querying Web tables.
We query for column pairs that contain at least τ of the

given examples. To maximize coverage, we tokenize and
stem every value x and y from the input. Using the Cells
relation described earlier, DataXFormer filters all relevant
column pairs with a single SQL query:

SELECT col1.tableid , col1.colid , col2.colid

FROM

(SELECT tableid , colid

FROM Cells

WHERE term_tokenized IN (<x1>,<x2 >,..., <xm >)

GROUP BY tableid , colid

HAVING COUNT(DISTINCT term_tokenized) >= tau)

AS col1 ,

(SELECT tableid , colid

FROM Cells

WHERE term_tokenized IN (<y1>,<y2 >,..., <ym >)

GROUP BY tableid , colid

HAVING COUNT(DISTINCT term_tokenized) >= tau)

AS col2

WHERE col1.tableid = col2.tableid

AND col1.colid <> col2.colid

The query joins two subqueries, one to find the columns

that contain the X values and another to identify the
columns that contain the Y values, where a column is
uniquely identified using the table and the column IDs. By
comparing the table IDs, DataXFormer retrieves only column
pairs that appear in the same table. We also make sure that
a result entry consists of two distinct columns. The result
of the query is a set of triples, each comprising a table ID
and two column IDs. We need the combination of table and
column IDs to identify a column because a column ID is
unique only within a specific Web table.

Note that query processing becomes increasingly costly as
the number of examples in the query increases. This issue
becomes relevant as we follow an inductive approach. Af-
ter a filter-refine iteration, we use retrieved transformations
as examples to find additional tables that eventually cover
missing X values. Since we cannot include an arbitrarily
large number of examples, we must limit the set of examples.
DataXFormer chooses examples based on confidence scores
that are computed and updated after each filter-refine iter-
ation. We describe the reconciliation process and how these
confidence scores are computed and used in Section 3.2.

When a document store is used instead of a RDBMS,
DataXFormer has to formulate and submit a keyword query
for each example combination of size τ to find relevant
columns “documents”. This approach results into 2 ·

(
k
τ

)
queries for k given examples X and Y . The columns match-
ing each query are then joined on the table identifier.

3.2 The Refine Phase
In the refine phase, we load the content of each candidate

column pair and check the row correspondence between the
values. Note that the candidate generation does not ensure
the transformation examples to be aligned in the correspond-
ing rows. If τ examples still match after considering the row
correspondence, DataXFormer collects all transformation re-
sults that are provided by the corresponding table.

The retrieved tables might provide conflicting answers,
i.e., returning different Y values for the same X value. For
example, in Figure 2, the airport code “FRA” has been as-
signed to two different values. A näıve approach to resolve
such conflicts is to apply majority vote. However, we would
like to take into account the authoritativeness of tables. For
example, while (JFK, New York) might appear in more ta-
bles of the database, a table from a more reliable source
might provide (JFK, New York City), which is more accu-
rate. Therefore, it is necessary to score tables according to
their authoritativeness as well as their coverage of examples
with a confidences score. Furthermore, as we incorporate
results of previous iterations as examples, we also need a
confidence score for those examples. We therefore adopt
an iterative expectation-maximization (EM) approach [11]
that incorporates confidence scores. The confidence score of
each table (i.e., the probability that an answer it provides
is correct) is estimated based on the current belief about
the probability of the answers. Initially each table is as-
signed with a confidence score based on the number of user
examples it covers. The score of the table is weighted with
its initial weight, which was assigned by experts and stored
in relation Tables. The answer scores are updated based on
the newly computed scores, and the process is repeated until
convergence is reached (i.e., the sum of all score changes is
below a very small value ε). In the end, for each x ∈ X, the
scores of possible answers form a probability distribution.

Algorithm 1 Expectation-Maximization

Input: A set of initial examples E = {(x, y), . . .}, a set of re-
quired values X

Output: Scored answers
1: answers ← E //Represent the input query as an absolute

reference
2: tables← E
3: finishedQuerying ← false
4: oldAnswers = answers
5: repeat
6: if not finishedQuerying then
7: tables← QueryForTables(answers)
8: for all table ∈ tables do
9: for all answer(x, y) ∈ table do

10: if x ∈ X then
11: UpdateLineage(table, answer)
12: answers.Add(x, y)
13: if not new X was covered by tables then
14: finishedQuerying ← true
15: UpdateTableScores(answers, tables) //maximization step

16: UpdateAnswerScores(answers, tables) //Expectation step
17: ∆scores =

∑
|answers.score(x, y)− oldAnswers.score(x, y)|

18: oldAnswers = answers;
19: until finishedQuerying ∧∆scores < ε

Currently, DataXFormer reports the highest scoring value as
the answer.

Algorithm 1 describes the reconciliation process embedded
within the overall workflow of DataXFormer’s filter-refine it-
erations. In each iteration, DataXFormer queries for tables
using the new weighted examples (line 7), until no more val-
ues in X can be covered (lines 6 and 14). The algorithm
then continues the iterative process without querying for
new tables, until the scores converge (line 19).

In line 15, DataXFormer implements the maximization
step by updating table scores (estimated error-rates) based
on the current belief in the answers (answer scores). In the
beginning, the only examples present are the ones given by
the user. Initial scores are assigned based on the percentage
of examples that were covered by a table. In each iteration,
if new unseen tables were found in the query, the lineage of
the newly found tables and the answers (transformations)
they provide are recorded for later EM calculations. When
updating table or answer scores, it is necessary to be able
to identify which tables contained which answers. In the
expectation step of every iteration, the scores (i.e. probabil-
ities) of the discovered answers are updated. DataXFormer

converges when the total (absolute) change in answer scores
is below a small value ε. The expectation step and the max-
imization step are illustrated in more detail in Appendix A.

