Data Stream Warehousing in Tidalrace

Theodore Johnson
AT&T Labs - Research
johnsont@research.att.com

ABSTRACT

Big data is a ubiquitous feature of large modetermises. Many
organizations generate huge amounts of on-linesireg data —
examples include network monitoring, Twitter feedisancial

data, and industrial application monitoring. Makieffective use
of these data streams can be challenging. While Sé&ream
Management Systems can provide support for rea-gierting
and data reduction, many applications require cerighalytics on
a data history to best make use of the streams.

We have been developing technologies fdata stream
warehousing starting with the DataDepot [14] system. A data
stream warehouse continually ingests data streams\putes
complex derived data products, and stores long kestories. To
take advantage of new technologies, we have desélapnext-
generation data stream warehousing system. Inpijser we
describe theTidalrace system, our motivations for developing it,
and architectural features of Tidalrace that suppata stream
warehousing.

1. INTRODUCTION

Modern applications continually generate large wuws of

streaming data, ranging from web clicks to finahigcensactions to
instrumentation of industrial processes. Makinfeaifve and
beneficial use of these feeds is the focus of Big Data” field. A

significant aspect of the value of streaming datisi immediacy.
If the data can be processed and analyzed raghitymanaging
entity can take advantage of emerging opportunitieseact to
critical alerts.

Over the last decade, Data Stream Management Sy$E&MS),

such as Borealis [1], GS Tool [7], Streambase [38)rm [40], and
Spark Streaming [38] have emerged to perform rppdessing of
data streams. These systems generally operaterimeny and have
little permanent storage. However, many applicetioequire
access to historical as well as real-time data.

For example, the Argus system [44] is designedeteat end-to-
end service anomalies in the network of a verydahgternet
Service Provider (ISP). Argus detects subtle seragnomalies,
such as excessive TCP retransmissions, by comptmngurrent
state to historical trends.

Traditionally, data warehouses operate on an atenm data
loading / data querying cycle. Data collected dgroperating
hours is gathered and, when stable, loaded intordrehouse.

This article is published under a Creative Comméttsbution

License(http://creativecommons.org/licenses/by)3.0/ which

permits distribution and reproduction in any mediasnwell as
allowing derivative works, provided that you attrib the original
work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systé&asearch
(CIDR '15) January 4-7, 2015, Asilomar, CalifornizgSA

Vladislav Shkapenyuk
AT&T Labs - Research
vshkap@research.att.com

During this process, querying is disabled. Whiies tmode of
operation permits optimized data loading [11]sislow to make
data available. Even moving from nightly data logdto e.g.
hourly data loading is not satisfactory to perfamssion critical
operations such as network troubleshooting.

The needs of some web applications (Facebook, Amaett.)
have led to real-time systems fignaturecollection. Data streams
can be considered to be collections of records rgéed by
collections of entities. Records of a particulatity are gathered
together and summarized as the entity’s signatustceaming
updates of signatures have been used for fraudtaetg6], and
are well suited to representing a customer’s ictéya with a web
site (e.g. shopping cart, friends list, etc.). c8ithe signatures are
easily partitioned using the entity’'s ID, they che scalably
implemented using distributed key-value stores. idteresting
example of this kind of system is Muppet [26], whiombines a
DSMS front-end with a distributed key-value stoaelk-end.

However, many applications require complex anadytin/olving
wide-ranging data fusion and aggregation. For @temthe
Darkstar data warehouse [23] loads hundreds of stetams and
maintains more than two thousand tables with res¢-tdata
loading and long-term histories. This data streaarelvouse, which
is built on top of DataDepot [7], supports netwarkiresearch as
well as real-time alerting and troubleshooting agpions for
AT&T network operations. As discussed above, eigryenerally
requires access to both real-time and historicala d@4];
troubleshooting alerts requires seamless accessrtent, recent,
and historical data. A similar tool is PRISM [3@jhich monitors
the network for service disruptions due to mainteaactivities.
Darkstar has also supported long-term data minungjes, such as
G-RCA [12] (Root Cause Analysis of network problg¢nasd
studies of IPTV set top box reliability [43].

While we are most familiar with networking applicets, many
other big data applications, some recently disclgséhe popular
press, have similar requirements.

¢ Semiconductor manufacturing: Tight control of the
manufacturing processes and fast response to #erts
critical for modern semiconductor manufacturing.s A
reported in the popular literature [21], Applied teldals
has developed a suite of tools [2] for monitorimgd a
alerting of semiconductor manufacturing facilitieg\
14nm fabrication facility is expected to generat84TB
per year from a disparate collection of sensoastie

e Industrial Internet: More generally, large-scale
manufacturing requires tight control of manufactgri
processes and supply chains. General Electric has
recently announced a focus on organizing and aimajyz
the data streams produced in an industrial seftiip

We argue that large-scale data stream warehousimpe greatly
improved by adjusting the notion of consistencyt thrae expects

from the warehouse. Instead of requiring some typstrong
consistency, the system should just tryntake progress in the
stream This principle applies to the base tables (whiehsourced
directly from the incoming streams) and also to dieeived data
products (i.e., materialized views). For examplee Figure 1.
Base tables R and S are sourced from externahsétesnd table T
is defined to be their join. When new raw dataSoarrives, base
table S can make progress (1). Since S has beendex, T can
also be scheduled for an update extending its pssgi2). As long
as the system has adequate resources and corntiadafinces a
table to catch up with its sources, a user willdide to get a
consistent view of the (hopefully recent) past.

Table R source data

N
\
\

\ Base table R
v

Table S source data

Base table S

l ()

T=RIS

Figure 1. Making progressin the stream.

This approach to streaming data management is lpeorgoted in
the popular press, notably by Marz and Warren B[These
authors argue that data stream analytics systembecafficiently
and readily built by abandoning strong consisterary instead
using a “make progress in the stream” approaches&tauthors
suggest that large-scale stream warehousing systamsbe
constructed from open-source tools including Stokadoop,
Cassandra, and Hbase. However, these efforts tiaddress
significant issues of data semantics, view mainteaaand query
optimization that we discuss in this paper.

1.1 Tidalrace

We have been developing data streaming warehoussisgms
since 2005, and have built very large networkingliaptions on
top of them. One prominent result is the Darksgad] [streaming
data warehouse that is used to support networkesgarch,
network operations, and real-time network troubdesimg.
Darkstar was built on top of the DataDepot systédj;[however
we found it increasingly difficult to incorporatégsificant new
features into the legacy code base.

We have embarked on a project to develop a nexérgéon stream
warehouse, Tidalrace, to support new and more demanding
network monitoring and maintenance applicationshiwitAT&T
Some of the more significant features and optirépatinclude

e Support fotemporal consistency

¢ Incremental in-the-past updates using partitenisions
e Streaming updates to valid-time temporal tables.

« Partition re-organization

¢ Partition-wise optimization

¢ Distributed storage and execution

We also intend to use the opportunity provided biyeah-slate
approach to experiment with novel query processeafniques
and optimizations. In this paper, we describe thganizing
principles behind Tidalrace, how Tidalrace is stuved, and its
more significant features and optimizations.

1.2 Related work

In addition to DataDepot [14]and the works of Marmd Warren
[31][32], several other projects have approachedptoblem of
data stream warehouses.

One of the earliest descriptions of a stream wared@s Moriae [3]
which developed a history-enhanced event detectigstem.

Moriae used a matching engine to determine wheilasipatterns
occurred in the past to improve the system’s attititmatch current
events. The Darkstar application Argus [44] usesasn history to
identify network anomalies. An early proposal tport hybrid

querying of live and archived streams is OSCAR, [Hlilt on top

of TelegraphCQ. FastBit [36] takes a similar apgglg using
bitmap indices to accelerate queries. Relate@sysinclude latte
[42], HYPE [34], and DejaVu [9] which has been implented on
top of MySQL and extensively tested.

