

Management of Flexible Schema Data in RDBMSs

- Opportunities and Limitations for NoSQL -
 Zhen Hua Liu, Dieter Gawlick

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065, USA

{zhen.liu, dieter.gawlick}@oracle.com

1. ABSTRACT

RDBMSs are designed to manage well-structured data requiring

users to design a schema before storing and querying data. This

is the ‘schema first, data later’ approach. However, there are

significant amount of unstructured data and semi-structured data

that cannot be effectively modelled this way. Even if certain

parts of the data can be modelled using schema, the inclusion of

all fields would typically lead to a very large schema with many

optional fields and with frequent schema evolution as data

instances vary widely and evolve fast. Obviously, these data

requires the ‘data first, schema later/never’ approach. We call

these data Flexible Schema Data (FSD). In this paper, we

describe the engineering principles and practices to manage FSD

in RDBMSs to meet FSD’s unique requirements and challenges.

We describe the limitations and issues of current practices and

potential research opportunities. Having a single data platform

for managing both well-structured data and FSD is beneficial to

users; this approach reduces significantly integration, migration,

development, maintenance, and operational issues.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – Relational

databases, transaction processing.

General Terms
Algorithms, Management, Performance, Design, Languages,

Standardization.

Keywords
JSON, SQL/JSON, Schema-less, No-SQL, XML, SQL/XML,

Flexible Schema, MongoDB

2. INTRODUCTION

The focus on the ‘schema first, data later’ approach has so far

prevented RDBMSs from being the ideal platform of managing

FSD. Instead, FSD like support has been implemented in

specialized DBMSs due to RDBMS is found to be inadequate to

support schema evolution [43] to handle data whose structure

changes a lot over time.

This article is published under a Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well allowing derivative works, provided that

you attribute the original work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)

January 4-7, 2015, Asilomar, California, USA.

For managing unstructured documents, it is common to use

content management systems that store documents as files with

text index providing keyword search [13, 16]. For managing

document-oriented semi-structured data, such as XML,

MarkLogic NoSQL system [34] is popular with XQuery as

query language. As JSON becomes the data-centric semi-

structured data format, MongoDB [33] based NoSQL systems

with JSON specific query language become a popular choice for

managing JSON data. Polygolt storage with NoSQL [40] is

getting popular. As the volume of FSD grows at an ever faster

rate, the trend towards using these specialized NoSQL [4] based

database systems accelerates. This trend leads to significantly

increased complexity of the management of data since users

cannot manage all of their data in one platform. When users

have to work with different data platforms, they have to write

data integration code in their applications. Users can not query

all of their data using a single high level declarative query

language. Instead, they have to use different query languages for

querying different data and implement their own join algorithms

to join between relational data and FSD. Last, but not the least,

many specialized systems lack essential advanced functionality,

such as bi-temporality, provenance, and fine grain security that

are standard in modern RDBMSs.

In contrary to [2], our goal is to enable RDBMSs to manage

FSD along with relational data and thereby leveraging all the

advanced data management services that have been developed

over many years for relational data. All leading RDBMS

platforms have supported XML data management using the

SQL/XML [10] query language during the last decade so that

XML and relational data can be queried and managed together.

Lately, Oracle [21], Vertica [24], TeraData [25], Postgres SQL

[7], and Sinew Hadapt System [22] are all supporting JSON data

management by extending SQL so that JSON and relational data

can be queried and managed together in an RDBMS. The

benefits of extending RDBMSs to manage FSD are:

• Enabling schema-less data application development

paradigm (data first, schema later/never) in RDBMS.

• Enable agile style rapid data access with maximum schema

flexibility (Schema on Read but not on Write Paradigm) in

RDBMS.

• Efficient consolidated single data management platform –

covering both relational data and FSD to reduce integration

issues, simplify operations, and eliminate migration issues.

• Efficient productive declarative application development –

by leveraging SQL as a set-oriented query language to

declaratively query domain specific FSD.

We understand the rationale of “One Size Does Not Fit All” [31]

argument as a way to encourage out-of-box thinking and re-

architecting RDBMSs to handle a variety of new challenging

data management requirements that do not fit the original

relational data management paradigm that has been established

more than four decades ago. However, it is desirable to present a

single system which hides the complexity of multiple

architectures instead of having users to manage multiple

systems. Therefore, we prefer to build an evolutionary path for

extending RDBMSs to support FSD data management.