Using an EM approach allows for seamless integration
of feedback, e.g., through expert sourcing, by adjusting
the scores and iterating until a new convergence point is
reached. Furthermore, it is easy to assign higher initial
weights to more authoritative tables that were provided by
expert users, or to edit the examples on the fly in an interac-
tive session, where the system recomputes the results after
the user marks correct and incorrect answers. The superior-
ity of EM over majority vote for our use case is demonstrated
in Section 6.3.3.

4. USING WEB FORMS
As with Web tables, we assume a form is relevant to a

query if it covers at least τ of the example transformations.

There are two main challenges in using Web forms: (1) as
there is no common repository of Web forms, we have to
crawl for relevant ones from the Web; and (2) a new Web
form appears as a black box, and an invocation strategy
(i.e., wrapper) has to be developed to use the form to pro-
duce the desired transformations. It has been shown [4] that
both tasks are very hard, even with human intervention. In
the following, we show how DataXFormer automatically re-
trieves forms from the Web and wraps them for automated
invocation.

4.1 Web Form Retrieval
DataXFormer dynamically searches for relevant forms from

the Web by issuing search queries (on existing engines) with
the attribute names IX and IY . As part of future work, we
plan to investigate techniques that use the example X and Y
values in E to directly identify relevant forms. During this
process, DataXFormer maintains a repository of Web forms
that have been successfully wrapped and previously used to
answer transformation queries. Each Web form is stored
as a document that contains the attribute names IX and
IY , frequent terms from the form’s Web page, and examples
from previous transformation tasks. In addition to querying
the Web, DataXFormer queries this repository for candidate
matches along with their corresponding wrappers.

In our preliminary experimental results (Section 6), we
noticed that the keyword query IX to IY has a high success
rate for finding a page containing a transformation Web form
in its top results. A page contains a Web form if it contains
an HTML form header and input fields.

Since the number of Web forms is far less than the number
of regular pages retrieved by a search, DataXFormer issues
multiple keyword queries and filters the results coming from
the underlying search engine to find Web forms. Example
keyword queries include terms such as “convert”, “detect”,
or “lookup” added to the column names.

4.2 Wrapping Web Forms
To be able to wrap Web forms, we have to simulate a

Web browser and probe the forms by using the given exam-
ple values (x, y) ∈ E to identify the relevant input field to
fill in the x values, the output field that contains the desired
transformation result y, and the request method for invoking
the form. Depending on the invocation method of the Web
form, which can be either an HTTP method or Javascript

code, we decide on how to identify the input fields. Current
wrapper generation approaches [4, 19] invoke a Web form
using all possible combinations of input fields, select fields,
and radio buttons, and use the results to identify the seman-
tics of the various components of the form. In the current
prototype of DataXFormer, we apply some heuristics to re-
duce the number of combinations. To invoke HTTP-based
forms, we send the HTTP request by probing only each in-
put text field within the form. Some forms, especially those
that provide transformations in both directions, also contain
select fields or radio buttons, where the appropriate option
has to be selected. Instead of trying all possible options, we
set the select and radio buttons to the options that match
the attribute names IX and IY . If the option contains IX as
well as IY , e.g., the option text is “km to miles”, we use the
order of the attribute names to identify the transformation
direction. In the worst case, we need to try each option in
a brute force manner.

Discovered output path:
/html/body/div[1]/ol[2]/li[1]/h2

Discovered GET request:
http://investing.money.msn.com/investments/stock-price/?symbol=AMZN

Figure 4: The wrapper for this Web form consists of a GET URI, the request parameter ?symbol and the
output path

When dealing with JavaScript, DataXFormer has to iden-
tify the relevant JavaScript transformation function and its
parameters. Parsing and simulating all possible JavaScript

functions on a Web page is a tedious task [19]. In the current
prototype, we identify all JavaScript functions that are ex-
ecuted by an onClick event. We then parse these functions’
parameters to locate those that match the names of the in-
put columns IX and IY . The remaining parameters are set
to their default values to get a valid invocation of the func-
tion. In both cases, once a request succeeds, we scan the
returned HTML page for the y value and fetch the absolute
XPath, which includes all HTML tags from the root of an
HTML document to the HTML tag that contains the out-
put value. Multiple example pairs from E are used to avoid
accidental matching. For example, for a given example pair
(x, y) ∈ E, we might find the y value in multiple fields of the
result page, especially if y is a number that is accidentally
found in a field that is unrelated to the request. Those fields
can be easily dismissed by probing more examples from E.

Figure 4 shows a candidate Web form that has been re-
trieved for transforming stock names to companies, e.g.,
AMZN to AMAZON.COM INC. The screenshot on the left-hand
side shows the form’s input fields that comprise various ra-
dio buttons, a selection field, an input field, and a button.
By analyzing the HTML code, DataXFormer discovers that
the form can be invoked by a GET request URI with the
relevant parameter ?symbol that has to be set to our input
value AMZN. Submitting the GET request returns the page
that is illustrated on the right of Figure 4. The desired
output AMAZON.COM INC appears on the page. DataXFormer

discovers the XPath of the output field. Knowing the path,
DataXFormer can identify the transformation for any subse-
quent stock symbol.

Once DataXFormer successfully wraps a Web form, we cre-
ate a new entry in our Web form repository by storing its
URL, invocation method, and the canonical XPath of the
relevant fields along with previously mentioned meta-data.

