
Data Stream Warehousing in Tidalrace

Theodore Johnson
AT&T Labs - Research

johnsont@research.att.com

Vladislav Shkapenyuk
AT&T Labs - Research

vshkap@research.att.com

ABSTRACT
Big data is a ubiquitous feature of large modern enterprises. Many
organizations generate huge amounts of on-line streaming data –
examples include network monitoring, Twitter feeds, financial
data, and industrial application monitoring. Making effective use
of these data streams can be challenging. While Data Stream
Management Systems can provide support for real-time alerting
and data reduction, many applications require complex analytics on
a data history to best make use of the streams.

We have been developing technologies for data stream
warehousing, starting with the DataDepot [14] system. A data
stream warehouse continually ingests data streams, computes
complex derived data products, and stores long term histories. To
take advantage of new technologies, we have developed a next-
generation data stream warehousing system. In this paper we
describe the Tidalrace system, our motivations for developing it,
and architectural features of Tidalrace that support data stream
warehousing.

1. INTRODUCTION
Modern applications continually generate large volumes of
streaming data, ranging from web clicks to financial transactions to
instrumentation of industrial processes. Making effective and
beneficial use of these feeds is the focus of the “Big Data” field. A
significant aspect of the value of streaming data is its immediacy.
If the data can be processed and analyzed rapidly, the managing
entity can take advantage of emerging opportunities or react to
critical alerts.

Over the last decade, Data Stream Management Systems (DSMS),
such as Borealis [1], GS Tool [7], Streambase [39], Storm [40], and
Spark Streaming [38] have emerged to perform rapid processing of
data streams. These systems generally operate in-memory and have
little permanent storage. However, many applications require
access to historical as well as real-time data.

For example, the Argus system [44] is designed to detect end-to-
end service anomalies in the network of a very large Internet
Service Provider (ISP). Argus detects subtle service anomalies,
such as excessive TCP retransmissions, by comparing the current
state to historical trends.

Traditionally, data warehouses operate on an alternating data
loading / data querying cycle. Data collected during operating
hours is gathered and, when stable, loaded into the warehouse.

During this process, querying is disabled. While this mode of
operation permits optimized data loading [11], it is slow to make
data available. Even moving from nightly data loading to e.g.
hourly data loading is not satisfactory to perform mission critical
operations such as network troubleshooting.

The needs of some web applications (Facebook, Amazon, etc.)
have led to real-time systems for signature collection. Data streams
can be considered to be collections of records generated by
collections of entities. Records of a particular entity are gathered
together and summarized as the entity’s signature. Streaming
updates of signatures have been used for fraud detection [6], and
are well suited to representing a customer’s interaction with a web
site (e.g. shopping cart, friends list, etc.). Since the signatures are
easily partitioned using the entity’s ID, they can be scalably
implemented using distributed key-value stores. An interesting
example of this kind of system is Muppet [26], which combines a
DSMS front-end with a distributed key-value store back-end.

However, many applications require complex analytics involving
wide-ranging data fusion and aggregation. For example, the
Darkstar data warehouse [23] loads hundreds of data streams and
maintains more than two thousand tables with real-time data
loading and long-term histories. This data stream warehouse, which
is built on top of DataDepot [7], supports networking research as
well as real-time alerting and troubleshooting applications for
AT&T network operations. As discussed above, alerting generally
requires access to both real-time and historical data [44];
troubleshooting alerts requires seamless access to current, recent,
and historical data. A similar tool is PRISM [30], which monitors
the network for service disruptions due to maintenance activities.
Darkstar has also supported long-term data mining studies, such as
G-RCA [12] (Root Cause Analysis of network problems) and
studies of IPTV set top box reliability [43].

While we are most familiar with networking applications, many
other big data applications, some recently discussed in the popular
press, have similar requirements.

• Semiconductor manufacturing: Tight control of the
manufacturing processes and fast response to alerts is
critical for modern semiconductor manufacturing. As
reported in the popular literature [21], Applied Materials
has developed a suite of tools [2] for monitoring and
alerting of semiconductor manufacturing facilities. A
14nm fabrication facility is expected to generate 140+ TB
per year from a disparate collection of sensor streams.

• Industrial Internet: More generally, large-scale
manufacturing requires tight control of manufacturing
processes and supply chains. General Electric has
recently announced a focus on organizing and analyzing
the data streams produced in an industrial setting [19].

We argue that large-scale data stream warehousing can be greatly
improved by adjusting the notion of consistency that one expects

This article is published under a Creative Commons Attribution
License(http://creativecommons.org/licenses/by/3.0/), which
permits distribution and reproduction in any medium as well as
allowing derivative works, provided that you attribute the original
work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research
(CIDR ’15) January 4-7, 2015, Asilomar, California, USA

from the warehouse. Instead of requiring some type of strong
consistency, the system should just try to make progress in the
stream. This principle applies to the base tables (which are sourced
directly from the incoming streams) and also to the derived data
products (i.e., materialized views). For example, see Figure 1.
Base tables R and S are sourced from external streams, and table T
is defined to be their join. When new raw data for S arrives, base
table S can make progress (1). Since S has been extended, T can
also be scheduled for an update extending its progress (2). As long
as the system has adequate resources and continually advances a
table to catch up with its sources, a user will be able to get a
consistent view of the (hopefully recent) past.

Table R source data

Table S source data

Base table R

Base table S

T = R S

(1)

(2)

 Figure 1. Making progress in the stream.

This approach to streaming data management is being promoted in
the popular press, notably by Marz and Warren [31][32]. These
authors argue that data stream analytics systems can be efficiently
and readily built by abandoning strong consistency, and instead
using a “make progress in the stream” approach. These authors
suggest that large-scale stream warehousing systems can be
constructed from open-source tools including Storm, Hadoop,
Cassandra, and Hbase. However, these efforts do not address
significant issues of data semantics, view maintenance, and query
optimization that we discuss in this paper.

1.1 Tidalrace
We have been developing data streaming warehousing systems
since 2005, and have built very large networking applications on
top of them. One prominent result is the Darkstar [23] streaming
data warehouse that is used to support networking research,
network operations, and real-time network troubleshooting.
Darkstar was built on top of the DataDepot system [14]; however
we found it increasingly difficult to incorporate significant new
features into the legacy code base.

We have embarked on a project to develop a next-generation stream
warehouse, Tidalrace, to support new and more demanding
network monitoring and maintenance applications within AT&T
Some of the more significant features and optimizations include

• Support for temporal consistency.

• Incremental in-the-past updates using partition revisions.

• Streaming updates to valid-time temporal tables.

• Partition re-organization

• Partition-wise optimization

• Distributed storage and execution

We also intend to use the opportunity provided by a fresh-slate
approach to experiment with novel query processing techniques
and optimizations. In this paper, we describe the organizing
principles behind Tidalrace, how Tidalrace is structured, and its
more significant features and optimizations.

1.2 Related work
In addition to DataDepot [14]and the works of Marz and Warren
[31][32], several other projects have approached the problem of
data stream warehouses.

One of the earliest descriptions of a stream warehouse is Moriae [3]
which developed a history-enhanced event detection system.
Moriae used a matching engine to determine when similar patterns
occurred in the past to improve the system’s ability to match current
events. The Darkstar application Argus [44] uses stream history to
identify network anomalies. An early proposal to support hybrid
querying of live and archived streams is OSCAR [4] , built on top
of TelegraphCQ. FastBit [36] takes a similar approach, using
bitmap indices to accelerate queries. Related systems include latte
[42], HYPE [34], and DejaVu [9] which has been implemented on
top of MySQL and extensively tested.