Truviso [24] is a warehousing system that supporéserialized
views over continuously loaded data. We expand thogir
innovation ofrevisionsinto a more general mechanism.

The Tidalrace system described in this paper isdam our
previous DataDepot [14] stream warehouse and operences
with supporting Darkstar [23] and its applications.

These systems have been built on top of DBMS stér@sever
using a DBMS is not a requirement. Nova [33] &ystem built on
top of Hadoop and Pig to automate workflows. Nov#l
propagate delta updates from raw data sources rivededata
products; the authors give an example of the wovkfirom RSS
news feeds to a deduplicated set of articles. Woekflow
scheduling uses update triggers to propagate ftesde

Our approach to data stream warehousing is similspirit to that
of Marz and Warren [31][32]. They suggest an apphowhich
uses cloud-friendly append-only files. Complexlgiies can be
supported by the equivalent of materialized viemsyw derived
data product segments get computed when their soiattles
advance. Marz and Warren also argue that dedegal products
do not require extensive replication since theluga can always
be recomputed from the base data. These authcogniee the
differences betweesventdata and¢onditiondata (as we discuss in
Section 4.4), and propose an append-only mechafuisistoring
valid-time temporal tables.

Our approach to building a data stream warehouseahsimilar
philosophy, but with a greater emphasis on supglygemantics,
especially those which enable users to make sdnsenporarily
inconsistent data, and to enable performance em@nc
optimizations. Especially notable differences uld:

« Explicit support and optimizations for late-arrigidata,
which is universal in large-scale data steam wareé®
[14][24][29].

¢ Explicit support fotemporal consistendisection 5.3).

¢ A mechanism for streaming updates to valid-time
temporal tables which supports efficient indexedeas
(Section 4.4).

2. Data Workflow

To motivate our approach, we describe a very sinmgivork
management example application, shown in FigurdR2aw data
flows from external sources to be loaded into habkes, which are
then available for queries. In this case, the tvause loads Twitter
feeds, active round-trip-time measurements fromb@soin the
network, and network link utilization data gathexéal SNMP.

While this data is useful in its own right, usualg want to derive
actionable information from the raw data. For eglmfrom raw
twitter feeds, we can remove personally identifyinfprmation
and apply textual analysis to derive a streamibtgtaf customer
complaints about network service. We can then éoentustomer
complaints with the active measurement and linkzation feeds
to derive a streaming table of service alerts [4Bjoubleshooting
the service alerts might require real-time datanfrthe active
measurement and link utilization tables. The seraierts can then
be correlated with the customer complaint tablesdtive
knowledge about what types of network events hdnee most
significant impact on customers. Other tables e- burly and
daily aggregates of link utilization — are similatraditional OLAP
tables and are used for long-range network plannifige tables
which are populated with correlated and processad dre the
derived tablesand are implemented as materialized views.

O QO

Base Twitter | |Active Link
Tables feeds measurement| |Utilization
Customer
: Hourly
complaint
Derived aggregate
Tables Service
alerts -
Daily
aggregate
Sentiment
analysis

Figure2. Simple example application.

This simple example of a streaming data wareholigstrates

several significant points. First, while real-titoading of data into
base tables is important, the value of a data strearehouse
comes from its ability to correlate and process data into real-
time actionable information. This principle can $®en in Nova
[33], DataDepot [14], and the works of Marz and Year{31][32].

Maintaining real-time derived information requiresmechanism
that allows raw data to flow into the derived tabléhe “update
propagation” mechanism illustrated in Figure 1 pesven to be
effective. Finally, some tables need to be updatedapidly as
possible (in this case the bases tables and thiesealerts table),
while others should be updated when the data ssareestable to
enable long-term data mining (the Sentiment anslgsid the
aggregate tables).

1 Spanner [5] uses a globally synchronized real-taloek for
maintaining consistency, but is intended more fapp®rting
sophisticated applications than for large-scale dahing.

3. Organizing Principles
Our approach to data stream warehousing is motvayethree
main principles:

« On single-server systems, sequential writes arehmuc
faster than random I/O. Scalable (i.e., non-POSIX)
distributed file systems generally support write®ror
append-only files. Tidalrace uses write-once fites
ensure good update performance on single-server
installations and to allow the use of cloud-bagedage
systems.

¢ Inalarge-scale distributed system, maintainiegment
time-synchronized view of the system ranges from
prohibitively expensive to infeasiBle Instead of
requiring traditional strong consistency, we wills§
ensure that our tables continually make progreghen
stream.

e A data stream warehouse must provide timely and
eventually consistent data in order to be fullyfuke
However, in a large-scale stream warehouse, late-
arriving data is universal [14][17][24][29]. Oné the
principle services of a stream warehouse is toat®ll
newly arrived data by its timestamp and provideises
to ensure temporal consistency in query results.

To manage these conflicting concerns, one tendetdrawn to
particular design decisions

Timestamp Partitioning: Since newly arriving data is the
(generally) most recent data, a natural data orgéion is to use
horizontal partitioning on a timestamp attributdeally, all of the
newly arrived data falls into a new partition. Bvié old data
arrives (i.e., having a value in the timestampdfidlat is less than
the maximum of the timestamps of the existing rdsprthe
number of affected partitions is generally smaFurthermore,
expiring obsolete data is simple, as the oldest pattitions can be
simply dropped.

In general, every table is horizontally partitionadsing the
timestamp field value for the primary partitionipgedicate. Large
tables may use additional partitioning predicatasd each
horizontal partition may also be vertically padited (i.e. Section
4.1).

Write-once Files. In-place incremental updates are difficult to
support in large-scale data systems for severabrea For one,
random access in disk storage is much slower treguential
access (and large-scale storage systems stillreedisk storage).
For another, consistency in distributed storagelif§cult and
expensive to maintain. Distributed non-POSIX Blestems such
as HDFS only support write-once (or append-onlgsfi Finally,
derived data products maintained as materializedimight not
have a cheap and simple incremental update progedhey might
be e.g. machine learning models derived from antrarh R
program.

If the data stream warehouse is structured to curete updates to
a small collection of data partitions, then updaddsase tables can
be efficiently propagated to the derived data potsiwhich depend
on these base tables. We have found (in the Da@tO®oject
[14]) that the timestamp partitioning techniqueésy effective in

localizing updates in most cases. DataDepotwss write-once
files for derived tables. Because of the effickeand generality of
write-once files, Tidalrace uses only write-ondedifor its data and
indices (both base and derived tables).

Because of the prevalence of late-arriving datal (e frequent
need for fast answers), small incremental updatexisting
partitions are common. DataDepot would recompligsé small
partitions, which often introduces a significanefficiency. In
Section 5.2 we discuss a technique for overcontirsgnefficiency
that implements incremental updates using writeedites.

Loose Consistency: Traditional data warehouse operations place

a high value on the internal consistency of itsembHowever, the
demands of real-time information from a data stremanehouse
make the delays required for internal consistentgnable. Data
stream management systems operate in real-timayithih very
narrow time windows. A data stream warehouse |afisisarate
and widely-sourced data streams, with frequent e, and
cannot ensure operation within a narrow time window

To ensure real-time response when needed, databeustaded
whenever it becomes available; high-priority dedidata products
might be computed well in advance of lower-prioriigbles.
Transient errors in derived data products (duentmrsistency,
incomplete data, or even incorrect source datapeatolerated in
many cases when the need for real-time informagixeeeds the
need for consistency. However, these errors mustamsient and
labeled, and the user must understand and aceepnthications
of inconsistent data.

The temporal inconsistency inherent in the leadidge of data
stream warehouse tables generally makes the ttéorsalccommit
of individual records an avoidable overhead. Beeall correlated
streams must be verified to be up-to-date, thehbedenmit of
update propagation is a better suited mechanism.