5. TRANSFORMATIONS WITH THE
CROWD

DataXFormer involves tackling multiple challenging tasks
which can be improved through human intervention. Human
experts or users can help generate better search queries, val-
idate candidate tables or forms, devise more accurate wrap-
pers, and reconcile inconsistencies among the results from
multiple transformation resources.

However, using the crowd comes with the well-known
problems associated with crowdsourcing tasks, such as de-
ciding on the right incentives and controlling the quality
of the results [16]. This is especially true in cases where
the human agent is not provided with choices, but rather
is required to produce content. DataXFormer is geared more
towards enterprise environments and hence assume the avail-
ability of an expert sourcing system. By the nature of in-
ternal enterprise experts, this will avoid some of the issues
with conventional crowdsourcing. Involving experts requires
translating a given transformation query into several mean-
ingful crowdsourcing units, often referred to as human in-
telligence tasks (HITs). Forming effective HITs is a main
crowdsourcing challenge. In DataXFormer, we use straight-
forward HIT forming approaches depending on the task. We
leave more sophisticated HIT generation for future work.

Results Generation and Consolidation DataXFormer consol-
idates retrieved transformation results by using an expecta-
tion maximization model. However, when these rules fail to
resolve inconsistencies or the user is not satisfied with the
consolidated results, DataXFormer provides the experts with
HITs comprising the contradicting transformations and the
domain identifiers IX and IY , and asks the experts to choose
the correct transformation (cf. Figure 1). Simple majority
voting is used to resolve conflicts and the votes are further
used to rate the confidence of the transformations.

If the Web tables and Web forms subsystems fail to pro-
vide a transformation for some values in X, the crowd can

also be directly polled to produce the answers. A produc-
tion task looks like an analogy game: the worker is provided
with some examples for the transformation and is required
to fill in the missing values. Again, a HIT must not contain
more than a specified number of tuples to be perceivable by
a worker. If very few examples are available, many HITs will
fail to get meaningful answers, because workers will not be
able to curate inconsistent transformation results. To tackle
this problem, we follow the inductive approach we used in
Section 3, where discovered mappings are used to form the
examples of new HITs.

Given the example pairs and the column identifiers IX
and IY , an expert can also be asked to find a Web page that
contains a relevant Web form. As discussed in Section 4,
the task of wrapping Web forms requires parsing Web forms
and identifying the semantics of the various components,
e.g., using evidence from the field labels. Experts can easily
provide hints about the input and output fields in a given
Web form. For example, given a form URL, the agent can be
asked to reply back with the name (and mouse click coordi-
nates) of the field that receives the X values and the name
(and coordinates) of the field that produces the required Y
values. More sophisticated tasks include asking the experts
to identify the transformation function in the JavaScript in
a given Web form.

6. CASE STUDY
In this section, we present our preliminary results in eval-

uating the effectiveness of DataXFormer using a workload of
50 real-world queries collected from a data curation com-
pany and data scientists. We first describe our experimen-
tal setup, then we show how DataXFormer was able to cover
82% of the workload by using the techniques presented in
this paper. Finally, we examine the effects of the different
parameters and compare the performance of the two pro-
posed solutions for indexing and querying the tables.

6.1 Experimental Setup
For Web tables, we used the Dresden Web Tables Cor-

pus provided by Eberius et al.1 This corpus comprises 112
million Web tables extracted from the large Common Crawl
corpus, which contains about 4 billion Web pages, with a
large percentage missing column or table headers. We stored
and indexed the tables using both options described in Sec-
tion 3.1: the Vertica DBMS [18] and a document index pro-
vided by the Lucene search engine2.

The size of the stored tables and projections is 350 GB
using the Vertica DBMS. In comparison, the index size of
the Lucene document index is 64 GB, while the corpus is
202 GB.

Lucene supports block indexing, which allows grouping
related documents together. As we treat columns as doc-
uments, we group columns from the same table in a single
block, effectively pre-materializing the join on table identi-
fiers.

To collect a test workload, we asked data scientists and
employees from a data curation company with commercial
customers to provide examples of common transformation
queries they face in real-world applications. In total, we col-
lected 50 queries that comprise both syntactic and semantic

1https://wwwdb.inf.tu-dresden.de/misc/dwtc/
2http://lucene.apache.org/

Form found
and wrapped

Found but
not wrapped

No forms
found

Covered
by tables 12 5 12 29
Not covered

by tables 12 5 4 21
24 10 16 50

Table 1: DataXFormer coverage of transformation
queries: 29 queries were covered by Web tables and
24 by Web forms

transformations (See Appendix B for the full list).
To evaluate the effectiveness of our system, we consider

two metrics: (i) the coverage and (ii) the quality of indi-
vidual transformations. The coverage refers to the fraction
of transformation queries where DataXFormer is able to find
relevant tables or Web forms. The transformation quality
assesses the correctness and completeness of a transforma-
tion task in terms of precision and recall. In our experi-
ments, we manually obtained example input for all covered
queries to measure the recall. For evaluating the precision of
a transformation, it is necessary to know the ground truth.
Therefore, we additionally obtained the ground truth for a
subset of the queries to measure the precision. The ground
truth of a query contains the complete domain and range of
a transformation, e.g., all airport codes and corresponding
cities.

6.2 Query Coverage and Recall
For each of the 50 queries, we manually generated 10 in-

put values (total number of 500 input values) and checked
whether DataXFormer returned any result. We manually
judged whether the result was correct or not.