Truviso [24] is a warehousing system that supports materialized
views over continuously loaded data. We expand on their
innovation of revisions into a more general mechanism.

The Tidalrace system described in this paper is based on our
previous DataDepot [14] stream warehouse and our experiences
with supporting Darkstar [23] and its applications.

These systems have been built on top of DBMS stores; however
using a DBMS is not a requirement. Nova [33] is a system built on
top of Hadoop and Pig to automate workflows. Nova will
propagate delta updates from raw data sources to derived data
products; the authors give an example of the workflow from RSS
news feeds to a deduplicated set of articles. The workflow
scheduling uses update triggers to propagate the deltas.

Our approach to data stream warehousing is similar in spirit to that
of Marz and Warren [31][32]. They suggest an approach which
uses cloud-friendly append-only files. Complex analytics can be
supported by the equivalent of materialized views; new derived
data product segments get computed when their source tables
advance. Marz and Warren also argue that derived data products
do not require extensive replication since their values can always
be recomputed from the base data. These authors recognize the
differences between event data and condition data (as we discuss in
Section 4.4), and propose an append-only mechanism for storing
valid-time temporal tables.

Our approach to building a data stream warehouse has a similar
philosophy, but with a greater emphasis on supplying semantics,
especially those which enable users to make sense of temporarily
inconsistent data, and to enable performance enhancing
optimizations. Especially notable differences include:

• Explicit support and optimizations for late-arriving data,
which is universal in large-scale data steam warehouses
[14][24][29].

• Explicit support for temporal consistency (Section 5.3).

• A mechanism for streaming updates to valid-time
temporal tables which supports efficient indexed access
(Section 4.4).

2. Data Workflow
To motivate our approach, we describe a very simple network
management example application, shown in Figure 2. Raw data
flows from external sources to be loaded into base tables, which are
then available for queries. In this case, the warehouse loads Twitter
feeds, active round-trip-time measurements from probes in the
network, and network link utilization data gathered via SNMP.

While this data is useful in its own right, usually we want to derive
actionable information from the raw data. For example, from raw
twitter feeds, we can remove personally identifying information
and apply textual analysis to derive a streaming table of customer
complaints about network service. We can then combine customer
complaints with the active measurement and link utilization feeds
to derive a streaming table of service alerts [44]. Troubleshooting
the service alerts might require real-time data from the active
measurement and link utilization tables. The service alerts can then
be correlated with the customer complaint tables to derive
knowledge about what types of network events have the most
significant impact on customers. Other tables – the hourly and
daily aggregates of link utilization – are similar to traditional OLAP
tables and are used for long-range network planning. The tables
which are populated with correlated and processed data are the
derived tables, and are implemented as materialized views.

Customer

complaint

Twitter

feeds

Active

measurement

Link

Utilization

Service

alerts

Sentiment

analysis

Hourly

aggregate

Daily

aggregate

Raw

Data

Base

Tables

Derived

Tables

Figure 2. Simple example application.

This simple example of a streaming data warehouse illustrates
several significant points. First, while real-time loading of data into
base tables is important, the value of a data stream warehouse
comes from its ability to correlate and process raw data into real-
time actionable information. This principle can be seen in Nova
[33], DataDepot [14], and the works of Marz and Warren [31][32].
Maintaining real-time derived information requires a mechanism
that allows raw data to flow into the derived tables; the “update
propagation” mechanism illustrated in Figure 1 has proven to be
effective. Finally, some tables need to be updated as rapidly as
possible (in this case the bases tables and the service alerts table),
while others should be updated when the data sources are stable to
enable long-term data mining (the Sentiment analysis and the
aggregate tables).

1 Spanner [5] uses a globally synchronized real-time clock for

maintaining consistency, but is intended more for supporting
sophisticated applications than for large-scale data mining.

3. Organizing Principles
Our approach to data stream warehousing is motivated by three
main principles:

• On single-server systems, sequential writes are much
faster than random I/O. Scalable (i.e., non-POSIX)
distributed file systems generally support write-once or
append-only files. Tidalrace uses write-once files to
ensure good update performance on single-server
installations and to allow the use of cloud-based storage
systems.

• In a large-scale distributed system, maintaining a current
time-synchronized view of the system ranges from
prohibitively expensive to infeasible1. Instead of
requiring traditional strong consistency, we will just
ensure that our tables continually make progress in the
stream.

• A data stream warehouse must provide timely and
eventually consistent data in order to be fully useful.
However, in a large-scale stream warehouse, late-
arriving data is universal [14][17][24][29]. One of the
principle services of a stream warehouse is to collate
newly arrived data by its timestamp and provide services
to ensure temporal consistency in query results.

To manage these conflicting concerns, one tends to be drawn to
particular design decisions

Timestamp Partitioning: Since newly arriving data is the
(generally) most recent data, a natural data organization is to use
horizontal partitioning on a timestamp attribute. Ideally, all of the
newly arrived data falls into a new partition. Even if old data
arrives (i.e., having a value in the timestamp field that is less than
the maximum of the timestamps of the existing records), the
number of affected partitions is generally small. Furthermore,
expiring obsolete data is simple, as the oldest data partitions can be
simply dropped.

In general, every table is horizontally partitioned, using the
timestamp field value for the primary partitioning predicate. Large
tables may use additional partitioning predicates, and each
horizontal partition may also be vertically partitioned (i.e. Section
4.1).

Write-once Files: In-place incremental updates are difficult to
support in large-scale data systems for several reasons. For one,
random access in disk storage is much slower than sequential
access (and large-scale storage systems still require disk storage).
For another, consistency in distributed storage is difficult and
expensive to maintain. Distributed non-POSIX file systems such
as HDFS only support write-once (or append-only) files. Finally,
derived data products maintained as materialized views might not
have a cheap and simple incremental update procedure – they might
be e.g. machine learning models derived from an arbitrary R
program.

If the data stream warehouse is structured to concentrate updates to
a small collection of data partitions, then updates to base tables can
be efficiently propagated to the derived data products which depend
on these base tables. We have found (in the DataDepot project
[14]) that the timestamp partitioning technique is very effective in

localizing updates in most cases. DataDepot also uses write-once
files for derived tables. Because of the efficiency and generality of
write-once files, Tidalrace uses only write-once files for its data and
indices (both base and derived tables).

Because of the prevalence of late-arriving data (and the frequent
need for fast answers), small incremental updates to existing
partitions are common. DataDepot would recompute these small
partitions, which often introduces a significant inefficiency. In
Section 5.2 we discuss a technique for overcoming this inefficiency
that implements incremental updates using write-once files.

Loose Consistency: Traditional data warehouse operations place
a high value on the internal consistency of its tables. However, the
demands of real-time information from a data stream warehouse
make the delays required for internal consistency untenable. Data
stream management systems operate in real-time, but within very
narrow time windows. A data stream warehouse loads disparate
and widely-sourced data streams, with frequent late data, and
cannot ensure operation within a narrow time window.

To ensure real-time response when needed, data must be loaded
whenever it becomes available; high-priority derived data products
might be computed well in advance of lower-priority tables.
Transient errors in derived data products (due to inconsistency,
incomplete data, or even incorrect source data) can be tolerated in
many cases when the need for real-time information exceeds the
need for consistency. However, these errors must be transient and
labeled, and the user must understand and accept the implications
of inconsistent data.

The temporal inconsistency inherent in the leading-edge of data
stream warehouse tables generally makes the transactional commit
of individual records an avoidable overhead. Because all correlated
streams must be verified to be up-to-date, the batch-commit of
update propagation is a better suited mechanism.