Update Propagation: We have argued that two traditional models
for stream processing (data warehouse refreshraddional data
stream processing) are not suitable for data str@arehousing.
Instead, we will simply try to advance the baselesb(and
transitively, the derived tables) to catch up te #ource data
streams. Each advancement step propagates updadetsarget
table’s source(s) to the state of the target taddeillustrated in
Figure 1. Updates can be performed in a localiaed, therefore
readily distributed, manner. We have found thatadstream
warehouse refresh via update propagation to beiaffi and
reliable [14]. While a naive update propagatiogoathm can
suffer from the missing-update problem, we havdipbbd simple
and provably correct update propagation algorithmasir previous
work [22].

Multi-Version Concurrency Control: The need to ensure real-
time response recommends the use of Multi-Versiond@rrency
Control (MVCC). Long-running queries do not bloakdates,
updates do not block queries, and expensive update®t block
updates to their source tables. In previous wwekjdentified the
source of state data in a real-time table to benéwd to block
updates to the real-time table to compute an hoadgregate
summary [22].

In a single-writer scenario, MVCC can be inexpeeliv
implemented [35]. When using write-once files, the
implementation becomes simpler still [14]. We nthtat single-
writer does not mean that the update of a tablet lassingle
threaded, or even restricted to a single servdrrdther that the
computation have a single control and commit point.

Temporal Consistency: Continuous data loading generally entails
a significant degree of uncertainty about whethrenat all of the
data for a given time period has arrived, or wiltivee. The
traditional data warehouse approach is to waiaftime interval to
pass, after which it declares that all data haseatrand performs a
batch load. However a) for many alerting and tietdhooting
applications, having the most up-to-date data jsoitant enough
that some data inconsistencies can be toleratetl banlifferent
streams have different arrival latencies, and nieethe treated
differently — one waiting interval does not fit atreams. A short
delay time (e.g. one hour) is likely to return insstent results;
while a long delay time (e.g. one day) does novipi®real-time
answers.

A data stream warehouse needs keep track of thaptieal

consistency” of the streaming tables that it manstfl7]. Starting
at the base tables, the system tracks the arrfatew data and
determines the completion status of each partitibhe temporal
consistency of the base table gets propagatedetaépendent
materialized views. By maintaining and supplyingmporal

consistency information of the tables in the stremanehouse, a
data stream warehouse can maintain its tables usirgose
consistency model and still provide consistencyrauoiges to
users. We return to this topic in Section 5.3.

Temporal Description Tables: Streaming data is often thought of
as consisting of a stream efents- measurements that occur at a
specific time or during a short and well-definedeiperiod. Event
data generally needdescription data to supply the necessary
context for proper interpretation. Description alalescribes
conditions that last for a long time and are ofiapertain duration.
For example, an event data stream might consiseéraperature
measurements from sensors in a machine room. érhperature
sensors themselves do not provide much meaningfoiimation;
they need to be correlated with a description talileh specifies
where each sensor is located.

The need to provide context for event streams dasriany data
stream management systems to allow joins to relatiaata.
However, the relational tables are generstigpshotables. A data
stream warehouse cannot use snapshot tables fdestsiption
data because 1) the description tables changeyslwtlsteadily
over time, and 2) a data stream warehouse must déal with in-
the-past joins: late arriving data, catch-up onckém streams,
reloads of problem data. All description tablesstrie valid-time
temporaltables [25]. Further, description tables recasitveaming
updates (e.g., a temperature sensor gets movedharedore must
be maintained with timestamp-based partitioningairmanner
similar to that of event tables. We return to tbsic in Section 4.4

4. TidalraceArchitecture

A data stream warehouse generally does not neefeéeifis
underlying database architecture — systems have lagered on
top of the Daytona [14] and Postgres [24] DBMSs andop of
Hadoop/Pig [33]. We decided to take the opporjuaftthe full
system redesign to develop a data stream warelpssistem
which is specialized to our needs.

One issue that we needed to address was supporbdibr
distributed and non-distributed installations. @wperience with
Tigon-SQL [7] showed that an efficient and well-¢grDSMS can
processes petabytes per day in a single 2U sevesmall-scale
high-performance data stream warehouse systensentl for
supporting operations at the “edge” of the networtdowever,
global network operations require very large scaehouses,
necessitating scalable storage and computation. tiweeefore

needed to develop a system which works well both mall-scale
single-server installation and as a large-scaleibiged system.

A second issue we faced is the need for multi-laggusupport in
the definition of materialized views. While a larfyaction of the

derived data products we needed to support arélyasescribed

by SQL, others are not. For example, many netwgrkinalyses
require state-machine processing [17]. Other édridata products
might be created using statistical analysis tooth<R.

Query Compiler

Updates:/ Queries
=0 105

1

Tidalrace Storage Manager (D35M) ‘

l

| Storage (local / HDFS / D3FS) |

Tidalrace

Metadata
(Mysal)

Figure3. Tidalrace Architecture

Figure 3 shows a top-level view of the Tidalraceh&ecture. The
state of the system — the data dictionary, thetioecand status of
the data in index files, etc. — is stored in thdaliace metadata
database. The metadata database is used to pérforsactional
commits for update programs, and therefore muattbensactional
(ideally ACID) database. We use MySQL for thisdtion, though
other DBMSs can be used. The metadata datababe isnly
transactional component of Tidalrace, so transaatistorage and
synchronization does not present a scaling bottlene Our
experience with managing very large data streanelarses with
DataDepot [14] has shown that a metadata datablse few
megabytes can manage a warehouse of many terabyiks
thousands of tables, with an update rate whichyraseeeds a few
update transactions per second.

Tidalrace updates its tables via a batgbdate propagation
mechanism. Data sources generally supply datadkage®f new
records; these packages arrive periodically anthgorollections
of records. At the base tables, an update detesmimhich
packages haven’t yet been loaded into the base,tapacks the
records in the packages, and loads them into thgepibase table
partitions. When the update is complete, its ¢fface committed
by recording the progress in the source streanttendew data in
the base table via a transactional commit to thiadaga database.
For derived tables, an update program determines parts of the
derived table require an update, computes the rewevof the
updated partitions, and records the new partitmhthe derived
table via a transactional commit to the metadatabdese. In both
cases, partially executed updates have no effeti@state of the
warehouse.

Queries (including the computation part of a detiteble update)
read the state of the tables that they accese atalnt of the query,
providing read isolation. The effect is to implemhe type of
single-writer multiversion concurrency control [14fables can be
queried and updated concurrently, and a sourcee tabh be
updated concurrently with an update of a dependerived table.

An update schedulecomponent schedules updates to base and

derived tables. Updates can be periodic or triggyé€by the arrival
of new packages or the update of a source talif@suring that

high-priority tables are kept current while schéudlylall updates
and avoiding resource overutilization is a topic aantinuing
research [15].

Our experiences with the Tigon-SQL [7], Daytona][18nd
DataDepot [14] have shown that a compiled-queryesgsoffers
very high performance while still enabling intefaet ad-hoc
queries. We have developed a SQL compiler forlfada, which
compiles queries in less than 2 seconds. In aadit enabling
user access to Tidalrace-resident data, the quenpiter is also
the primary mechanism used to define materializeswws. The
result of a compiled view definition is a table idéfon in the
metadata database, and also a program which updages
materialized view.

The query and the view update programs accessracamanaged
data using the Tidalrace storage mana@&SM The storage
manager provides indexed and non-indexed accesslata
partitions, hiding details of the data format ahorage location.
Section 6 discusses D3SM in greater detail.