The union of the Web tables and Web forms subsystem
covers 41 (82%) queries considering that 12 queries could be
answered through both. For 9 queries we neither found a
wrappable Web form nor a Web table that contained any
of the input values. Table 1 shows the coverage details of
the two subsystems (Web tables and Web forms). 29 of the
queries could be answered using Web tables. Those queries
include mapping categorical data, such as city to country,
ISBN to publisher, and car model to car brand. At the same
time, for 34 of the queries, DataXFormer found relevant Web
forms through the Web search engine. The average rank-
ing position of the Web page containing the relevant Web
form was 3.2. For 24 out of those 34 queries, DataXFormer
was able to wrap the form and to produce the correct trans-
formations. The Web forms, which could not be wrapped,
either maintained no HTML structure for effectively pars-
ing the JavaScript functions or required submitting specific
header information with the HTTP request that could not
be automatically identified. These are our candidates for
human-generated wrappers through crowdsourcing.

On average DataXFormer achieved 81.3% recall for the 41
covered queries. We present the recall for each specific query
in Appendix B. Queries that were covered by Web forms
usually resulted in 100% recall. High recall was also achieved
for queries that could be covered by a single table from the
Web table corpus,(e.g., country to country code). Note that
some of the queries represented classes of queries. For ex-
ample, we found and wrapped a Web form for transforming
USD to EUR. In general, our wrapper is able to wrap the

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

state	 	 	 	 	 	 	 	 	 	
to	 	 	 	 	 	 	 	

abbrv	

iban	 	 	 	 	 	 	 	 	 	 	
to	 	 	 	 	 	 	 	 	 	 	

bank	

country	 	 	
to	 	 	

language	

country	 	 	 	 	
to	

demonym	

airport	 	 	
to	 	 	 	 	 	 	 	 	
city	

<cker	 	 	 	 	 	 	 	 	
to	

company	

zip	 	 	 	 	 	 	 	 	 	 	 	 	
to	 	 	 	 	 	 	 	 	 	
city	

country	 	 	 	 	 	 	
to	 	 	 	 	 	 	 	 	 	

code	

country	 	 	 	
to	

currency	

<mezone	
to	 	 	 	 	 	 	 	 	

abbrv	
Transforma)on	 query	

Precision	 Recall	

Figure 5: Precision and Recall of DataXFormer for all given queries

same Web form for all other possible currency conversion
transformations that were not part of our 50 queries. The
same applies to the class of unit conversion transformations,
where we only included Fahrenheit to Celsius in our set of
queries.

6.3 Transformation Quality
The transformation quality of the Web table component

depends on a set of parameters and algorithmic features that
we analyze here in more detail. We assess the quality perfor-
mance of our Web table system by measuring the precision
and recall of the results for different set of initial examples,
different thresholds, and different reconciliation approaches.
We show that DataXFormer’s performance is not affected by
the popularity of example terms, but rather by the threshold
τ and the scoring propagation system in the refine phase.

To additionally check the precision of our algorithm, we
have to compare DataXFormer’s results to ground truth.
For this purpose, we manually obtained the complete di-
rectory of input values and transformation results (e.g., air-
port codes and corresponding cities) for 10 of the queries
that were covered by the Web table subsystem. Since, our
current corpus of Web tables might have limitations, we con-
sider only those value pairs X and Y from the ground truth
that appear in at least one table with more than two en-
tries. Thus, we are able to assess the actual effectiveness of
DataXFormer’s algorithm.

Figure 5 illustrates the precision and recall of DataXFormer
for the analyzed queries. For each query, we provided 5 ran-
domly chosen examples. All queries were run with τ = 2.
For seven queries, DataXFormer achieves more than 90% pre-
cision. For the remaining three cases, country to currency,
country to languages, and country to demonyms, we observe
that recall is similarly low. Looking carefully at these cases,
we observed that the refine phase picked the wrong trans-
formations, which caused both precision and recall to de-
crease. For the specific cases of languages and demonyms 3,
the wrong reconciliation stems from ambiguity provided by
the examples, e.g., French refers to the language in France
as well as to its residents. In the case of the query coun-
try to currency, we face low precision and recall because
of different representation of currency values (e.g., “Qatari

3A demonym denotes the resident of a country.

riyals” vs “rial”), which would require more robust match-
ing algorithms. For the queries, such as zipcode to city or
iban to bank, where high precision was achieved, the low re-
call is caused by the fragmentation of the data among many
tables, which impedes their reachability based on the given
examples. In the following, we analyze the effect of variation
in the number and type of examples on the DataXFormer’s
effectiveness.

0.00	
0.10	
0.20	
0.30	
0.40	
0.50	
0.60	
0.70	
0.80	
0.90	
1.00	

1	 2	 3	 4	 5	
Threshold	 τ	

Precision	

Recall	

F-‐Measure	

Figure 6: Average Precision and Recall based on
different τ configurations

6.3.1 Effect of parameter τ
A key parameter for filtering Web tables and Web forms

is τ . A table or form supports a transformation if it con-
tains at least tau of the examples. Figure 6 shows the effect
of τ on the average precision and recall of our ten queries.
For this experiment, we fixed the number of initial exam-
ples to 5. Therefore, we can only consider τ values between
1 and 5. The figure shows that the precision increases with
τ . However, there is a trade-off with regard to recall. The
higher τ , the more tables are filtered out resulting in a low
recall, e.g., for τ = 5 DataXFormer achieves only about 30%
recall. In fact, 7 out of the 10 queries had a recall values
less than 8% for τ = 5. Only the queries states to abbrevia-