Update Propagation: We have argued that two traditional models
for stream processing (data warehouse refresh and traditional data
stream processing) are not suitable for data stream warehousing.
Instead, we will simply try to advance the base tables (and
transitively, the derived tables) to catch up to the source data
streams. Each advancement step propagates updates in a target
table’s source(s) to the state of the target table, as illustrated in
Figure 1. Updates can be performed in a localized, and therefore
readily distributed, manner. We have found that data stream
warehouse refresh via update propagation to be efficient and
reliable [14]. While a naïve update propagation algorithm can
suffer from the missing-update problem, we have published simple
and provably correct update propagation algorithms in our previous
work [22].

Multi-Version Concurrency Control: The need to ensure real-
time response recommends the use of Multi-Version Concurrency
Control (MVCC). Long-running queries do not block updates,
updates do not block queries, and expensive updates do not block
updates to their source tables. In previous work, we identified the
source of state data in a real-time table to be the need to block
updates to the real-time table to compute an hourly aggregate
summary [22].

In a single-writer scenario, MVCC can be inexpensively
implemented [35]. When using write-once files, the
implementation becomes simpler still [14]. We note that single-
writer does not mean that the update of a table must be single
threaded, or even restricted to a single server, but rather that the
computation have a single control and commit point.

Temporal Consistency: Continuous data loading generally entails
a significant degree of uncertainty about whether or not all of the
data for a given time period has arrived, or will arrive. The
traditional data warehouse approach is to wait for a time interval to
pass, after which it declares that all data has arrived and performs a
batch load. However a) for many alerting and trouble-shooting
applications, having the most up-to-date data is important enough
that some data inconsistencies can be tolerated, and b) different
streams have different arrival latencies, and need to be treated
differently – one waiting interval does not fit all streams. A short
delay time (e.g. one hour) is likely to return inconsistent results;
while a long delay time (e.g. one day) does not provide real-time
answers.

A data stream warehouse needs keep track of the “temporal
consistency” of the streaming tables that it maintains [17]. Starting
at the base tables, the system tracks the arrivals of new data and
determines the completion status of each partition. The temporal
consistency of the base table gets propagated to the dependent
materialized views. By maintaining and supplying temporal
consistency information of the tables in the stream warehouse, a
data stream warehouse can maintain its tables using a loose
consistency model and still provide consistency guarantees to
users. We return to this topic in Section 5.3.

Temporal Description Tables: Streaming data is often thought of
as consisting of a stream of events – measurements that occur at a
specific time or during a short and well-defined time period. Event
data generally needs description data to supply the necessary
context for proper interpretation. Description data describes
conditions that last for a long time and are of an uncertain duration.
For example, an event data stream might consist of temperature
measurements from sensors in a machine room. The temperature
sensors themselves do not provide much meaningful information;
they need to be correlated with a description table which specifies
where each sensor is located.

The need to provide context for event streams has led many data
stream management systems to allow joins to relational data.
However, the relational tables are generally snapshot tables. A data
stream warehouse cannot use snapshot tables for its description
data because 1) the description tables change slowly but steadily
over time, and 2) a data stream warehouse must often deal with in-
the-past joins: late arriving data, catch-up on blocked streams,
reloads of problem data. All description tables must be valid-time
temporal tables [25]. Further, description tables receive streaming
updates (e.g., a temperature sensor gets moved) and therefore must
be maintained with timestamp-based partitioning in a manner
similar to that of event tables. We return to this topic in Section 4.4

4. Tidalrace Architecture
A data stream warehouse generally does not need a specific
underlying database architecture – systems have been layered on
top of the Daytona [14] and Postgres [24] DBMSs and on top of
Hadoop/Pig [33]. We decided to take the opportunity of the full
system redesign to develop a data stream warehousing system
which is specialized to our needs.

One issue that we needed to address was support for both
distributed and non-distributed installations. Our experience with
Tigon-SQL [7] showed that an efficient and well-tuned DSMS can
processes petabytes per day in a single 2U server. A small-scale
high-performance data stream warehouse system is essential for
supporting operations at the “edge” of the network. However,
global network operations require very large scale warehouses,
necessitating scalable storage and computation. We therefore

needed to develop a system which works well both as a small-scale
single-server installation and as a large-scale distributed system.

A second issue we faced is the need for multi-language support in
the definition of materialized views. While a large fraction of the
derived data products we needed to support are readily described
by SQL, others are not. For example, many networking analyses
require state-machine processing [17]. Other derived data products
might be created using statistical analysis tools such R.

Figure 3. Tidalrace Architecture

Figure 3 shows a top-level view of the Tidalrace architecture. The
state of the system – the data dictionary, the location and status of
the data in index files, etc. – is stored in the Tidalrace metadata
database. The metadata database is used to perform transactional
commits for update programs, and therefore must be a transactional
(ideally ACID) database. We use MySQL for this function, though
other DBMSs can be used. The metadata database is the only
transactional component of Tidalrace, so transactional storage and
synchronization does not present a scaling bottleneck. Our
experience with managing very large data stream warehouses with
DataDepot [14] has shown that a metadata database of a few
megabytes can manage a warehouse of many terabytes and
thousands of tables, with an update rate which rarely exceeds a few
update transactions per second.

Tidalrace updates its tables via a batch update propagation
mechanism. Data sources generally supply data in packages of new
records; these packages arrive periodically and contain collections
of records. At the base tables, an update determines which
packages haven’t yet been loaded into the base table, upacks the
records in the packages, and loads them into the proper base table
partitions. When the update is complete, its effects are committed
by recording the progress in the source stream and the new data in
the base table via a transactional commit to the metadata database.
For derived tables, an update program determines what parts of the
derived table require an update, computes the new value of the
updated partitions, and records the new partitions of the derived
table via a transactional commit to the metadata database. In both
cases, partially executed updates have no effect on the state of the
warehouse.

Queries (including the computation part of a derived table update)
read the state of the tables that they access at the start of the query,
providing read isolation. The effect is to implement a type of
single-writer multiversion concurrency control [14]. Tables can be
queried and updated concurrently, and a source table can be
updated concurrently with an update of a dependent derived table.

An update scheduler component schedules updates to base and
derived tables. Updates can be periodic or triggered (by the arrival
of new packages or the update of a source table). Ensuring that

high-priority tables are kept current while scheduling all updates
and avoiding resource overutilization is a topic of continuing
research [15].

Our experiences with the Tigon-SQL [7], Daytona [18], and
DataDepot [14] have shown that a compiled-query system offers
very high performance while still enabling interactive ad-hoc
queries. We have developed a SQL compiler for Tidalrace, which
compiles queries in less than 2 seconds. In addition to enabling
user access to Tidalrace-resident data, the query compiler is also
the primary mechanism used to define materialized views. The
result of a compiled view definition is a table definition in the
metadata database, and also a program which updates the
materialized view.

The query and the view update programs access Tidalrace-managed
data using the Tidalrace storage manager, D3SM. The storage
manager provides indexed and non-indexed access to data
partitions, hiding details of the data format and storage location.
Section 6 discusses D3SM in greater detail.

Tidalrace provides a collection of libraries that interface with the
metadata database, and which perform functions that enable update
propagation and transactional commit of updated or newly created
data partitions. Therefore, there is no requirement that materialized
view update programs be generated using our query compiler - for
example, one could define a materialized view as the output of an
R program. As in DataDepot [14], we can instead generate a
wrapper update program that fetches data from Tidalrace, presents
the data to an external view computation program, then loads and
commits the result into Tidalrace. Materialized view definition is
much easier using a built-in view definition language, but the plug-
in capability of an external-view wrapper provides what is
sometimes a critical flexibility.