Tidalrace provides a collection of libraries thatierface with the
metadata database, and which perform functionetiedile update
propagation and transactional commit of updatedewvly created
data partitions. Therefore, there is no requirdrtteat materialized
view update programs be generated using our quempiter - for
example, one could define a materialized view asotlitput of an
R program. As in DataDepot [14], we can insteadegate a
wrapper update program that fetches data from fiédel presents
the data to an external view computation progrdmen foads and
commits the result into Tidalrace. Materializedwidefinition is
much easier using a built-in view definition langeabut the plug-
in capability of an external-view wrapper providegat is
sometimes a critical flexibility.

4.1 Data Mod€

Each table in Tidalrace contains a collection obrds; each record
contains a collection of fields. A field can be aromic type
(integer, date, string, etc.) or a structured tg@age, list, map,
etc.). Access to structured types depends on theepce of
serialization/deserialization methods for transmissto/from

D3SM, and the ability of the query language to psscthe type.

Every table in Tidalrace must havdimestampfield. The name
and data type of the timestamp field is an immw@adsbperty of a
Tidalrace table. The timestamp field is used foe primary
(horizontal) partitioning predicate of a table, aaters to the Posix
timestamp of the event occurrence time (or is a pé&iPosix
timestamps that define the valid time of a desimipt see Section
4.4). The timestamps allowed by Tidalrace are nmestrictive
than those allowed by DataDepot, but our experienite very
large stream data warehouses has shown that ey among
the thousands we have encountered can be readdgletbwith
Posix timestamps - with a considerable savings agichl
complexity. The Posix timestamp can be represeniibda variety
of data types — integer, date_time, date, or float,are converted
to 64-bit integers for internal use.

A table’s timestamp is used for its primary paotiing dimension.
Each partition is labeled with a timestamp randedp). An event
record r with timestamp ts is assigned to partipafpl < ts < ph
(partitioning of description tables is discussedsection 4.4). A
large table can have additional orthogonal dimerssicof
partitioning.

4.2 BaseTables

Raw data continually arrives, most often as a ctibe of files
(packageptransmitted from a data source. Raw data ioparally

loaded into abasetable — the period can be very small, e.g. 1

second. Base table loading performs two imporfanttions.
First, it extracts and transforms the raw datar &@mple, the
source data might be compressed and in a csv forBee tables
apply simple transformations to the source datayeding fields
into internal binary representations. Second, raeords get
collated into base table partitions according teirthimestamp
field. Ideally, most new records are collated inew partitions;
however some will collate into existing partitionBase tables are
select-project views over the raw data, and theyehsimple
incremental update programs: append the new recofialrace
uses write-once files, so existing files can't Ippended; instead
we create add-onrdvision) partitions to store the additional
records. These revision partitions are linked e original
partition, as described further in Section 5.2.

4.3 Update Propagation

Tidalrace supports deep and complex DAGs (Direcesclic

Graphs) of materialized views. An essential serv¢ a data
stream warehouse is to propagate updates fromatbe tlables to
all (immediately or transitively) dependent derivedbles.
Furthermore, we need to minimize the amount of mgmaation at
the dependent derived tables caused by an updatdase table.
Tidalrace uses thesource vectorprotocol [22] for update
propagation, which we summarize below.

Each derived table is dependent on one or nsorgcetables,

which might be base or derived tables. Metadatacated with

each derived table states the timestamp rangesofiece records
that can affect a derived table record with a palér timestamp.
Let D be the derived table, S be the source tale,D.ts, S.ts be
their timestamps. Tidalrace uses this pair of lgngfunctions to
determine the timestamp range of records of D &dteby a record
of S:

ts+aq;

S.
DtSZml J+b[

m
S.ts+ap

D.tsSml
m

|+

The parametem allows for the expression of discrete ranges (e.g.

encountered in aggregation), while parameteendb allow for
timestamp variation and band joindaNhen a partition of S is
updated, the affected partitions of D must be ugdiatThese can
be determined by using the bounding functions terdene the
timestamp range, (and thus the collection of derivable
partitions) which can be affected by data in therse table
partition. In most cases, the Tidalrace SQL coempitan
automatically determine these bounds for derivbtetadefined by
a query.

Another piece of table metadata isgenerationwhich increments
each time the table is updated. Each table gartisi labeled with
the generation is which it was updated. Derivétetpartitions are
also labeled with a compact representation of #meeation(s) of
the source table partitions they were computed frdine source-
vector protocol uses this information to deternifrtiee source data
for a derived table partition is more recent (fertlalong in the
stream) than the derived table partition, indiqatimat the derived
table partition should be updated.

By using the source-vector protocol and comparitigseurce
partitions to the derived table partitions, the aedpropagation
program can determine all derived table partitidghat need

updating. The decision of which derived tableifiarts to update
(usually, all) is left to the scheduler.

4.4 Description Tables

As discussed in Section 3, a data stream warehiogests two
types of streamseventstreams, which refer to observations at a
particular point in time or measurements over allserad well-
defined time interval, andiescription streams, which refer to
conditions that hold over long and indeterminateqais of time.

For example, a data stream warehouse for netwosdgppjcations
might receive a stream of SNMP measurements ofitineber of
bytes transmitted over a network link during a Swmé interval.
While this information has value, to be truly uddfuthe analyst
these records should be correlated with a datathaselescribes
the transmission speed of these links. Suppogeathmk has
transmitted 200 Gbits during the last 5 minutdéshé link speed is
1 Gbit/sec, then the link utilization is 67% (closesaturation),
while if the link speed is 10 Gbhit/sec, then thklutilization is 7%
(low).

Description tables change slowly, so they are oftedeled as
snapshot tables, e.g. [1]. However we have obdénva sampling
of description tables that a significant numberafs (1% to 5%)
are modified each day. A data stream warehousd often
perform in-the-past correlations: ad-hoc querig®-hrriving data,
catch-up processing on delayed streams, and loadingtables
with an e.g. 2-week initial data load. Therefoesatiption tables
must be stored aalid-timetemporal tables [25].

Conventionally, a valid-time temporal table is sthas a RDBMS
table which receives continual updates which amrgssed in-
place. Let description table D have fields (KV),where K is an
entity key (e.g. a customer ID), | is a valid timeerval [tl, th), tl <

th, and V is the value associated with key K durirtgrval I.

IP_address TimeRange Speed

43.2.1 [12:15,1:15) 1 Gbytes/minute
4321 [1:15,-) 2 Ghytes/minute
1234 [12:00,-) 5 Ghytes/minute

Figure4. LinkSpeed table.

Let's consider a simple concrete example. Suppbat table
BytesTransferred has schema (IP_address, ts, Bytdsgre
IP_address is the IPV4 address of the link interfegis the starting
time of the 5-minute measurement interval, and 8ig¢he number
of bytes transferred during that interval. To deiee the link
utilization, we need to correlate records in BytesiEferred against
the LinkSpeed table, shown in Figure 4. The keyoKthe
LinkSpeed table is the field IP_address (the IPddress of the
link interface), | is the field TimeRange, and e field Speed.
The record (4.3.2.1, [12:15,1:15), 1 Gbytes/minateans that for
timestamps ts such that 12:358s < 1:15, the interface at 4.3.2.1
had a transfer speed of 1 Gbyte per minute.

Given a record of BytesTransferred with value b@B31:05, 3
Gbytes), we can compute the link utilization bydfimg the record
l'in LinkSpeed such that b.IP_address = |.IP_addaesl b.ts lies
in the range I.TimeRange (i.e., bstabsthe interval . TimeRange).
In this case, b matches against record 1(4,3,212:15,1:15), 1
Gbytes/minute), so we can compute the link utilmato be 60%
(since 4.3.2.1 can transfer 5 Gbytes in 5 minutdé§1L0 minutes
later we receive the record b’(4.3.2.1, 1:15, 3 B8} we would
match this record against I'(4.3.2.1, 1:15, 2 Gbyteninute) and
compute a utilization of 30%.