Nevertheless, since FSD management has challenged the

fundamental assumption of RDBMSs that require existence of

schema to store, index and query data, we do need new ways of

thinking how to store, query, update and index FSD differently

from relational data. That is, we need to think out-of-the-

schema. Indeed, management of FSD challenges us to think

how to store, query and index data without up-front schema

definition?

To accomplish this goal, we leverage the RDBMS extensibility

technology for managing user defined object types, functions

and indexes [12, 14]. Applying extensibility ideas leads us to the

current engineering principles and practises for managing FSD

in RDBMSs as follows:

• Storage Principle: Use the document-object-store model

by storing FSD as one object without relying on any static

schema & E/R model to decompose FSD into relational

tables. That is, no schema on write. Flexible schema that is

embedded in FSD can be computed as data-guide to

provide schema on read capability.

• Query and Update Principle: Leverage SQL as a

declarative Set-oriented Query Language. That is, position

“NoSQL” to mean Naturally open Set-oriented Query

Language to embed FSD domain specific query language.

FSD domain language provides query and navigation

capability for both schema and data for each FSD instance.

• Index Principle: Index FSD using relational table index

and search index. The relational table index derivable from

data-guide and query workload provides efficient relational

access for pre-defined query access patterns. The search

index using generalized inverted index strategy provides

efficient search for ad-hoc query access patterns.

The main contribution of this paper is a detailed analysis and

discussions of these principles to understand the rationale of

why we propose to use these principles to manage FSD, the

issues and limitations when practising these principles, and the

potential new research challenges and opportunities to manage

FSD equally well as that of relational data in an integrated

RDBMS platform. Although database extensibility technology is

well-known as RDBMS engineering practise [12,14], we found

that abstracting this engineering practise using these three

principles helps to more adequately address the challenges of

FSD.

Outline of the Paper: Section 3, 4, 5 goes into details for

storing, querying, updating and indexing FSD respectively with

section 6 on advanced data management capability for FSD.

Section 7 draws conclusion followed by the acknowledgements

in section 8.

3. Storing FSD

3.1 FSD Storage Requirements

The relational design leverages the E/R model [5] which

provides a clean separation between structure and data. This

method has been very successful for a large class of applications

by extracting common structures out of data as schema.

Schemata are managed by RDBMSs in a central dictionary.

Therefore, in the E/R model, a schema has to be defined before

data can be loaded.

A collection of FSD data, such as JSON objects, XML

documents, has typically a small number of common attributes

complemented by a large variety of non-common attributes. The

attributes form hierarchical structural relationships. The

structure is not easily separable from data content because the

structure varies greatly from instance to instance. Shredding

FSD collections relationally results in a large number of tables

joined by a large number of primary/foreign key relationships

and still many tables have many sparsely populated columns [1,

3]. Furthermore, constant schema evolution is required as new

sparse attributes are detected in new FSD instances or single

occurrence of an existing attribute is detected to have multiple

occurrences in new FSD instances. Therefore, this is not a

scalable solution. Instead, the instance schema is embedded in

each FSD instance so that each FSD instance is self-contained

and can be distributed to different tiers. Schemata of a FSD

collection are not managed as central dictionary data but rather

computable dynamically as data-guide [19] from all FSD

instances stored in a FSD collection.

Abstractly, schema based data can be defined as a set of data

(which is denoted as 'S') that satisfies the following properties:

there exists a set of finite size of dimension (which is denoted as

'D') such that every element of S can be expressed as a linear

combination of elements from D.

Flexible schema based data is the negation of Schema based

data. That is, there does NOT exit a set of finite size of

dimension D such that every element of S can be expressed as a

linear combination of elements from set D. Intuitively, schema

based data can have unbounded number of elements but has a

bounded dimensions as schema definition whereas flexible

schema based data has unbounded dimensions.