4.1 Data Model
Each table in Tidalrace contains a collection of records; each record
contains a collection of fields. A field can be an atomic type
(integer, date, string, etc.) or a structured type (range, list, map,
etc.). Access to structured types depends on the presence of
serialization/deserialization methods for transmission to/from
D3SM, and the ability of the query language to process the type.

Every table in Tidalrace must have a timestamp field. The name
and data type of the timestamp field is an immutable property of a
Tidalrace table. The timestamp field is used for the primary
(horizontal) partitioning predicate of a table, and refers to the Posix
timestamp of the event occurrence time (or is a pair of Posix
timestamps that define the valid time of a description – see Section
4.4). The timestamps allowed by Tidalrace are more restrictive
than those allowed by DataDepot, but our experience with very
large stream data warehouses has shown that every table among
the thousands we have encountered can be readily modeled with
Posix timestamps - with a considerable savings in logical
complexity. The Posix timestamp can be represented with a variety
of data types – integer, date_time, date, or float, but are converted
to 64-bit integers for internal use.

A table’s timestamp is used for its primary partitioning dimension.
Each partition is labeled with a timestamp range [pl, ph). An event
record r with timestamp ts is assigned to partition p if pl ≤ ts < ph
(partitioning of description tables is discussed in Section 4.4). A
large table can have additional orthogonal dimensions of
partitioning.

4.2 Base Tables
Raw data continually arrives, most often as a collection of files
(packages) transmitted from a data source. Raw data is periodically
loaded into a base table – the period can be very small, e.g. 1
second. Base table loading performs two important functions.
First, it extracts and transforms the raw data. For example, the
source data might be compressed and in a csv format. Base tables
apply simple transformations to the source data, converting fields
into internal binary representations. Second, raw records get
collated into base table partitions according to their timestamp
field. Ideally, most new records are collated into new partitions;
however some will collate into existing partitions. Base tables are
select-project views over the raw data, and they have simple
incremental update programs: append the new records. Tidalrace
uses write-once files, so existing files can’t be appended; instead
we create add-on (revision) partitions to store the additional
records. These revision partitions are linked to the original
partition, as described further in Section 5.2.

4.3 Update Propagation
Tidalrace supports deep and complex DAGs (Directed Acyclic
Graphs) of materialized views. An essential service of a data
stream warehouse is to propagate updates from the base tables to
all (immediately or transitively) dependent derived tables.
Furthermore, we need to minimize the amount of recomputation at
the dependent derived tables caused by an update to a base table.
Tidalrace uses the source vector protocol [22] for update
propagation, which we summarize below.

Each derived table is dependent on one or more source tables,
which might be base or derived tables. Metadata associated with
each derived table states the timestamp range of a source records
that can affect a derived table record with a particular timestamp.
Let D be the derived table, S be the source table, and D.ts, S.ts be
their timestamps. Tidalrace uses this pair of bounding functions to
determine the timestamp range of records of D affected by a record
of S:

�. �� ≥ � ��. �� +
�� � +
�

�. �� ≤ � ��. �� +
�� � +
�

The parameter m allows for the expression of discrete ranges (e.g.
encountered in aggregation), while parameters a and b allow for
timestamp variation and band joins. When a partition of S is
updated, the affected partitions of D must be updated. These can
be determined by using the bounding functions to determine the
timestamp range, (and thus the collection of derived table
partitions) which can be affected by data in the source table
partition. In most cases, the Tidalrace SQL compiler can
automatically determine these bounds for derived tables defined by
a query.

Another piece of table metadata is its generation, which increments
each time the table is updated. Each table partition is labeled with
the generation is which it was updated. Derived table partitions are
also labeled with a compact representation of the generation(s) of
the source table partitions they were computed from. The source-
vector protocol uses this information to determine if the source data
for a derived table partition is more recent (further along in the
stream) than the derived table partition, indicating that the derived
table partition should be updated.

By using the source-vector protocol and comparing all source
partitions to the derived table partitions, the update propagation
program can determine all derived table partitions that need

updating. The decision of which derived table partitions to update
(usually, all) is left to the scheduler.

4.4 Description Tables
As discussed in Section 3, a data stream warehouse ingests two
types of streams: event streams, which refer to observations at a
particular point in time or measurements over a small and well-
defined time interval, and description streams, which refer to
conditions that hold over long and indeterminate periods of time.

For example, a data stream warehouse for networking applications
might receive a stream of SNMP measurements of the number of
bytes transmitted over a network link during a 5-minute interval.
While this information has value, to be truly useful to the analyst
these records should be correlated with a database that describes
the transmission speed of these links. Suppose that a link has
transmitted 200 Gbits during the last 5 minutes. If the link speed is
1 Gbit/sec, then the link utilization is 67% (close to saturation),
while if the link speed is 10 Gbit/sec, then the link utilization is 7%
(low).

Description tables change slowly, so they are often modeled as
snapshot tables, e.g. [1]. However we have observed in a sampling
of description tables that a significant number of rows (1% to 5%)
are modified each day. A data stream warehouse must often
perform in-the-past correlations: ad-hoc queries, late-arriving data,
catch-up processing on delayed streams, and loading new tables
with an e.g. 2-week initial data load. Therefore description tables
must be stored as valid-time temporal tables [25].

Conventionally, a valid-time temporal table is stored as a RDBMS
table which receives continual updates which are processed in-
place. Let description table D have fields (K, I, V) where K is an
entity key (e.g. a customer ID), I is a valid time interval [tl, th), tl <
th, and V is the value associated with key K during interval I.

IP_address TimeRange Speed

4.3.2.1 [12:15,1:15) 1 Gbytes/minute

4.3.2.1 [1:15,-) 2 Gbytes/minute

1.2.3.4 [12:00,-) 5 Gbytes/minute

Figure 4. LinkSpeed table.

Let’s consider a simple concrete example. Suppose that table
BytesTransferred has schema (IP_address, ts, Bytes), where
IP_address is the IPV4 address of the link interface, ts is the starting
time of the 5-minute measurement interval, and Bytes is the number
of bytes transferred during that interval. To determine the link
utilization, we need to correlate records in BytesTransferred against
the LinkSpeed table, shown in Figure 4. The key K of the
LinkSpeed table is the field IP_address (the IPV4 address of the
link interface), I is the field TimeRange, and V is the field Speed.
The record (4.3.2.1, [12:15,1:15), 1 Gbytes/minute) means that for
timestamps ts such that 12:15 ≤ ts < 1:15, the interface at 4.3.2.1
had a transfer speed of 1 Gbyte per minute.

Given a record of BytesTransferred with value b(4.3.2.1,1:05, 3
Gbytes), we can compute the link utilization by finding the record
l in LinkSpeed such that b.IP_address = l.IP_address and b.ts lies
in the range l.TimeRange (i.e., b.ts stabs the interval l.TImeRange).
In this case, b matches against record l(4,3,2,1, [12:15,1:15), 1
Gbytes/minute), so we can compute the link utilization to be 60%
(since 4.3.2.1 can transfer 5 Gbytes in 5 minutes). If 10 minutes
later we receive the record b’(4.3.2.1, 1:15, 3 Gbytes), we would
match this record against l’(4.3.2.1, 1:15, 2 Gbytes / minute) and
compute a utilization of 30%.

Suppose that description tableD is updated with (k,v,ts), where k is
a new key, v its value, and t1 indicates that k received value v at
time t1. Then (k, [t1,∞),v) is inserted into D. Next suppose that D
is updated with (k,v’,t2). Then the original record is modified to be
(k,[t1,t2),v) and (k,[t2,∞),v’) is inserted into D.