Suppose that description tableD is updated withtd), where k is

a new key, v its value, and t1 indicates that leresd value v at
time t1. Then (k, [tp),v) is inserted into D. Next suppose that D
is updated with (k,v',t2). Then the original redés modified to be
(k,[t1,t2),v) and (k,[t2p),V') is inserted into D.

IP_address TimeRange Speed

4321 [12:15,1:15) 1 Ghytes/minute

4321 [1:15,-) 2 Gbytes/minute

1234 [12:00,2:05) 5 Ghbytes/minute

1234 [2:05,-) 10 Gbytes/minute
Figure5. LinkSpeed after an update.

For an example, suppose that the LinkSpeed tableigfre 4
receives an update (k=1.2.3.4, v=10 Gbytes/minst&,:05). This
update stabs the TimeRange of an existing recotdnikSpeed.
Therefore the TimeRange field of the existing 14.8ecord
bounded by 2:05, and a new record is added toittieSbeed table.
The result is shown in Figure 5.

Modifying existing records does not fit well withuowrite-once
architecture. We make use of a controlled degfeliplication to
enable streaming updates to valid-time tempordtsab

Recall that each data partition in Tidalrace is kadr with a
timestamp range [pl, ph); records with a timestamtpis range are
stored in this partition. Description tables havééme interval for
their timestamp; a record with interval [tl, thsi®red in a partition
with timestamp range [pl,ph) if [tl,th) intersedtd,ph). A record
in partition p with timestamp range [pl, ph) liedy[pl, ph). When
performing an interval-stabbing join (i.e., giveq () return the v
(if any) such that there is a record (k,[tl, thywhere tI<t < th),
search the partition p with timestamp range [p),qfcth that pk t
< ph.

This type of data organization has several benefid® updates do
not affect old partitions, description tables a@niaged in the same
way that event tables are, and old data is easjlirexd by dropping
partitions. However, the benefit comes with a Sigant cost — a
space blowup in the storage of the descriptionetabif we cut a
new description table partition once per day (@gmight receive
a new current-snapshot once a day), then stor2xyear history
requires a 730X space blowup.

We have found that description tables are genenallgh smaller
than event tables, so some degree of duplicaticacéeptable.
Furthermore, we can merge old and stable desaniptable
partitions into partitions which span a much largeerval. We
have already implemented this type of partition gimeg in
DataDepot [14]; its implementation in Tidalrace part of our
partition maintenance procedures, as describeceatich 5.1. A
730X space blowup can easily be brought down tcaaageable
10X blowup, depending on how fast the source dataimes stable
(see Section 5.3). Finally, small and incremenfadates can be
handled with partition revisions (see Section 5.2).

4.5 Table Segments

Our experience in managing large data stream wasgsohas
shown that schema change is a continual headagheommon
practice in data warehouse management is to inclddexmy”
fields in a large table. These fields can be resthas new fields
are added to the table, avoiding a massive restingt operation
for the historical portion of a large table. Wekmase of the highly
temporal nature of a streaming table to enable mymachema
change.

In Tidalrace, a table is partitioned insegments The invariant
properties of a segment are the fields (names atd @ypes),
indices, and defining query or program (for derivedles). The
only invariant property of a table is its name @&adimestamp field
— which must exist in every segment. Each segnhast a
timestamp interval [sl, sh) which defines the regid validity for

a segment: each partition in a segment has a timgsinterval [pl,
ph) which is contained in [sl, sh), and the collattof segment
timestamp intervals partitions the table’s datadein.

The primary purposes of a segment are to desdnibevailable
fields in the segment’s partition, and to desciiitmsv to access
missing fields (either treating them as NULL valwessupplying
default values). For example, suppose that in etabl
CustomerPurchaseHistory, in segment 1 the fields (atring
Customer, string item, int ts). After gatheringtaldor a long
period, the analysts want to add an additionad fi#ling Store. The
location is added for segment 2, with a correspmndhange in the
defining query.

Next, the analyst poses an aggregation query, @igupy
Customer and Store. This query can cross segnoemidaries by
supplying a default value (e.g. the empty stringNait Available”),
as is common practice.

Changes in indices can also cause expensive resings of
existing tables. By specializing segments withgbeof supported
indices, indices can be added and dropped withesitucturing,
and queries can still seamlessly cross segmentdanies. The
query plan will in general need to be specializetthe data segment
— an access plan index available in segment 2 diwtegment 1 is
valid only for segment 2; a different plan is reqdifor segment 1.
Multiple access plans are supported by Tidalrapaition set
processing, as described in Section 5.5.

5. Optimizations

The efficient functioning of Tidalrace relies oncallection of
optimizations, which are enabled by the basic Tats
architecture. We describe some of these optinaizatiin this
section.

5.1 Partition Reorganization

Data warehouses that ingest real-time data feedlsaive them
for long time windows face a tension in the methoslsd to store
the data. Fast updates are best served by wiiteiapd storage:
row-oriented, small uncompressed partitions. Hawethe
maintenance of a very large warehouse can be begtdsby read-
optimized or storage-optimized formats. A techeithat has been
used is to transform the storage format of a dat#itipn when
enough time has passed that the data has becorhée sta
[14][27][37].

The use of file-oriented single-writer multi-versi@oncurrency
control (see Section 4) allows the reorganizaticstable partitions
to occur as a background task (a partition updatdlicts with a
partition reorganization, so the reorganized partitmust be
stable) with no impact on data loading or queryindata
reorganization tasks can be scheduled as low-pyitesks that
execute as time permits and during off-peak hodise types of
table reorganization that can be performed include:

¢ Partition merging. Frequently updated tables ast b
served by small partitions to minimize partition
rebuilding and index construction due to updates.
However, opening many small partitions is ineffitiéor
queries, and a very large number of partitions gdaa
burden on the metadata database. The space oderhea

description tables (see Section 4.4) can be greatly In[24], the only tables that can have revisionichare aggregation

reduced by merging stable partitions.

e Column-oriented storage: While row-oriented storage

allows for fast updates, column-oriented storageatger
many benefits, most notably reduced I/O cost whép o
a few of many fields are accessed, and the potdntia
aggressive compression.

e Compression: While fast updates are best suppbsted
uncompressed storage, stable older data partsiomsd
be compressed to reduce storage and 1/O transéés.co
Old archival data partitions which are infrequently
queried can be aggressively compressed.

e« Storage hierarchy: New data is generally the most

frequently accessed, and should be stored higthen t
memory hierarchy (RAM disk or SSD) while older data
can be migrated to disk storage.

5.2 Revision Partitions

A key distinction between a DSMS and a data streanehouse is
the need to load and propagate late-arriving dath [The primary
mechanism in Tidalrace and related systems [248iéaling with

late-arriving data is to recompute the affectedifgans of derived
tables. However, partition recomputation can bezprohibitively

expensive for large tables which experience fretjlata arrivals.

A method for the efficient processing of late-amfy data was
proposed for the Truviso system [24], which we gadktition
revisions The idea is to process and summarize updatéseto
source data, to allow query-time correction of etiopartitions.

With an abuse of notation, let D be a derived tdiefined by query
Q over source(s) S, i.e. D=Q(S). Suppose thaether programs
P and R such that

Q(S+AS) = P(S,R4S)).
Then alongside S we can storeABf and combine S and &%)
using P at query time. If RE) is small and P is fast, then storing
therevisionR(AS) is more efficient than recomputing D.

When phrased in terms of table partitionsaachor partitionis a
regular partition, computed using query Q.rekision partitionis
computed using R. In the metadata database, iparti¢visions
inherit the anchor partition’s properties (e.gmestamp range,
source vector [22], etc.), but are marked as beawisions, and
have their own generation metadata (see Sectioh 43Bhe
collection of revisions to an anchor can be thougihts being
chained to the anchor, as illustrated in Figure 6.