Because schema based data has finite dimensions, therefore,

schema based data can be processed by separating the data

away from its dimension so that an element in a schema based

data set can be expressed by a vector of values, each of which

represents the projection of the element in a particular

dimension. All the dimensions are known as schema. Flexible

schema based data cannot be processed by separating the data

away from its dimension. Each element in a flexible schema

based data has to keep track of its dimensions and the

corresponding value. An element in a flexible schema based

data is expressed by a vector of dimension and value (name-

value pair). Therefore, flexible schema based data requires store,

query and index both schema and data together.

3.2 FSD Storage Current Practises

Self-contained Document-object-store model: The current

practice for storing FSD is to store FSD instances in a FSD

collection using document-object-store model where both

structure and data are stored together for each FSD instance so

that it is self-descriptive without relying on a central schema

dictionary. New structures can be added on a per-record basis

without dealing with schema evolution. Aggregated storage

supports full document-object retrieval efficiently without the

cost of querying and stitching pieces of data from multiple

relational tables. Each FSD instance can be independently

imported, exported, distributed without any schema dependency.

Table1 shows DDL to create resumeDoc_tab collection of

resume XML documents, a shoppingCar_tab collection of

shopping cart JSON objects. SQL/XML standard defines XML

as a built-in datatype in SQL. For upcoming SQL/JSON

standard [21], it supports storing JSON in SQL varchar,

varbinary, CLOB, BLOB datatype with the new ‘IS JSON’

check constraint to ensure the data stored in the column is a

valid JSON object. Adding a new domain FSD by storing into

existing SQL datatype, such as varchar or LOB, without adding

a new SQL type allows the new domain FSD to have full data

operational completeness capability (Transactions, Replication,

Partition, Security, Provenance, Export/Export, Client APIs etc)

support with minimal development efforts.

T1 CREATE TABLE resumeDoc_tab

(id number, docEnterDate date,

docVerifyDate date, resume XMLType)

T2 CREATE TABLE shoppingCar_tab

(oid number, shoppingCar BLOB check (shoppingCar IS

JSON))

Table 1 – Document-Object-Store Table Examples

Data-Guide as soft Schema: The data-guide can be computed

from FSD collections to understand the complete structures of

the data which helps to form queries over FSD collection. That

is, FSD management with data-guide supports the paradigm of

“storage without schema but query with schema”. For common

top-level scalar attributes that exist in all FSD instances of a

FSD collection, they can be automatically projected out as

virtual columns or flexible table view [21, 22, 24]. For nested

master-detail hierarchical structures exist in FSD instances,

relational table indexes [11] and materialized views [35], are

defined using FSD_TABLE() table function (Q4 in Table 2).

They can be built as secondary structures on top of the primary

hierarchical FSD storage to provide efficient relational view

access of FSD. FSD_TABLE() serves as a bridge between FSD

data and relational data. They are flexible because they can be

created on demand. See section 5.2 for how to manage

FSD_TABLE() and virtual columns as indexing or in-memory

columnar structures. Furthermore, to ensure data integrity, soft

schema can be defined as check constraint as verification

mechanism but not storage mechanism.

3.3 FSD Storage Limitations and Research Challenges

Single Hierarchy: The document-object-storage model is

essentially a de-normalized storage model with single root

hierarchy. When XML support was added into RDBMSs, the

IMS hierarchical data model issues were brought up [32].

Fundamentally, the hierarchy storage model re-surfaces the

single root hierarchy problem that relational model has resolved

successfully. In particular, supporting m-n relationship in one

hierarchy is quite awkward. Therefore, a research challenge is

how to resolve single hierarchy problem in document-object-

storage mode that satisfies ‘data first, structural later’

requirement. Is there an aggregated storage model, other than

E/R model, that can support multi-hierarchy access efficiently?

Papers [20, 23] have proposed ideas on approaching certain

aspects of this problem.

Optimal instance level binary FSD format: The document-

object-storage model is essentially a de-normalized storage

where master and detail data are stored together as one

hierarchical tree structure, therefore, it is feasible to achieve

better query performance than with normalized storage at the

expense of update. Other than storing FSD instances in textual

form, they can also be stored in a compact binary form native to

the FSD domain data so that the binary storage format can be

used to efficiently process FSD domain specific query language

[3, 22]. In particular, since FSD is a hierarchical structure

based, the domain language for hierarchical data is path-driven.