IP_address TimeRange Speed

4.3.2.1 [12:15,1:15) 1 Gbytes/minute

4.3.2.1 [1:15,-) 2 Gbytes/minute

1.2.3.4 [12:00,2:05) 5 Gbytes/minute

1.2.3.4 [2:05,-) 10 Gbytes/minute

Figure 5. LinkSpeed after an update.

For an example, suppose that the LinkSpeed table of Figure 4
receives an update (k=1.2.3.4, v=10 Gbytes/minute, ts=2:05). This
update stabs the TimeRange of an existing record in LinkSpeed.
Therefore the TimeRange field of the existing 1.2.3.4 record
bounded by 2:05, and a new record is added to the LinkSpeed table.
The result is shown in Figure 5.

Modifying existing records does not fit well with our write-once
architecture. We make use of a controlled degree of duplication to
enable streaming updates to valid-time temporal tables.

Recall that each data partition in Tidalrace is marked with a
timestamp range [pl, ph); records with a timestamp in this range are
stored in this partition. Description tables have a time interval for
their timestamp; a record with interval [tl, th) is stored in a partition
with timestamp range [pl,ph) if [tl,th) intersects [pl,ph). A record
in partition p with timestamp range [pl, ph) lies only [pl, ph). When
performing an interval-stabbing join (i.e., given (k, t) return the v
(if any) such that there is a record (k,[tl, th),v) where tl ≤ t < th),
search the partition p with timestamp range [pl, ph) such that pl ≤ t
< ph.

This type of data organization has several benefits: new updates do
not affect old partitions, description tables are managed in the same
way that event tables are, and old data is easily expired by dropping
partitions. However, the benefit comes with a significant cost – a
space blowup in the storage of the description table. If we cut a
new description table partition once per day (e.g. we might receive
a new current-snapshot once a day), then storing a 2-year history
requires a 730X space blowup.

We have found that description tables are generally much smaller
than event tables, so some degree of duplication is acceptable.
Furthermore, we can merge old and stable description table
partitions into partitions which span a much larger interval. We
have already implemented this type of partition merging in
DataDepot [14]; its implementation in Tidalrace is part of our
partition maintenance procedures, as described in Section 5.1. A
730X space blowup can easily be brought down to a manageable
10X blowup, depending on how fast the source data becomes stable
(see Section 5.3). Finally, small and incremental updates can be
handled with partition revisions (see Section 5.2).

4.5 Table Segments
Our experience in managing large data stream warehouses has
shown that schema change is a continual headache. A common
practice in data warehouse management is to include “dummy”
fields in a large table. These fields can be renamed as new fields
are added to the table, avoiding a massive restructuring operation
for the historical portion of a large table. We make use of the highly
temporal nature of a streaming table to enable dynamic schema
change.

In Tidalrace, a table is partitioned into segments. The invariant
properties of a segment are the fields (names and data types),
indices, and defining query or program (for derived tables). The
only invariant property of a table is its name and its timestamp field
– which must exist in every segment. Each segment has a
timestamp interval [sl, sh) which defines the region of validity for
a segment: each partition in a segment has a timestamp interval [pl,
ph) which is contained in [sl, sh), and the collection of segment
timestamp intervals partitions the table’s data window.

The primary purposes of a segment are to describe the available
fields in the segment’s partition, and to describe how to access
missing fields (either treating them as NULL values or supplying
default values). For example, suppose that in table
CustomerPurchaseHistory, in segment 1 the fields are (string
Customer, string item, int ts). After gathering data for a long
period, the analysts want to add an additional field string Store. The
location is added for segment 2, with a corresponding change in the
defining query.

Next, the analyst poses an aggregation query, grouping by
Customer and Store. This query can cross segment boundaries by
supplying a default value (e.g. the empty string or “Not Available”),
as is common practice.

Changes in indices can also cause expensive restructurings of
existing tables. By specializing segments with the set of supported
indices, indices can be added and dropped without restructuring,
and queries can still seamlessly cross segment boundaries. The
query plan will in general need to be specialized to the data segment
– an access plan index available in segment 2 but not segment 1 is
valid only for segment 2; a different plan is required for segment 1.
Multiple access plans are supported by Tidalrace’s partition set
processing, as described in Section 5.5.

5. Optimizations
The efficient functioning of Tidalrace relies on a collection of
optimizations, which are enabled by the basic Tidalrace
architecture. We describe some of these optimizations in this
section.

5.1 Partition Reorganization
Data warehouses that ingest real-time data feeds and archive them
for long time windows face a tension in the methods used to store
the data. Fast updates are best served by write-optimized storage:
row-oriented, small uncompressed partitions. However the
maintenance of a very large warehouse can be best served by read-
optimized or storage-optimized formats. A technique that has been
used is to transform the storage format of a data partition when
enough time has passed that the data has become stable
[14][27][37].

The use of file-oriented single-writer multi-version concurrency
control (see Section 4) allows the reorganization of stable partitions
to occur as a background task (a partition update conflicts with a
partition reorganization, so the reorganized partition must be
stable) with no impact on data loading or querying. Data
reorganization tasks can be scheduled as low-priority tasks that
execute as time permits and during off-peak hours. The types of
table reorganization that can be performed include:

• Partition merging. Frequently updated tables are best
served by small partitions to minimize partition
rebuilding and index construction due to updates.
However, opening many small partitions is inefficient for
queries, and a very large number of partitions places a
burden on the metadata database. The space overhead of

description tables (see Section 4.4) can be greatly
reduced by merging stable partitions.

• Column-oriented storage: While row-oriented storage
allows for fast updates, column-oriented storage can offer
many benefits, most notably reduced I/O cost when only
a few of many fields are accessed, and the potential for
aggressive compression.

• Compression: While fast updates are best supported by
uncompressed storage, stable older data partitions should
be compressed to reduce storage and I/O transfer costs.
Old archival data partitions which are infrequently
queried can be aggressively compressed.

• Storage hierarchy: New data is generally the most
frequently accessed, and should be stored high in the
memory hierarchy (RAM disk or SSD) while older data
can be migrated to disk storage.

5.2 Revision Partitions
A key distinction between a DSMS and a data stream warehouse is
the need to load and propagate late-arriving data [14]. The primary
mechanism in Tidalrace and related systems [24] for dealing with
late-arriving data is to recompute the affected partitions of derived
tables. However, partition recomputation can become prohibitively
expensive for large tables which experience frequent late arrivals.

A method for the efficient processing of late-arriving data was
proposed for the Truviso system [24], which we call partition
revisions. The idea is to process and summarize updates to the
source data, to allow query-time correction of stored partitions.

With an abuse of notation, let D be a derived table defined by query
Q over source(s) S, i.e. D=Q(S). Suppose that there are programs
P and R such that

Q(S+∆S) = P(S,R(∆S)).

Then alongside S we can store R(∆S) and combine S and R(∆S)
using P at query time. If R(∆S) is small and P is fast, then storing
the revision R(∆S) is more efficient than recomputing D.

When phrased in terms of table partitions, an anchor partition is a
regular partition, computed using query Q. A revision partition is
computed using R. In the metadata database, partition revisions
inherit the anchor partition’s properties (e.g., timestamp range,
source vector [22], etc.), but are marked as being revisions, and
have their own generation metadata (see Section 4.3). The
collection of revisions to an anchor can be thought of as being
chained to the anchor, as illustrated in Figure 6.