0.00	
0.10	
0.20	
0.30	
0.40	
0.50	
0.60	
0.70	
0.80	
0.90	
1.00	

2	 3	 5	 10	 20	 30	 40	
Number	 of	 examples	

Precision	

Recall	

FMeasure	

Figure 7: Average Precision and Recall based on the
number of examples

tion, country to country code, and timezone to abbreviation
achieved recall above 90% because the results for each all
appeared in a single table. In Appendix B, we report for all
queries whether there is a single table that contains all the
requested transformations. The optimal value is at τ = 2,
where recall and F-measure (the harmonic mean of recall
and precision) are the highest. The precision is only slightly
lower than in experiments with τ > 2. Therefore, we con-
figured τ = 2 for all other experiments to achieve the most
promising results. Note that we did not achieve the highest
recall value for τ = 1. This is due to the fact that many
unrelated tables with contradicting transformations might
have been retrieved. This affects our scoring consolidation
system in such a way that it fails to decide for the correct
transformations.

6.3.2 Effect of initial examples
The number of initial examples for describing a transfor-

mation is crucial. The more examples the user provides, the
more tables could match the transformation and a higher
recall can be achieved. Figure 7 illustrates the average pre-
cision and recall across all ten queries with respect to the
number of examples. We clearly see that recall increases
with the number of examples. Note, for the datapoint cor-
responding to two examples, most of the queries did not out-
put any transformations, resulting in very low recall. The
precision remains continuously stable at around 90%.

In general, it is obvious that the more distinctive an ex-
ample is to a query, i.e., the example is a good representa-
tion of that specific query but no other queries, the better
precision results can be achieved. For example, when look-
ing for the transformation country to demonym, the exam-
ple pair (Brazil, Brazilian) is a better choice than (France,
French) since, French not only denotes the citizens of France
but also their language. Furthermore, considering the frag-
mented nature of data in Web tables, the choice of popular
examples might yield better recall, because presumably the
popular examples will re-occur in many of the relevant ta-
bles. Popularity and distinctiveness are hard to assess. Our
heuristic to assess the popularity or distinctiveness of an ex-
ample is to consider its frequency. We deem an example to

0.00	
0.10	
0.20	
0.30	
0.40	
0.50	
0.60	
0.70	
0.80	
0.90	
1.00	

RANDOM	 MFX	 LFX	 MFPAIRS	 LFPAIRS	
Example	 choice	 policy	

Precision	 Recall	 F-‐Measure	

Figure 8: Average Precision and Recall for different
choices of initial examples

be more popular than another if it occurs more often in the
dataset. On the other hand, we deem an example to be more
distinctive if it is less frequent in the dataset. Figure 8 shows
precision and recall results of DataXFormer using five exam-
ples with the most frequent X values (MFX), five examples
with the least frequent X values (LFX), five examples with
the most frequent pairs X and Y (MFPairs), and five ex-
amples with the least frequent pairs X and Y (LFPairs).
In addition, we added the results from Figure 7, where the
five examples were randomly chosen (RANDOM). Choosing
five examples with the least frequent X values or X/Y value
pairs yields significantly lower recall than the examples with
frequent X or X/Y pairs, while the precision is only slightly
higher. We can conclude that low frequency does not repre-
sent distinctiveness of examples. Interestingly, our random
choice of examples beats all four heuristics, showing that
the frequency of the examples is not a good heuristic for
assessing the appropriateness of initial examples.

0.00	
0.10	
0.20	
0.30	
0.40	
0.50	
0.60	
0.70	
0.80	
0.90	
1.00	

MCPAIRS	 MFX	 LFX	 MFPAIRS	 LFPAIRS	
Example	 Choice	 Policy	

Precision	 Recall	 F-‐Measure	

Figure 9: Average Precision Recall for different
choices of examples in later iterations

In a different experiment, we fixed the initial examples and

Method Precision Recall F-Measure
Majority voting 0.88 0.68 0.77
EM model 0.91 0.70 0.79

Table 2: Majority voting vs. EM propagation sys-
tem

checked whether the consistent application of the heuristic
in later iterations can have any effect on the performance
of DataXFormer. So instead of choosing all possible exam-
ples, we limited the maximum set of generated examples for
each iteration to 50. Notice that, for performance issues,
there should be an upper bound on the number of examples
anyway. Figure 9 illustrates the MFX, LFX, MFPair, and
LFPair policies compared to our policy based on confidence
of the most certain examples (MCPairs) as discussed in Sec-
tion 3.2. The results show that all policies yield the same
performance. This means that, in contrast to the initial
examples, the generated examples after the first iteration
widely overlap, no matter which policy we chose. We stick
to the policy of choosing the examples (MCPairs) based on
the scores derived from the tables because it is the more effi-
cient option. Retrieving the frequency of examples requires
additional computation effort.

6.3.3 Scoring Model
We now evaluate the use of the proposed EM model (Sec-

tion 3.2). A näıve baseline solution to consolidate multiple
contradicting transformations would be to apply a majority
voting and choose the transformation that is covered by the
most number of transformations.

Table 2 illustrates the average precision and recall for both
systems using the same set of queries as in Figure 5. The
table shows that the EM model improves on majority voting
by 3% in precision and 2% in recall. Looking at individual
queries, the EM model was always slightly better than ma-
jority voting, having the highest gain (20% in precision and
22% in recall) in case of country to demonyms where many
contradictory solutions appear. EM’s superior performance
appears when the tables providing the required transforma-
tion are dominated by many tables that offer different over-
lapping transformations. Despite the slight average gain on
precision and recall, the EM model suits our purpose well,
because it can capture further features, such as initial table
weights column header similarity. We will elaborate on aug-
menting the EM model with these features as part of future
work.