The underlying native binary storage form of FSD is tree

navigation friendly which improves significant performance

improvement than text parsing based processing. The challenge

in designing the binary storage format of FSD instance is to

optimize the format for both query and update. A query friendly

format typically uses compact structures to achieve ultra query

performance while leaving no room for accommodating update,

especially for the delta-update of a FSD instance involving

structural change instead of just leaf value change. The current

practise is to do full FSD instance update physically even though

logically only components of a FSD instance need to be

updated. Although typically a FSD instance is of small to

medium size, the update may still cause larger transaction log

than updating simple relational columns. A command level

logging approach [27] can be investigated to see if it is optimal

for high frequent delta-update of FSD instances.

Optimal FSD instance size: Although the size of FSD

collections can be scaled to very large number, in practise, each

FSD instances is of small to medium size instead of single large

size. In fact, many vendors have imposed size limit per FSD

instance. This is because each FSD instance provides a logical

unit for concurrency access control, document and Index update

and logging granularity. Supporting single large FSD instance

requires RDBMS locking, logging to provide intra-document

scalability [43] in addition to the current mature inter-document

scalability.

4. Querying and Updating FSD

4.1 FSD Query and Update Requirements

A FSD collection is stored as a table of FSD instances. A FSD

instance itself is domain specific and typically has its own

domain-specific query language. For FSD of XML documents,

the domain-specific query language is XQuery. For FSD of

JSON objects, the domain-specific query language is the

SQL/JSON path language as described in [21]. Table 2 shows

the example of SQL/XML[10] and SQL/JSON[21] queries and

DML statements embedding XQuery and SQL/JSON path

language. In general, the domain-specific query language

provides the following requirements:

• Capability of querying and navigating document-object

structures declaratively: A FSD instance is not shredded

into tables since hierarchies in a FSD can be flexible and

dynamic without being modelled as a fixed master-detail

join pattern. Therefore, it is natural to express hierarchical

traversal of FSD as path navigation with value predicate

constructs in the FSD domain language. The path name

can contain a wildcard name match and the path step can be

recursive to facilitate exploratory query of the FSD data.

For example, capabilities of the wildcard tag name match

and recursive descendant tag match in XPath expressions

support the notation of navigating structures without

knowing the exact names or the exact hierarchy of the

structures. See ‘.//experience’ XPath expression in Q1 and

Q2. Such capability is needed to provide flexibility of

writing explorative and discovery queries.

• Capability of doing full context aware text search

declaratively: FSD instances can be document centric with

mixture of textual content and structures. There is a

significant amount of full text content in FSD that are

subject to full text search. However, unlike plain textual

document, FSD has text content that is embedded inside

hierarchical structure. Full text search can be further

confined within a context identified by path navigation into

the FSD instance. Therefore, context aware full text search

is needed in FSD domain languages. See XQuery full text

search expression in XMLEXISTS() predicate of Q1 and

Q2 and path-aware full text search expression in

JSON_TEXTCONTAINS() predicate of Q3.

• Capability of projecting, transforming object

component and constructing new document or object:

Unlike relational query results which are tuples of scalar

data, results of path navigational queries can be fragments

of FSD. New FSD can be constructed by extracting

components of existing FSD and combine them through

construction and transformation. Therefore, constructing

and transforming FSD instances are required in any FSD

language. See XQuery constructor expression in the

XMLQUERY() function in Q1.

• Capability of performing component-wise update: FSD

instance shall be updatable at component-wise level. New

structure shall be addable to existing structures; existing

structures and their values shall be updateable and

deletable. XQuery update facility has provided all of these

functionalities for XML document. See XQuery update

facility expression in XMLQUERY() function in Q2.

4.2 FSD Query and Update Current Practises

While a FSD domain-specific query and update language serves

as an intra-document query language, SQL can be used as an

inter-document query language. The current practices of

querying FSD is to position SQL as a set-oriented language to

provide declarative access of a set of FSD instances by

leveraging the set based algebra supported by SQL. By

positioning SQL as a Set (oriented) Query Language, SQL

provides the necessary constructs to express set algebra

operators, such as selection, projection, join, group by,

aggregation, union, intersection and difference among FSD

instances. SQL is openable to support a set of FSD_XXX()

functions that can embed FSD domain specific query language.

These FSD_XXX() functions are used in strategic places in SQL

to filter, process, transform and update FSD instances. See

Figure 1 for details.