Anchor

Generation 5

Revision
Generation 6

Generation 6Generation 4Generation 3

Derived Table D

Anchor

Generation 5

Revision

Generation 6

Generation 7

Revision
Generation 7

Generation 4Generation 3

Source Table S

dep=5

dep=7

Figure 6. Partition anchors and revisions

In [24], the only tables that can have revision chains are aggregation
tables which reference associative aggregates only. The programs
P and R are derived using the well-known sub-aggregate and super-
aggregate technique [28]. However, many defining queries have
simple P and R programs – for example selection/projection
queries. In Section 4.2, we describe how updates to existing base
table partitions use the revision technique. Base tables are a
projection view of the raw data: the program R is projection query
Q and program P takes the union of the anchor and the revision.

By representing updates to existing base table partitions using the
anchor/revision technique, we represent the delta to the base table
in a readily accessible form. In Figure 6, the revisions in the source
table S are explicitly tracked. After the 5th update to D (creating
the anchor with generation 5), the source S has two additional
updates, creating revisions with generations 6 and 7, respectively.
The next time that D is updated, the update protocol can observe
from the anchor partition’s metadata that it has all data up to
generation 5 of S. The corresponding anchor partition of S has
generation 5, but also has two revisions with generation 6 and 7.
Instead of recomputing the anchor partition of D, we can compute
a revision using program R on the generation 6 and generation 7
revisions – creating a generation 6 revision to the anchor. The
anchor and its revision now contain data up to revision 7 of the
source S. This explicit representation of deltas allows up to chain
the revision technique arbitrarily far up the derived table
dependence DAG, subject only to the defining queries having
suitable P and R programs.

In addition to selection/projection and aggregation queries, we can
define inexpensive P and R programs for the queries which
maintain the valid-time description tables, and for outer-join
queries in which the outer join is a foreign-key to primary-key join
– which are commonly used to join event data to description data.
In fact, the need to support incremental updates to description tables
has been a major motivation for developing revision partitions in
Tidalrace, given their prevalence in data stream warehouses.

The need to maintain revisions and to apply program P at query
time is an overhead which is acceptable for the active portion of a
table, but can which can be eliminated for stable data. Revision
flattening is one of the partition reorganization programs we run as
a maintenance procedure (see Section 5.1).

5.3 Temporal Consistency
In our development of data stream warehouses, we argue that one
cannot expect to obtain a consistent “now” snapshot in time of the
state of the system. Ignoring data quality issues for the moment,
one can only hope to obtain a snapshot view of the system up to
sometime in the recent past. A major service of a data stream
warehouse is to inform the users of what parts of the database (e.g.
how recent) are suitable for their analyses. Furthermore, some
analyses need data which is more solid than others.
Troubleshooting queries will generally demand the most recent
data possible, while data mining queries generally require high-
quality time-synchronized data. Alerting queries fall in between.

In our discussions of warehouse maintenance procedures, we have
often used phrases along the lines of, “when the partition is stable”,
for example in the context of partition reorganization in Section 5.1.
The system needs a mechanism for determining or imputing
stability – meaning that a partition is not expected to be updated
ever again. The meaning of stability for data maintenance is related
to the meaning of suitability of data for data mining.

Some derived tables perform expensive computations to compute
partition values – large-scale aggregation, data mining, etc. It is

generally desirable to wait until the source data is stable before
triggering updates to partitions in expensive derived tables. If the
defining query does not have efficient P and R programs, one
cannot use the partition revision technique (see Section 5.2), so the
ad-hoc technique of “wait until 5 minutes after the hour to compute
hourly summaries” still leads to frequent expensive computation
due to late arriving source data.

In a large scale data stream warehouse that ingests hundreds of
distinct data feeds obtained from worldwide sources, no single rule
can be applied to judge the stability of each of the data sources.
Data streams tend to have individual periodicities (e.g. 5-minute
measurements vs. daily dumps), different latencies (data arrives 1
minute late vs. 1 hour late) and different degrees of disorder.

Contrary to the first paragraph, many analyses cannot ignore issues
of data quality, especially issues of data completeness. In some
cases one can estimate how much data should arrive during a time
period, and mark a partition according to how complete the
partition seems to be.

Determining stability and completeness at a base partition can be
challenging; determining stability and completeness at derived
table partitions computed from correlations over many tables is far
more challenging. We have previously published a framework for
tracking and imputing temporal consistency [17], which we
summarize here.

In a data streaming system, punctuations [41] are used to track
progress and enable out-of-order processing [29]. Our mechanism
for tracking temporal consistency adapts punctuations to a data
stream warehouse setting. Instead of applying to the stream as a
whole, we annotate partitions with consistency markers. A simple
collection of consistency markers is

• Open : source data exists for the partition.
• Closed : no new data will arrive for the partition.
• Complete : Closed, and all expected data has arrived.

Consistency markers are assigned to base table partitions based on
imputation rules which must be tailored for the base table. This
simple collection of markers has simple imputation rules for
derived table partitions: Open if some source is Open, Closed
(Complete) if all sources are Closed (Complete).

A far richer collection of markers is generally required. For
example one might define WeaklyClosed and StronglyClosed
markers to support different types of users. Our previous work [17]
has more details on the topic.

Tidalrace metadata about partitions includes the collection of
temporal consistency markers. We are currently engaged in
researching imputation rules at the base tables using the data
streams we ingest.

Our experiments with loading live data, as discussed in Section 7,
provide an insight into data latencies and determining when base
table partitions can be labeled as closed. In Figure 7 and Figure 8,
we show the range of timestamps associated with data in the
Darkstar and edge network performance data, respectively (these
data feeds are discussed in greater detail in Section 7) . Each
package in the Darkstar feed is supposed to represent a 300 second
range, however the minimum time range in the packages is 352
seconds. For the edge network data, each package is supposed to
represent a 60 second range, but the minimum time range in the
packages is 166 seconds. Correspondingly, each partition in the
Darkstar table has 1.1 revisions while each partition in the edge
table has 3.45 revisions (See Section 5.2 for a discussion of
partition revisions).

Figure 7. Time ranges for Darkstar network performance

data.

Figure 8. Time ranges for edge network performance data.

However, for determining when a partition can be labeled closed,
the edge network data is far better behaved than the Darkstar data.
The 99th percentile of the package time range of the edge data is
600 seconds; the maximum is 601 seconds. Therefore we can infer
that a partition can be marked as closed if it represents data 600
seconds older than the most recent. The median package range of
the bps data is 397 seconds, but the 99th percentile is 973 seconds
and the maximum is 2196 seconds. Therefore we can infer that data
that is 973 seconds older than the most recent can be marked as
closed with a 99% certainty.

5.4 Distributed Storage and Queries
Tidalrace can make use of either local or distributed storage for its
data and index files, as discussed in Sections 4 and 6. The
distributes storage only needs a put/get interface, and can use a file
system such as HDFS which distributes the blocks of a file across
the cluster, or one such as Amazon Dynamo [8] that stores files on
specific servers.

When a user submits a query, data partitions can be fetched from
the distributed file system and cached in a local file system for local
evaluation, as is done for HDFS. However, one can observe that a
distributed query system can be made more efficient by shipping
subqueries to the servers that contain the data partitions, which
return query results that are combined for the return result. For
example, an aggregation query can be broken into subaggregate
queries sent to the remote servers, with a superaggregate query
combining the results.

Join-free queries can be efficiently implemented using remote
subqueries, but join queries still require data transfers to bring
together records correlated from different range variables. We can
make two observations. First, in a data warehousing system, a large

0

500

1000

1500

2000

2500

S
e

co
n

d
s

Time Range per Package

0

200

400

600

800

S
e

co
n

d
s

Time Range per Package

amount of the query workload is generated by the queries used to
update derived tables. This workload is (relatively) constant, and
can be analyzed and used to optimize update performance [11] – in
particular, which tables are often joined together. Additional
information can be collected from query logs. Second, we have
observed that joins are almost always band joins; data from similar
time periods are usually more relevant than data from distant time
periods.