Derived Table D

) . Anchor dep=5
Generation 3 Generation 4 Generation 5 Generation 6
f
Revision dep=7
Generation 6 SRR
SN
DN
\
Source Table S R
\‘ ‘\
1
i G tion 4 Anchor Vo)
Generation 3 eneration Generation 5 | | Generation 7 .
LY 1 ,'
| ;Y
a
Revision S
Generation6 [~ -7 7777 /'

Revision -7
Generation 7

Figure 6. Partition anchorsand revisions

tables which reference associative aggregates drtlg. programs
P and R are derived using the well-known sub-aggesand super-
aggregate technique [28]. However, many definingriggs have
simple P and R programs — for example selectioj#ption
queries. In Section 4.2, we describe how updatexisting base
table partitions use the revision technique. Btd#es are a
projection view of the raw data: the program Rrigjgction query
Q and program P takes the union of the anchorlaadavision.

By representing updates to existing base tablétipag using the
anchor/revision technique, we represent the deltag base table
in a readily accessible form. In Figure 6, thasiens in the source
table S are explicitly tracked. After th& Gipdate to D (creating
the anchor with generation 5), the source S has additional

updates, creating revisions with generations 6 anméspectively.
The next time that D is updated, the update prdétocan observe
from the anchor partition’'s metadata that it hdsdata up to

generation 5 of S. The corresponding anchor partiof S has
generation 5, but also has two revisions with gatieen 6 and 7.
Instead of recomputing the anchor partition of [, @an compute
a revision using program R on the generation 6 gereration 7
revisions — creating a generation 6 revision to dhehor. The
anchor and its revision now contain data up tosieni 7 of the

source S. This explicit representation of deltesaas up to chain

the revision technique arbitrarily far up the dedv table

dependence DAG, subject only to the defining gqsehaving

suitable P and R programs.

In addition to selection/projection and aggregatjoeries, we can
define inexpensive P and R programs for the quenbgh
maintain the valid-time description tables, and farter-join
queries in which the outer join is a foreign-keyptamary-key join
— which are commonly used to join event data t@djgson data.
In fact, the need to support incremental updatdssgaription tables
has been a major motivation for developing revigantitions in
Tidalrace, given their prevalence in data streamehauses.

The need to maintain revisions and to apply progPaat query

time is an overhead which is acceptable for thivagtortion of a

table, but can which can be eliminated for stalatad Revision

flattening is one of the partition reorganizationgrams we run as
a maintenance procedure (see Section 5.1).

5.3 Temporal Consistency

In our development of data stream warehouses, gueeahat one
cannot expect to obtain a consistent “now” snapshtitne of the

state of the system. Ignoring data quality isfoeshe moment,

one can only hope to obtain a snapshot view ofsgfséeem up to

sometime in the recent past. A major service ofata dstream

warehouse is to inform the users of what partefdatabase (e.g.
how recent) are suitable for their analyses. Furtlore, some
analyses need data which is more solid
Troubleshooting queries will generally demand thesnrecent
data possible, while data mining queries genenatyire high-
quality time-synchronized data. Alerting queriab ih between.

In our discussions of warehouse maintenance proeegdwe have
often used phrases along the lines of, “when thiipa is stable”,
for example in the context of partition reorganiaain Section 5.1.
The system needs a mechanism for determining omting
stability — meaning that a partition is not expdcte be updated
ever again. The meaning of stability for data rreaiance is related
to the meaning of suitability of data for data mini

Some derived tables perform expensive computator®mpute
partition values — large-scale aggregation, datangj etc. Itis

than others.

generally desirable to wait until the source datstable before
triggering updates to partitions in expensive datitables. If the
defining query does not have efficient P and R @ots, one
cannot use the partition revision technique (seti@e5.2), so the
ad-hoc technique of “wait until 5 minutes after toar to compute
hourly summaries” still leads to frequent expensteenputation
due to late arriving source data.

In a large scale data stream warehouse that inpesidreds of
distinct data feeds obtained from worldwide souroessingle rule
can be applied to judge the stability of each &f dlata sources.
Data streams tend to have individual periodicifeg. 5-minute
measurements vs. daily dumps), different laten@esa arrives 1
minute late vs. 1 hour late) and different degiedisorder.

Contrary to the first paragraph, many analysesagignore issues
of data quality, especially issues of data complkts. In some
cases one can estimate how much dataldarrive during a time
period, and mark a partition according to how catelthe

partition seems to be.

Determining stability and completeness at a basttipa can be
challenging; determining stability and completenassderived
table partitions computed from correlations ovenyntables is far
more challenging. We have previously publishechenework for
tracking and imputing temporal consistency [17], ickh we
summarize here.

In a data streaming systemunctuations[41] are used to track
progress and enable out-of-order processing [@22jt mechanism
for tracking temporal consistency adapts punctuoatito a data
stream warehouse setting. Instead of applyingpéostream as a
whole, we annotate partitions witlonsistency markersA simple
collection of consistency markers is

« Open: source data exists for the partition.
¢ Closed: no new data will arrive for the partition.
e Complete Closed, and all expected data has arrived.

Consistency markers are assigned to base tablégreatbased on
imputation rules which must be tailored for theééable. This
simple collection of markers has simple imputatiates for
derived table partitions: Open if some source iQpClosed
(Complete) if all sources are Closed (Complete).

A far richer collection of markers is generally vegd. For
example one might defin&VeaklyClosedand StronglyClosed
markers to support different types of users. Qavipus work [17]
has more details on the topic.

Tidalrace metadata about partitions includes thkeaon of
temporal consistency markers. We are currentlyaged in
researching imputation rules at the base tablesguie data
streams we ingest.

Our experiments with loading live data, as discdseeSection 7,
provide an insight into data latencies and detenginvhen base
table partitions can be labeled as closed. Inreiguand Figure 8,
we show the range of timestamps associated with datthe

Darkstar and edge network performance data, rasphc(these

data feeds are discussed in greater detail in @e@) . Each
package in the Darkstar feed is supposed to repras&00 second
range, however the minimum time range in the pagkdg 352
seconds. For the edge network data, each packaympposed to
represent a 60 second range, but the minimum tanger in the
packages is 166 seconds. Correspondingly, eachigrain the

Darkstar table has 1.1 revisions while each partiin the edge
table has 3.45 revisions (See Section 5.2 for audson of
partition revisions).

Time Range per Package
2500
2000

1500

Seconds

1000

500

0

Figure7. Timerangesfor Darkstar network performance
data.

Time Range per Package

800

Seconds
N
o
o

Figure8. Timerangesfor edge network performance data.

However, for determining when a partition can Hzelad closed,
the edge network data is far better behaved thab#hkstar data.
The 99" percentile of the package time range of the edge i$
600 seconds; the maximum is 601 seconds. There®can infer
that a partition can be marked as closed if it @epnts data 600
seconds older than the most recent. The medidkagacdange of
the bps data is 397 seconds, but th® gércentile is 973 seconds
and the maximum is 2196 seconds. Therefore wenfarthat data
that is 973 seconds older than the most recenbeamarked as
closed with a 99% certainty.

5.4 Distributed Storage and Queries

Tidalrace can make use of either local or distebugtorage for its
data and index files, as discussed in Sections d} Gn The

distributes storage only needs a put/get interface,can use a file
system such as HDFS which distributes the blocla file across
the cluster, or one such as Amazon Dynamo [8]dtwaes files on
specific servers.

When a user submits a query, data partitions cdietbked from
the distributed file system and cached in a lagakfystem for local
evaluation, as is done for HDFS. However, oneatzserve that a
distributed query system can be made more effidignghipping

subqueries to the servers that contain the daté@ipas, which

return query results that are combined for thernetasult. For
example, an aggregation query can be broken inbaggregate
queries sent to the remote servers, with a superggte query
combining the results.