• FSD Filtering: FSD_EXISTS() is used as a conditional

expression in a SQL WHERE clause to filter FSD

instances.

• FSD un-nesting: FSD_TABLE() is used as a table function

in SQL FROM clause to unnest collection components

within FSD instances into a virtual relational table. Un-

nesting can be done recursively, therefore Q4 shows the

example NESTED PATH support in JSON_TABLE() to

un-nest master-detail-detail relationships. Being concrete

form of FSD_TABLE(), XMLTABLE() and

JSON_TABLE() are very popular features in RDBMS to

provide a relational bridge between hierarchical FSD and

flattened relational table. Supporting FSD un-nesting

concept can be traced back to SQL over NF2 model [42].

• FSD Scalar Projection: FSD_VALUE() is used to extract

scalar value within a FSD and then to cast it as SQL built-

in type values so that it can be used in a scalar value

expression in SELECT, GROUP BY, ORDER BY clauses

where scalar values are typically expected.

• FSD Component Projection and Construction:

FSD_Query() is used to query components within FSD or

to construct new FSD in SELECT and UPDATE clause.

• FSD Update: FSD_Query() is used at RHS side of

UPDATE expression to generate a new FSD instance.

• SQL JOIN of FSD Tables: SQL can be used to join

multiple FSD tables. This can be accomplished by

leveraging the SQL JOIN concept and FSD_VALUE()

function. Q6 in table 2 shows the join of resumeDoc_tab,

shoppingCar_tab.

Figure 1 – FSD_XXX() Function Usages in Open-SQL

Lateral

Join

Set

Qry

Lang

SELECT

FROM

WHER

EE

GROUP

BY

ORDER

BY

FSD_QUERY()

Doc-Obj- FSD_TABLE()

FSD_EXISTS(

)

FSD_VALUE()

FSD_VALUE()

FSD_VALUE()

FSD_QUERY()

FSD_QUERY()

Q1 SELECT XMLQUERY(‘<summary>{$doc/contact-info,

$p//employment}</summary>’ PASSING p.resume as “doc”)
FROM resumeDoc_tab p

WHERE XMLEXISTS(

‘$doc/resume[.//experience contains text “xquery” ftand “json”
and .//employmentHistory/employment[starting-time >

xs:date(“2000-01-01”)]] ’ PASSING p.resume as “doc”)

Q2 UPDATE resumeDoc_tab p
SET p.resume = XMLQUERY(‘copy $new := $doc delete node

$new/contact-info/ssn return $new ’ PASSING p.resume as

“doc”)
WHERE XMLEXISTS(

‘$doc/resume[.//experience contains text “xquery” ftand “json”

and .//employmentHistory/employment[starting-time >
xs:date(“2000-01-01”)] and .//GPA[. > 3.5]]’ PASSING

doc.resume)

Q3 SELECT JSON_VALUE(‘$.shoppingCarDate AS TIMESTAMP)
FROM shoppingCarTab

WHERE JSON_TEXTCONTAINS(p.shoppingCar,

‘$.item.promotion.Description’, ‘discount and warrenty’) and
JSON_EXISTS(‘$.item?(price > 100 && quantity <=10)’)

Q4 SELECT p.id, v.itemName, v.itemPrice,

v.partName,v.partQuantity, v.partPrice

FROM shoppingCarTab p, JSON_TABLE(p.shoppingCar,
‘$.items’

 COLUMNS
 (itemName varchar(200) PATH ‘$.itemname’,

itemPrice number PATH ‘$.itemPrice’,

NESTED PATH ‘$.parts’

 COLUMNS
 (partName varchar(100) PATH ‘$.partname’,

 partQuantity number PATH ‘$.partQuantity’,

 partPrice number PATH ‘$.partPrice’))) v

Q5 SELECT COUNT(*) FROM resumeDoc_tab p, shoppingCarTab
p2 WHERE XMLVALUE(p.resume, ‘$p/contact-info/email-

address’) =

JSON_VALUE(p2.shoppingCar, ‘$.user.loginName’)

Q6 SELECT COUNT(*)