Since data from similar time periods tends to be correlated with
each other, one natural way to distribute data is by hashing on the
timestamp of the data. For example, data with a timestamp in [1:00,
1:05) is assigned to servers 1, 6, and 11; [1:05, 1:10) to server 2, 6,
and 12, and so on. However, this assignment scheme concentrates
work on a few servers during their active time period. Other issues
arise: different data sets have different natural periodicities and
partition sizes. A high volume event data stream of e.g. web clicks
might be best partitioned into 1-minute segments, while a stream of
15-minute measurements has a natural periodicity of 15 minutes.

We can make use of co-location schemes to co-locate oft-joined
data. A co-location scheme is a combination of an identifier (e.g
XYZ), and a sequence number for the identifier; so XYZ(5) is the
5th instance of co-location scheme XYZ. For every table T that uses
co-location scheme XYZ, there is a mapping from sequence
number s to a timestamp range [tlo, thi). This mapping is generally
a function of the form tlo(s) = a*s+b, with a corresponding
function for thi. A co-location identifier is used the key to hash to
a collection of storage servers. If a partition with timestamp range
[plo, phi) overlaps the timestamp range of its co-location scheme
with sequence number s, the partition is stored at the corresponding
set of servers.

A table can be associated with multiple co-location schemes, which
increases its degree of replication but also its availability for local
joins. We are developing co-location scheme optimization
algorithms as part of our on-going research [13]. Related projects
include CoHadoop [10], which co-located HDFS-resident data;
however it does not have the mechanism of co-location schemes.

5.5 Partition-wise Optimization
As we have discussed, joins in a data stream warehouse are almost
always band joins on the table’s timestamp. Since the primary
partitioning dimension is on the timestamp, a natural way to process
queries is to partition the work to be done on the table timestamps.
This type of partitioning fits naturally with data distribution
through co-location schemes, and with the variant processing that
can be required by table segments (Section 4.5).

Suppose that query Q joins tables T1 through Tn. A partition set is
a collection of partitions PS = ({P1},…,{P n}), where Pi is a set of
partitions of table Ti. The partitions in a partition set are joined in
one unit of processing. If the join has partition sets (PS1, … PSj),
the result of the join is the union of the individual partition set joins.

Suppose that the optimizer has determined a left-deep join order,
e.g. T1, …, Tn. Suppose further that the optimizer has analyzed the
band-join predicates in the query to compute a collection of
bounding functions between the timestamps of each table (e.g.
similar to the bounding functions in 4.3). A collection of partition
sets can be found by

1. Determining the collection of partitions referenced in T1,
P1.

2. Divide P1 into {P1,1,…,P1,m).
3. For each j from 1 though m

a. For each Tk from k=2 through n

i. Use the bounding functions from Tk to T1 .. Tk-1
to determine timestamp band for Tk, and
therefore Pj,k

There are a variety of interactions between the optimizer and the
selection of partition sets – duplicate access to partitions,
minimizing memory use of hash tables, etc. Recent work on
incorporating horizontal partitioning into a cost based optimizer
includes [20].

6. Storage Manager
The Tidalrace storage manager, D3SM, provides an insulating layer
between the query system and the actual data storage. A data
partition might be in local or distributed storage; might be stored in
a row-oriented or a column-oriented format, and might be
compressed. The D3SM API requires that the query system specify
the fields and indices to be accessed, the storage type (local or
distributed) and the record layout (row-oriented or column-
oriented). D3SM will fetch and cache (in the case of distributed
storage) and open the requisite files and thereafter present a
uniform API for index and record access. By requiring that the
fields and indices be specified before partition access time, D3SM
can fetch and open a minimum number of files.

Our metadata database allows us to store a partition in multiple
locations; each copy of the partition can use a different storage
system (e.g., local vs. distributed), and different storage properties
(e.g. row-oriented vs. column oriented). This feature allows for
considerable flexibility in configuring a large distributed
warehouse. For example, a server can load and store data locally
for fast access, as well as publish the data on a distributed file
system.

7. Implementation Status
We have implemented a prototype version of Tidalrace with initial
versions of the features described in this paper, except for remote
query execution. Preliminary performance results are
encouraging:: data loading at 100k+ records per second per thread,
and aggregation at 500k records per second per thread.

We are evaluating Tidalrace by using it to build two different data
stream warehouses. With the first stream warehouse, we are
evaluating Tidalrace for use with the Darkstar [23] data warehouse.
This large-scale warehouse is built on a cluster using HDFS for
distributed storage. We chose to focus on two sources that were
difficult to load into DataDepot. The first stream delivers about 2.5
million records every 5 minutes, related to internal network
measurements. The second delivers a stream of Syslog messages
from network elements, delivering about 13,000 records every
minute.

Both of these raw data sources need to be correlated with
description tables describing the network configuration. The
network measurements stream joins against two description tables
to provide context for the measurements (similar to the scenario
described in Section 4.4). The Syslog table joins against a
description table for data repair: some records have missing server
names, so they are filled in by a lookup in the description table. Of
the three description tables, two are sourced by daily snapshots of
an authoritative table, and one is source by daily snapshots and a
stream of incremental updates.

The second stream warehouse processes high-speed network
measurements at the edge of the network. These measurements are
used to compute Key Performance Indicators (KPIs) to be used in
Darkstar, as well as other systems. Because the stream warehouses
must be situated near the networking equipment, we are restricted

to using a small 2U server and local storage for developing the
warehouse. The data is delivered in four streams with one package
delivered per minute per stream. On average, 740,000 records are
delivered per minute with peaks to 2.4 million records per minute.

Tidalrace performance is sufficient to load these data streams with
plenty of spare capacity. In the experimental Darkstar cluster, the
network measurement data is loaded at a rate of 80,000 records per
second per thread. This measurement includes the time to build one
index and to transfer the data and index to HDFS (on a local file
system, the load rate is 110,000 records per second per thread). The
Syslog records are loaded at a rate of 5000 records per second per
thread – this low rate reflects a high cost to extract the records from
their source. In the edge network warehouse, each stream is loaded
at a rate of 25,000 records per second per thread.

We built derived tables in both warehouses. In the Darkstar
warehouse, we defined a derived Syslog table that performs data
repair by using a join against a description table. This table updates
at a rate of 70,000 records per second per thread, including the time
to build 4 indices and move the data and indices to HDFS. In the
edge network warehouse, we build a derived table that performs
feature extraction and aggregation. This table updates at a rate of
500,000 records per second per thread, including the cost to build
one index.

8. Conclusions
We are developing Tidalrace, a next-generation data stream
warehousing system. Our efforts in data stream warehousing were
driven by the need to develop a highly responsive data system to
support real-time network monitoring for applications ranging from
service quality management to network security to long-term
networking research.

Data stream warehousing provides real-time data loading as well as
long data histories and deep analytics. Real-world data provides
many challenges: late-arriving data, highly heterogeneous data
arrival patterns and latencies, frequent changes in data schemas. To
address these challenges, we have been performing research into
data stream warehousing technologies. These techniques include
streaming description tables (Section 4.4), update propagation
(Section 4.3), schema change (Section 4.5), temporal consistency
(Section 5.3), incremental updates (Section 5.2), partition
reorganization (Section 5.1), partition co-location (Section 5.4) and
partition-wise query planning and optimization (Section 5.5). We
launched the Tidalrace project to have a clean slate in which to
implement these new techniques.