Join-free queries can be efficiently implementecthgisremote
subqueries, but join queries still require datagfars to bring
together records correlated from different rangiabdes. We can
make two observations. First, in a data wareh@usystem, a large

amount of the query workload is generated by therigs used to
update derived tables. This workload is (relagiyeonstant, and
can be analyzed and used to optimize update peafzen[11] — in
particular, which tables are often joined togetheAdditional
information can be collected from query logs. $ebave have
observed that joins are almost always band joiatg ftom similar
time periods are usually more relevant than daga fdistant time
periods.

Since data from similar time periods tends to beetated with

each other, one natural way to distribute datgyibdshing on the
timestamp of the data. For example, data witmastamp in [1:00,
1:05) is assigned to servers 1, 6, and 11; [1:0f)o server 2, 6,
and 12, and so on. However, this assignment sclkeemeentrates
work on a few servers during their active time peri Other issues
arise: different data sets have different natueiaglicities and
partition sizes. A high volume event data stredm.@. web clicks
might be best partitioned into 1-minute segmentslera stream of
15-minute measurements has a natural periodicitypahinutes.

We can make use ab-location scheme® co-locate oft-joined
data. A co-location scheme is a combination ofdamtifier (e.g
XYZ), and a sequence number for the identifierX&&(5) is the
5t instance of co-location scheme XYZ. For everygdbthat uses
co-location scheme XYZ, there is a mapping fromusege
numbersto a timestamp rang#q, thi). This mapping is generally
a function of the formtlo(s) = a*s+b, with a corresponding
function forthi. A co-location identifier is used the key to hash
a collection of storage servers. If a partitiothviimestamp range
[plo, ph) overlaps the timestamp range of its co-locaticimesne

with sequence numberthe partition is stored at the corresponding

set of servers.

A table can be associated with multiple co-locatichemes, which
increases its degree of replication but also itslability for local
joins. We are developing co-location scheme opton
algorithms as part of our on-going research [1Bglated projects
include CoHadoop [10], which co-located HDFS-restddata;
however it does not have the mechanism of co-lonachemes.

5.5 Partition-wise Optimization

As we have discussed, joins in a data stream wasehare almost
always band joins on the table’s timestamp. Sithee primary
partitioning dimension is on the timestamp, a reltway to process
queries is to partition the work to be done ont#ise timestamps.
This type of partitioning fits naturally with datdistribution
through co-location schemes, and with the variaatessing that
can be required by table segments (Section 4.5).

Suppose that query Q joins tablestirough T. A partition setis

a collection of partitions PS = ({B...,{Pn}), where Ris a set of
partitions of table T The partitions in a partition set are joined in
one unit of processing. If the join has partitemis (PG ... P9),
the result of the join is the union of the indivadpartition set joins.

Suppose that the optimizer has determined a lefp-de@n order,
e.g. T, ..., Tn. Suppose further that the optimizer has analyzed
band-join predicates in the query to compute aectibn of

bounding functions between the timestamps of eabfet(e.g.
similar to the bounding functions in 4.3). A calien of partition

sets can be found by

1. Determining the collection of partitions referended 1,
P1.

2. Divide Plinto{R.y,...,PLm).

3. Foreachjfrom 1 though m
a. For each Tfrom k=2 through n

i. Use the bounding functions from 10 Tz .. k-1
to determine timestamp band fork, Tand
therefore R

There are a variety of interactions between tha@roper and the
selection of partition sets — duplicate access #otitpns,
minimizing memory use of hash tables, etc. Reaeotk on
incorporating horizontal partitioning into a cosisied optimizer
includes [20].

6. Storage M anager

The Tidalrace storage manager, D3SM, providessanating layer
between the query system and the actual data stordgdata
partition might be in local or distributed storageght be stored in
a row-oriented or a column-oriented format, and hmnidpe
compressed. The D3SM API requires that the questem specify
the fields and indices to be accessed, the stdsgme (local or
distributed) and the record layout (row-oriented @slumn-
oriented). D3SM will fetch and cache (in the ca$dlistributed
storage) and open the requisite files and thenegftesent a
uniform API for index and record access. By reqgirthat the
fields and indices be specified before partitiooess time, D3SM
can fetch and open a minimum number of files.

Our metadata database allows us to store a parfitianultiple
locations; each copy of the partition can use &eudift storage
system (e.g., local vs. distributed), and differstiorage properties
(e.g. row-oriented vs. column oriented). This dieatallows for
considerable flexibility in configuring a large tibuted
warehouse. For example, a server can load ane g&da locally
for fast access, as well as publish the data orstaibdited file
system.

7. Implementation Status

We have implemented a prototype version of Tid&naith initial
versions of the features described in this paperem for remote
query execution. Preliminary performance resultse a
encouraging:: data loading at 100k+ records pesrskper thread,
and aggregation at 500k records per second pedhre

We are evaluating Tidalrace by using it to builetelifferent data
stream warehouses. With the first stream warehowseare
evaluating Tidalrace for use with the Darkstar [@&]a warehouse.
This large-scale warehouse is built on a clusténgusiDFS for
distributed storage. We chose to focus on twocasuthat were
difficult to load into DataDepot. The first streaelivers about 2.5
million records every 5 minutes, related to intérmatwork
measurements. The second delivers a stream a@ystssages
from network elements, delivering about 13,000 résoevery
minute.

Both of these raw data sources need to be cordelai¢h
description tables describing the network confiora The
network measurements stream joins against two igéser tables
to provide context for the measurements (similath® scenario
described in Section 4.4). The Syslog table joimmirsst a
description table for data repair: some record€hmaissing server
names, so they are filled in by a lookup in thecdpsion table. Of
the three description tables, two are sourced fly daapshots of
an authoritative table, and one is source by daigpshots and a
stream of incremental updates.

The second stream warehouse processes high-spéedrine
measurements at the edge of the network. ThessumreEaents are
used to compute Key Performance Indicators (KRI$et used in
Darkstar, as well as other systems. Becausergenstwarehouses
must be situated near the networking equipmentangeaestricted

to using a small 2U server and local storage faretping the
warehouse. The data is delivered in four streaitisame package
delivered per minute per stream. On average, B80:€cords are
delivered per minute with peaks to 2.4 million netsoper minute.

Tidalrace performance is sufficient to load theagdtreams with
plenty of spare capacity. In the experimental B&kcluster, the
network measurement data is loaded at a rate 0080@¢ecords per
second per thread. This measurement includestiedd build one
index and to transfer the data and index to HDRSadocal file
system, the load rate is 110,000 records per squemitiread). The
Syslog records are loaded at a rate of 5000 reqmrdsecond per
thread — this low rate reflects a high cost toapttthe records from
their source. In the edge network warehouse, staehm is loaded
at a rate of 25,000 records per second per thread.

We built derived tables in both warehouses. In Berkstar

warehouse, we defined a derived Syslog table tedbpns data
repair by using a join against a description tafleis table updates
at a rate of 70,000 records per second per thieeldding the time

to build 4 indices and move the data and indicddD&S. In the

edge network warehouse, we build a derived talde plerforms

feature extraction and aggregation. This tableatgxiat a rate of
500,000 records per second per thread, includiegdst to build

one index.

8. Conclusions

We are developing Tidalrace, a next-generation ddteam
warehousing system. Our efforts in data streanelausing were
driven by the need to develop a highly responsat@ dystem to
support real-time network monitoring for applicatsaanging from
service quality management to network security dogiterm
networking research.