6.4 Column store vs. Document Storage
We compared our Vertica storage system with a Lucene

index. In the case of Vertica, we can formulate a single SQL
query to find all tables that contain τ examples, while for
the Lucene index, we need to submit a query for every τ -
sized combination of the given k examples. Figure 10 shows
the runtime of a query to find matching tables for a number
of given zip to city examples. For that experiment, we set
τ = 2. While both systems have similar runtime for small
numbers of examples, the time difference increases signifi-
cantly for higher numbers of examples. With 50 examples,
the query to Vertica is already faster by more than an or-
der of magnitudes than the set of queries sent to the Lucene
index. Note that, while the user provides only a handful of

30.056	

1	

10	

100	

1000	

5	 10	 50	 100	 500	 1000	 5000	 10000	

!m
e	
in
	 s	

Number	 of	 examples	

Ver+ca	

Lucene	

Figure 10: Query time using Vertica vs. Lucene

examples for the first iteration of DataXFormer, later itera-
tions have large number of generated examples. For 500 and
more examples we stopped the Lucene-based system after 1
hour. Vertica performs well even for very large numbers of
examples, e.g., 30 seconds for 10,000 examples. The experi-
ment clearly shows that a DBMS is the more efficient storage
option for DataXFormer.

7. RELATED WORK
Commercial companies that provide information prod-

ucts, such as Recorded Future4, apply transformations to
raw data to create semantic features. While some transfor-
mations are simple, others are complex and involve reference
datasets or Web services. However, these transformations
are defined manually, while our goal is their automatic dis-
covery and integration.

Academic research on Web tables has usually focused on
issues related to search, extraction and integration tech-
niques [6, 7, 10]. Web tables have been also regarded as a
large repository for knowledge discovery. For example, Info-
Gather [22] addresses the problem of entity augmentation by
searching for related attributes of given entities. Searching
is performed by name, by examples, or simply through auto-
mated discovery. The search is expanded by way of a schema
matching graph of the underlying Web tables. DataXFormer

isolates relevant tables from the vast corpus without relying
on predefined, structured queries and where the schema is
not fully known.

Many techniques have been proposed to provide informa-
tion retrieval style capabilities over structured databases.
Most of the proposed systems [1, 2, 15] focus on efficiently
generating candidate networks of joined tuples to form an-
swers to a keyword query, with search terms spanning multi-
ple records across multiple tables. In some of these systems,
such as in [3, 13], specialized indices or predefined foreign
key-primary key relationships are used to prune the space of
candidate results. Others, such as in [5], rely on meta-data
information and dependencies among keywords to identify
joinable tuples. In DataXFormer, we are not interested in
tuple networks, but rather in tables with columns covering
most of the example transformations and the input values

4http://www.recordedfuture.com

to be transformed. Since we do not have complete knowl-
edge of the underlying schema, our approach has to depend
on instance matching (in the case of Web tables) and on
discovering needed meta-data (in the case of Web forms).

A large body of work on wrapper induction and deep Web
crawling is highly related to our form retrieval, wrapper dis-
covery and Web form invocation techniques. Wrapper in-
duction mainly focuses on extraction of information from
Web pages [8, 9, 14, 20], which can be leveraged to discover
the semantics of Web forms components, especially with the
aid of human experts.

8. CONCLUSION AND FUTURE WORK
We presented DataXFormer, a system for automated data

transformations based on Web tables and Web forms. In
particular, we showed how DataXFormer leverages both
types of resources for covering syntactic, as well as semantic
transformations. In a case-study, we showed that our system
covers 82% of transformation queries provided by real users.
We plan to conduct an additional extensive user study to
confirm this result with more real use cases. In order to do
so, we are providing an online version of DataXFormer that
accepts user queries, solves them, and solicits feedback at
http://www.dataxformer.org

Future work includes the development of more sophisti-
cated integration and synergy between the tables subsystem,
forms subsystem, and crowdsourcing. Moreover, the Web
form subsystem needs to find and wrap Web forms without
the knowledge of the attribute names. Additionally, it is de-
sirable to have a focused crawler that more effectively crawls
for possible transformation Web forms in the background.
Finally, DataXFormer can be further improved by enabling
fuzzy matching for attribute identifiers as well as example
values, e.g., allowing to match US Dollar with USD or New
York with New York City. Currently, DataXFormer incorpo-
rates fuzzy matching only rudimentary. The tokenization of
cell values allows case- and punctuation-independent match-
ing. To incorporate more sophisticated fuzzy matches based
on synonym matching and edit distance, we have to extend
our Web table repository with a similarity index or synonym
dictionary without significantly impeding the scalablility of
DataXFormer. Finally, DataXFormer should also incorporate
fuzzy matching scores in its confidence score model.

Beyond the different issues that still need to be tackled
there are several possible future paths that we are planning
to pursue.

8.1 Multi-columns Input
The techniques discussed thus far allow the discovery of

one-to-one transformations. However, functional transfor-
mations may depend on more than one argument, therefore
the model can be extended from list of values (one values
for each example with X) to a list of lists. Consider the fol-
lowing scenario: given a database of basketball players with
their personal information, the user wants to encode them
with their jersey number. However, this transformation is
prone to errors, as there are players with the same name,
and a player changes his jersey number when he moves to a
different team. Therefore the input should have the player
name, the year of interest (or the team), and the date or
place of birth. Given such input, the jersey number can be
computed in a deterministic fashion.