Data stream warehousing presents many interesting challenges that
are open research areas: real-time scheduling, data quality,
temporal consistency, and query optimization are a few. One
motivation of developing Tidalrace as a new system is to have a
platform with which to explore these research areas.

9. REFERENCES
[1] D. Abadi et al., The Design of the Borealis Stream

Processing Engine, Proc. CIDR, 2005.

[2] Applied Materials. Techedge Prism, 2013.
http://www.appliedmaterials.com/technologies/library/teched
ge-prizm

[3] M. Balazinska, Y.C. Kwon, N. Kuchta, D. Lee. Moriae:
History-Enhanced Monitoring, Proc. Conf on Innovative
Data Systems Research (CIDR) 2007.

[4] S. Chandrasekaran, M. Franklin. Remembrance of Streams
Past. VLDB, 2004.

[5] J. C. Corbet et al. Spanner: Google’s Globally-Distributed
Database, Proc. OSDI, 2012,

[6] C. Cortes, K. Fisher, D. Pregibon, A. Rogers: Hancock: a
language for extracting signatures from data streams. KDD
2000: 9-17

[7] C. D. Cranor, T. Johnson, O. Spatscheck V. Shkapenyuk:
Gigascope: A Stream Database for Network Applications.
SIGMOD Conference 2003: 647-651

[8] G. DeCandia et al. Dynamo: Amazon’s Highly Available
Key-value Store Proc. SOSP 2007.

[9] N. Dindar, P.M. Fischer, M. Soner, N. Tatbul. Efficiently
Correlating Complex Events over Live and Archived
Streams. DEBS, 2011.

[10] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek,
J. McPherson. CoHadoop: Flexible Data Placement and its
Exploitation in Hadoop. Proc. VLDB 2011.

[11] N. Folkert et al. Optimizing Refresh of a Set of Materialized
Views, Proc. VLDB 2005.

[12] Z. Ge, J. Yates, L. Breslau, D. Pei, H Yan, D. Massey. G-
RCA: A Generic Root Cause Analysis Platform for Service
Quality Management in Large ISP Networks. ACM ACM
Conference on Emerging Networking Experiments and
Technologies, 2010.

[13] L. Golab, M. Hadjieleftheriou, H. Karloff, B. Saha.
Distributed Data Placement to Minimize Communication
Costs via Graph Partitioning. SSDBM 2014.

[14] L. Golab, T. Johnson, J. S. Seidel, V. Shkapenyuk: Stream
warehousing with DataDepot. SIGMOD Conference 2009:
847-854.

[15] L. Golab, T. Johnson, V. Shkapenyuk: Scalable Scheduling
of Updates in Streaming Data Warehouses. IEEE Trans.
Knowl. Data Eng. 24(6): 1092-1105 (2012)

[16] L. Golab, T. Johnson, S. Sen, J. Yates: A Sequence-Oriented
Stream Warehouse Paradigm for Network Monitoring
Applications. PAM 2012: 53-63

[17] L. Golab, T. Johnson: Consistency in a Stream Warehouse.
CIDR 2011: 114-122

[18] R. Greer: Daytona and The Fourth-Generation Language
Cymbal. SIGMOD Conference 1999: 525-526

[19] Q. Hardy. G.E.’s ‘Industrial Internet’ goes big, New York
Times 2013. http://bits.blogs.nytimes.com/2013/10/09/g-e-s-
industrial-internet-goes-big/

[20] H. Herodotou, N. Borisov, S. Babu. Query Optimization
Techniques for Partitioned Tables. Proc. SIGMOD 2011.

[21] J. Hruska. Applied Materials designs tools to leverage big
data and build better chips, ExtremeTech, 2013.
http://www.extremetech.com/extreme/155588-applied-
materials-designs-tools-to-leverage-big-data-and-build-
better-chips

[22] T. Johnson, V. Shkapenyuk: Update Propagation in a
Streaming Warehouse. SSDBM 2011: 129-149

[23] C. Kalmanek et al., Darkstar: Using Exploratory Data
Mining to Raise the Bar on Network Reliability and
Performance, DRCN 2009

[24] S. Krishnamurthy, M.J Franklin, J. Davis, D. Farina, P.
Golovko, A. Li, N. Thombre. Analytics over Continuous and

DisContinuous (ACDC) Streams: The Truviso Approach.
Proc. ACM Sigmod 2010.

[25] K. Kulkarni, J.-E. Michels. Temporal features in SQL: 2011.
ACM SIGMOD Record 41.3 (2012): 34-43

[26] W. Lam, L. Liu, S. T. S. Prasad, A. Rajaraman, Z. Vacheri,
A. H.i Doan: Muppet: MapReduce-Style Processing of Fast
Data. PVLDB 5(12): 1814-1825 (2012)

[27] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier, L.
Doshi, C. Bear: The Vertica Analytic Database: C-Store 7
Years Later . PVLDB 5(12): 1790-1801 (2012)

[28] P. Larson. Data Reduction by Partial Aggrgation. Intl Conf.
on Data Engineering, pg. 706-715, 2002.

[29] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson,
D. Maier: Out-of-order processing: a new architecture for
high-performance stream systems. PVLDB 1(1): 274-288
(2008)

[30] A. Mahimkar et al.. Rapid Detection of Maintenance Induced
Changes: Proc. ACM Conference on Emerging Networking
Experiments and Technologies, 2011.

[31] N. Marz. Runaway complexity in Big Data and a Plan to
Stop It. Slideshare, 2012.
http://www.slideshare.net/nathanmarz/runaway-complexity-
in-big-data-and-a-plan-to-stop-it

[32] N. Marz, J. Warren. Big Data: Principles and best practices
of scalable realtime data systems. Maning Publications,
ISBN 1617290343, 2014.

[33] C. Olston, et al. Nova: continuous Pig/Hadoop workflows.
SIGMOD Conference 2011: 1081-1090

[34] S. Peng, Z. Li, Q. Li, Q. Chen. Event Detection over Live
and Archived Streams. WAIM, 2011.

[35] D. Quass and J. Widom. On-line warehouse view
maintenance. SIGMOD 1997, 393-404.

[36] F. Reiss, K. Stockinger, K.Wu, A. Shoshani, J.M.
Hellerstein. Enabling real-time querying of live and
historical stream data. SSDBM, 2007.

[37] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, B.
Christof: Efficient transaction processing in SAP HANA
database: the end of a column store myth. SIGMOD Conf.
2012: 731-742

[38] Spark Streaming. https://spark.apache.org/streaming

[39] M. Stonebraker, U. Cetintemel, S. Zdonik, The 8
Requirements of Real-Time Stream Processing, ACM
SIGMOD Record 34(4) pg. 42-47, 2005.

[40] Storm. http://storm-project.net/

[41] P. A. Tucker, D. Maier, T. Sheard, L. Fegaras: Exploiting
Punctuation Semantics in Continuous Data Streams. IEEE
Trans. Knowl. Data Eng. 15(3): 555-568 (2003)

[42] K. Tufte, J. Li, D. Maier, V. Papadimos, R.L. Bertini, J.
Rucker. Travel Time Estimation Using NiagaraST and latte.
Proc. ACM SIGMOD Conf., 2007.

[43] . J. Wang, Z. Ge, J. Yates, H. Song, A. Mahimkar, Y. Zhang
Analyzing IPTV Set-Top Box Crashes.ACM SIGCOMM
Workshop on Home Networks, 2011.

[44] H. Yan, et al.: Argus: End-to-end service anomaly detection
and localization from an ISP's point of view. INFOCOM
2012:2756-2760