Data stream warehousing provides real-time datéingaas well as
long data histories and deep analytics. Realdvdata provides
many challenges: late-arriving data, highly hetermgpus data
arrival patterns and latencies, frequent changdatmschemas. To
address these challenges, we have been perforesegnch into
data stream warehousing technologies. These teobsiinclude
streaming description tables (Section 4.4), updatgpagation
(Section 4.3), schema change (Section 4.5), terhporsistency
(Section 5.3), incremental updates (Section 5.23stitfpn
reorganization (Section 5.1), partition co-locat{Section 5.4) and
partition-wise query planning and optimization (&t 5.5). We
launched the Tidalrace project to have a cleare statwhich to
implement these new techniques.

Data stream warehousing presents many interestialipages that
are open research areas: real-time scheduling, datdity,

temporal consistency, and query optimization arleve. One
motivation of developing Tidalrace as a new sysieno have a
platform with which to explore these research areas

9. REFERENCES
[1] D. Abadi et al.;The Design of the Borealis Stream
Processing Enginé€2roc. CIDR, 2005

[2] Applied Materials Techedge Prisn2013.
http://www.appliedmaterials.com/technologies/liyvéeched
ge-prizm

[3] M. Balazinska, Y.C. Kwon, N. Kuchta, D. Lee. Moriae

History-Enhanced MonitoringProc. Conf on Innovative
Data Systems Research (CIDR) 2007.

[4] S. Chandrasekaran, M. FrankliRemembrance of Streams
Past VLDB, 2004.

[5] J.C. Corbet et alSpanner: Google’s Globally-Distributed
DatabaseProc. OSDI, 2012,

[6] C. Cortes, K. Fisher, D. Pregibon, A. Rogé#ancock: a
language for extracting signatures from data strealDD
2000: 9-17

[7] C.D. Cranor, T. Johnson, O. Spatscheck V. Shikagen
Gigascope: A Stream Database for Network Applicetio
SIGMOD Conference 2003: 647-651

[8] G. DeCandia et alDynamo: Amazon'’s Highly Available
Key-value StoreProc. SOSP 2007.

[9] N. Dindar, P.M. Fischer, M. Soner, N. Tatb#fficiently
Correlating Complex Events over Live and Archived
Streams DEBS, 2011.

[10] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, Aekek,
J. McPhersonCoHadoop: Flexible Data Placement and its
Exploitation in Hadoop Proc. VLDB 2011.

[11] N. Folkert et al.Optimizing Refresh of a Set of Materialized
Views Proc. VLDB 2005.

[12] Z. Ge, J. Yates, L. Breslau, D. Pei, H Yan, D. Mtgs G-
RCA: A Generic Root Cause Analysis Platform foviger
Quality Management in Large ISP NetworR&E€M ACM
Conference on Emerging Networking Experiments and
Technologies, 2010.

[13] L. Golab, M. Hadjieleftheriou, H. Karloff, B. Saha.
Distributed Data Placement to Minimize Communicatio
Costs via Graph PartitioningSSDBM 2014.

[14] L. Golab, T. Johnson, J. S. Seidel, V. Shkapengtileam
warehousing with DataDepo8IGMOD Conference 2009:
847-854.

[15] L. Golab, T. Johnson, V. Shkapeny@calable Scheduling
of Updates in Streaming Data WarehoudB&E Trans.
Knowl. Data Eng. 24(6): 1092-1105 (2012)

[16] L. Golab, T. Johnson, S. Sen, J. Yate8equence-Oriented
Stream Warehouse Paradigm for Network Monitoring
Applications PAM 2012: 53-63

[17] L. Golab, T. JohnsarConsistency in a Stream Warehouse
CIDR 2011: 114-122

[18] R. GreerDaytona and The Fourth-Generation Language
Cymbal SIGMOD Conference 1999: 525-526

[19] Q. Hardy. G.E.’s ‘Industrial Internet’ goes bigNew York
Times 2013.http://bits.blogs.nytimes.com/2013/10/09/g-e-s-
industrial-internet-goes-big/

[20] H. Herodotou, N. Borisov, S. Babu. Query Optimiaat
Techniques for Partitioned Tables. Proc. SIGMODRR20

[21] J. Hruska.Applied Materials designs tools to leverage big
data and build better chip&xtremeTech, 2013.
http://www.extremetech.com/extreme/155588-applied-
materials-designs-tools-to-leverage-big-data-anittbu
better-chips

[22] T. Johnson, V. Shkapenyuldpdate Propagation in a
Streaming Warehous8SDBM 2011: 129-149

[23] C. Kalmanek et alDarkstar: Using Exploratory Data
Mining to Raise the Bar on Network Reliability and
PerformanceDRCN 2009

[24] S. Krishnamurthy, M.J Franklin, J. Davis, D. FariRa
Golovko, A. Li, N. Thombre.Analytics over Continuous and

DisContinuous (ACDC) Streams: The Truviso Approach
Proc. ACM Sigmod 2010.

[25] K. Kulkarni, J.-E. MichelsTemporal features in SQL: 2011
ACM SIGMOD Record 41.3 (2012): 34-43

[26] W. Lam, L. Liu, S. T. S. Prasad, A. Rajaraman, &cNeri,
A. H.i Doan:Muppet: MapReduce-Style Processing of Fast
Data. PVLDB 5(12): 1814-1825 (2012)

[27] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. \dér, L.
Doshi, C. BearThe Vertica Analytic Database: C-Store 7
Years Later PVLDB 5(12): 1790-1801 (2012)

[28] P. LarsonData Reduction by Partial Aggrgatioimtl Conf.
on Data Engineering, pg. 706-715, 2002.

[29] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, Thidson,
D. Maier. Out-of-order processing: a new architecture for
high-performance stream syster®¥/LDB 1(1): 274-288
(2008)

[30] A. Mahimkar et al.Rapid Detection of Maintenance Induced
ChangesProc. ACM Conference on Emerging Networking
Experiments and Technologies, 2011.

[31] N. Marz. Runaway complexity in Big Data and a Plan to
Stop It Slideshare, 2012.
http://www.slideshare.net/nathanmarz/runaway-corigle
in-big-data-and-a-plan-to-stop-it

[32] N. Marz, J. WarrenBig Data: Principles and best practices
of scalable realtime data systemiglaning Publications,
ISBN 1617290343, 2014.

[33] C. Olston, et alNova: continuous Pig/Hadoop workflows
SIGMOD Conference 2011: 1081-1090

[34] S. Peng, Z. Li, Q. Li, Q. Cherkvent Detection over Live
and Archived StreamsWAIM, 2011.

[35] D. Quass and J. Widor®n-line warehouse view
maintenanceSIGMOD 1997, 393-404.

[36] F. Reiss, K. Stockinger, K.Wu, A. Shoshani, J.M.
Hellerstein Enabling real-time querying of live and
historical stream dataSSDBM, 2007.

[37] V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. A2h,
Christof: Efficient transaction processing in SAP HANA
database: the end of a column store m@gtGMOD Conf.
2012: 731-742

[38] Spark Streaminghttps://spark.apache.org/streaming

[39] M. Stonebraker, U. Cetintemel, S. Zdorilke 8
Requirements of Real-Time Stream Process@M
SIGMOD Record 34(4) pg. 42-47, 2005.

[40] Storm.http://storm-project.net/

[41] P. A. Tucker, D. Maier, T. Sheard, L. Fegaras: Bitjslg
Punctuation Semantics in Continuous Data StredBfSE
Trans. Knowl. Data Eng. 15(3): 555-568 (2003)

[42] K. Tufte, J. Li, D. Maier, V. Papadimos, R.L. BeitiJ.
Rucker.Travel Time Estimation Using NiagaraST and latte
Proc. ACM SIGMOD Conf., 2007.

[43] . J. Wang, Z. Ge, J. Yates, H. Song, A. MahimkarZang
Analyzing IPTV Set-Top Box Crash&SM SIGCOMM
Workshop on Home Networks, 2011.

[44] H. Yan, et al.Argus: End-to-end service anomaly detection
and localization from an ISP's point of vieMFOCOM
2012:2756-2760