This process is already possible with alternative ap-

proaches, such as Google “Smart Autofill”5, but only for
numerical values in the output (the Y). In fact, these meth-
ods are based on mathematical processes that take a matrix
as input (multiple columns with their values) and create
distributions from which output values can be drawn. In
contrast, having a list of values for each example in X raises
some technical challenges and opportunities. For example,
when querying Web tables, the presence of multiple key-
words lead naturally to the need of having joins to related
pieces of information that are spread over multiple tables.
This leads to the need of discovering tuple networks [1,2,15]
over Web tables with poor or missing schemas.

Multi-column input has also implications on the Web
forms discovery. For example, given a database of Italian
residents, they can be encoded with their national number
because there is a transformation that takes as input first
name, last name, place and date of birth and outputs the
national ID of a person. On the one hand, the discovery
is easier for our tool, as more labels are available and they
can identify the forms of interest more easily. On the other
hand, there is a much larger number of combinations of in-
put that must be tested over the form, before discovering
the right subset and assignment to fill them.

8.2 Extending Web Resources
We have limited ourselves to Web tables and Web forms.

However, both can be extended to increase the recall of the
system. To go beyond the current repositories of Web ta-
bles, there are open information extraction approaches that
create tables from text [6, 12]. These methods can natu-
rally be applied offline to create the tables, but interesting
opportunities arise when they are coupled with our appli-
cation. In fact, our user-provided examples can be seen as
seed instances to bootstrap these processes. It would be in-
triguing to see how these systems can be adapted to achieve
interactive response time, given the different input.

Other potential resources to exploit are ontologies and
knowledge bases (KBs), such as Yago, DBpedia, and Free-
base. For example, a KB can expose a functional rela-
tionship between countries and their capitals (i.e., hasCapi-
tal(France,Paris)), which can then be used for our purposes.
Another example is alias relationships, such as alias(New
York City, The Big Apple). A challenge here is the discov-
ery of the correspondences between the examples and the
KBs. In fact, an instance-based algorithm is needed, but
the very few examples in Y may return multiple matches,
thus requiring humans in the loop to solve ambiguities.

Finally, companies maintain domain-specific tables within
their intranet. A very useful extension of DataXFormer

would be to be able to connect to those networks in or-
der to be able to collect existing data sources. As company
data usually is cleaner than Web tables, we would have to
extend our EM model to consider these provenance aspects.

9. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,

C. Nakhe, P. Parag, and S. Sudarshan. Banks:
Browsing and keyword searching in relational
databases. In VLDB, pages 1083–1086, 2002.

5
https://cloud.google.com/prediction/docs/smart_

autofill_add_on

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational
databases. In ICDE, pages 5–16, 2002.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in
databases. In VLDB, pages 564–575, 2004.

[4] L. Barbosa and J. Freire. An adaptive crawler for
locating hidden-web entry points. In WWW, pages
441–450, New York, NY, USA, 2007.

[5] S. Bergamaschi, E. Domnori, F. Guerra,
R. Trillo Lado, and Y. Velegrakis. Keyword search
over relational databases: a metadata approach. In
SIGMOD, pages 565–576, 2011.

[6] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti.
Extraction and integration of partially overlapping
web sources. PVLDB, 6(10):805–816, 2013.

[7] M. J. Cafarella, A. Halevy, and N. Khoussainova.
Data integration for the relational web. PVLDB,
2(1):1090–1101, Aug. 2009.

[8] S.-L. Chuang, K. C.-C. Chang, and C. Zhai.
Context-aware wrapping: Synchronized data
extraction. In VLDB, pages 699–710. VLDB
Endowment, 2007.

[9] N. Dalvi, R. Kumar, and M. Soliman. Automatic
wrappers for large scale web extraction. PVLDB,
4(4):219–230, 2011.

[10] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, pages 817–828, New York, NY, USA, 2012.

[11] A. P. Dawid and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the em
algorithm. Applied statistics, pages 20–28, 1979.

[12] O. Etzioni, A. Fader, J. Christensen, S. Soderland,
and Mausam. Open information extraction: The
second generation. In IJCAI, pages 3–10, 2011.

[13] J. Feng, G. Li, and J. Wang. Finding top-k answers in
keyword search over relational databases using tuple
units. TKDE, 23(12):1781–1794, 2011.

[14] B. He, Z. Zhang, and K. C. Chang. Towards building
a metaquerier: Extracting and matching web query
interfaces. In ICDE, pages 1098–1099, 2005.

[15] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[16] P. G. Ipeirotis, F. Provost, and J. Wang. Quality
management on amazon mechanical turk. In HCOMP,
pages 64–67, 2010.

[17] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, pages 3363–3372, New
York, NY, USA, 2011.

[18] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The vertica
analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, Aug. 2012.

[19] J. Madhavan, D. Ko, L. Kot, V. Ganapathy,
A. Rasmussen, and A. Halevy. Google’s deep web
crawl. PVLDB, 1(2):1241–1252, Aug. 2008.

[20] A. Parameswaran, N. Dalvi, H. Garcia-Molina, and
R. Rastogi. Optimal schemes for robust web
extraction. PVLDB, 4(11), 2011.

Algorithm 2 UpdateTableScores

Input: answers, tables
Output: estimated table scores
1: for all table ∈ tables do
2: good← 0
3: total← 0
4: coveredXs← {} //holds example x’s appearing in the table
5: for all answer(x, y) ∈ table do
6: coveredXs← coveredXs ∪ {x}
7: score←GetScore(x, y)
8: if IsMax(score, x) then
9: good← good+ score

10: total← total + max
y,(x,y)∈asnwers

score(x, y)

11: weightsunseenX←
∑

x/∈coveredXs

(
max

(x,y)∈answers

(
score(x, y)

))
12: SetScore(table, α · good+table.prior∗(weightsunseenX)

total+weightsunseenX
)

[21] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu.
Data curation at scale: The data tamer system. In
CIDR, 2013.

[22] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: Entity augmentation and
attribute discovery by holistic matching with web
tables. In SIGMOD, pages 97–108, 2012.

APPENDIX
A. UPDATING SCORES WITH EM

Algorithm 2 gives the details of the implementation of the
maximization step in Algorithm 1. The score of a table is
determined by the ratio of the sum of the weights of correct
examples to the count of all examples found in the table.

For each new example generated by the algorithm, we as-
sign a weight equal to the answer score (line 7) computed in
the last iteration. Only original examples maintain a score
of 1.0 because they are provided by one user. DataXFormer

exploits the functional nature of the transformation by con-
sidering the candidate answer with the maximum score as
the correct one (line 8), in order to limit the size of the query
results in the next iteration.

We assign a default score for the examples that do not
occur in the table to estimate the accuracy of the table on
these examples. Finally, the score of each table is multiplied
by a smoothening factor α slightly less than 1.0 (line 12) to
prevent producing zeroes when calculating answers scores, as
explained below. This factor also represents the uncertainty
about the rest of the table, resulting from the ambiguity in
transformations and table dirtiness.

Algorithm 3 shows the expectation step. We make the
simplifying assumption that error rates of the tables are in-
dependent, which allows us to calculate the estimated prob-
ability that a value y is the transformation of a value x by
a simple multiplication. For every value x in X, the proba-
bility that y is the transformation of x is computed as the
product of the probability of correctness of each table t that
supports (x, y), estimated by the score of the table score(t),
and the probability of each table t′ listing another value be-
ing wrong, estimated as 1− score(t′), where score(t) is the
estimated error rate of the table t (lines 4 to 11). We also
consider the possibility that all tables are wrong and that
none of the provided answers for this x is correct. The es-

Algorithm 3 UpdateAnswerScores

Input: answers, tables
Output: estimated answer probabilities
1: for all x ∈ X do
2: A← answers.getAnswers(x)
3: scoreOfUnknown← 1
4: for all table ∈ answers.getTables(x) do
5: scoreOfUnknown← scoreOfUnknown · (1− table.score)
6: for all (x, y) ∈ A do
7: score(x,y) := 1
8: if table supports (x, y) then
9: score(x, y)← score(x, y) · table.score

10: else
11: score(x, y)← score(x, y) · (1− table.score)
12: sum← scoreOfUnknown+

∑
(x,y)∈A

score(x, y)

13: scoreOfUnknown← scoreOfUnknown/sum
14: for all (x, y) ∈ A do
15: score(x, y)← score(x, y)/sum

timated probabilities are then normalized by dividing them
over the sum of the scores of the possible answers as well as
the score of the event that none of the answers are correct
(lines 12 to 15). The scores are normalized to form a prob-
ability distribution, with the highest score being used as an
example for the next iteration, with its probability as the
weight. Recall that table scores are multiplied by α to avoid
zeroes when multiplying probabilities.

B. QUERIES COVERED BY DataXFormer
Table 3 contains in the first column the queries we con-

sidered for the experiments in Section 6.2. The subsequent
columns denotes whether the transformation was covered
by only one table or multiple tables had to be combined,
whether the transformation was covered by a Web form,
whether the found Web form was wrapped, and the obtained
recall, respectively.

Table 3: Queries

Query
Tables
found

Form
found

Form
wrapped Recall

Fahrenheit to Celsius no yes yes 1.0
miles to km no yes yes 1.0
pound to kg no yes yes 0.8
USD to EUR no yes yes 1.0
zip to state multiple yes yes 0.6
zip to city multiple yes yes 0.34
UPS tracking
to address no yes yes 0.2
english to german no yes no -
swift code to bank multiple yes yes 0.6
hex to RGB single yes no 1.0
ISBN to publisher multiple yes yes 0.8
ISBN to title multiple yes yes 0.8
ISBN to author multiple yes yes 0.8
ISSN to title multiple yes yes 0.8
ip adress to country no yes yes 1.0
domain
to primary ip no yes yes 1.0
sentence to language no yes no -
text to encoding no no no -
Gregorian to Hijri no yes no -
CUSIP to company no yes yes 1.0
CUSIP to ticker multiple yes yes 1.0
symbol to company multiple yes yes 1.0
iban to bank name multiple yes yes 0.7
location
to temperature no yes yes 1.0
location to humidity no yes yes 1.0
car plate to details no yes no -
country code
to country single no no 1.0
ascii to char single yes no 1.0
car model to brand multiple no no 1.0
country to demonym single no no 0.76
country to language single no no 0.66
country to currency single no no 0.19
company to BBGID no yes no -
patent ID to name multiple yes no 0.4
city to long/lat multiple yes no 1.0
entity
to wikipedia link no no no -
entity
to google graph id no no no -
person to twitter id multiple no no 0.2
ip to domain no yes yes 1.0
company to CEO no no no -
company to industry multiple no no 1.0
US standard
to metric single no no 1.0
fractions to decimals no yes yes 1.0
country to code single no no 1.0
State to state abbrv single no no 0.95
time zone to abbrv multiple no no 0.9
city to country multiple yes no 0.6
airport code to city multiple yes yes 0.8
RGB to color single yes no 1.0
ASCII to unicode single no no 1.0