FROM resumeDoc_tab p, shoppingCarTab p2
WHERE p.resume.contact-info.email-address =

p2.shoppingCar.user.loginName

Q7 UPDATE shoppingCarTab p2 set

p2.shoppingCar.items[1].availability = ‘false’
WHERE p2.shoppingCarTab.shoppingCarDate BETWEEN

TO_TIMESTAMP(:1) and TO_TIMESTAMP(:2)

Table 2 – SQL/XML and SQL/JSON Example

4.3 FSD Query Limitations and Research Challenges

Syntatic sugar for FSD Domain Language into SQL: The

issue for embedding FSD domain language into SQL is that the

FSD query appears to be “glued” into SQL instead of being

natively part of it. A user friendly syntactic sugar would be to

make path navigation appear to be SQL object navigation

syntax. Q6 and Q7 show a simplified syntax that makes SQL

natively understand the FSD path navigation access. However,

an even friendlier SQL FSD language approach shall be

investigated to integrate the idea of Schema-Free SQL [30] to

query FSD based on data-guide [19] collected from FSD.

Modelling JSON and XML path navigation as SQL object type

path navigation is very attractive as it provides a uniform

language interface to both schema-based SQL99 object type

[12,14] and flexible schema based JSON and XML instances.

Declarative Multi-Hierarchy Transformation: To overcome

the single hierarchy issue of the FSD storage model discussed in

section 3.3, it shall be feasible to come up with a declarative

transformation language to transform a collection of FSD

instances with one hierarchy to another collection of FSD

instances with a different hierarchy having the same semantic

equivalence. For example, given a FSD collection of FSD

instances, each of which represents a student taking a set of

courses, a transformation shall be applicable to generate another

FSD collection of FSD instances, each of which represents a

course is taken by a set of students. Recall in E-R model, this is

handled by maintaining m-n mapping table so that both

hierarchies can be generated using SQL. In the document-

object-store model, the challenge is to come up with a

declarative transformation language extension to SQL to

transform hierarchy. Category theory [26] may help us to define

transformation algebra between relational model and all of the

implied equivalent hierarchical models that can be derived from

the relational model so that a path query over hierarchical model

has its equivalent SQL query over the relational model. One

concrete application of such XPath to SQL transformation is the

SQL/XML query rewrite technique that is well-practised in

XML enabled RDBMS [41].

DataGude Statistics: All FSD_XXX() functions and

FSD_TABLE() can be built into the RDBMS kernel for efficient

execution. However, understanding the cost model for FSD

accesses and statistics distributions of FSD data-guide are

essential for optimizers to get an optimal plan for SQL/FSD

query. This issue is presented in paper [22].

Columnar layout of FSD for Vector Set Processing of

SQL/FSD Query: The last decade has witnessed drastic

performance improvement for relational data via columnar

storage and processing [15] and vector processing [28]. The idea

has been applied to hierarchical data as nested columnar store

[38]. However, Dremel [38] relies on the presence of schema for

the nested data in order to construct the columnar storage.

Furthermore, record assembly from columnar storage to get

original record can be expensive compared with native

aggregated store. It is known that relational row-store is good

for OLTP workload whereas relational columnar-store is good

for OLAP workload. In the same way, FSD binary format at

instance level is good for OLTP FSD workload whereas FSD

columnar format at set level is good for OLAP FSD workload.

Since relational in-memory-columnar structures [29] can

optimize both OLTP and OLAP workload by implicitly

managing these two dual formats and converting between them

on user behalf without forcing users to make up front storage

choice, research is needed to apply similar strategy to manage

FSD as well. A more attractive approach is to develop an

indexing or in-memory columnar layout strategy for FSD. Such

FSD columnar layout shall be friendly for vector based

processing without relying on any central schema definition.

Single language for both imperative logic and declarative

query access for FSD: This has been attempted in OODBMS,

Microsoft LINQ and full-fledged XQuery without

SQL/XML[43]. However, the challenge is to teach the language

compiler and optimizer to understand what is imperative and

what is declarative as each of them requires different

optimization techniques. This challenge requires integrated

research between SIGMOD and SIGPLAN groups.

5. Indexing FSD

5.1 FSD Indexing Requirements

RDBMS indexing techniques, such as B+ tree indices, bitmap

indices are defined based on the existence of schema, so are

materialized views which is defined based on schema in

conjunction with query workload that provide pre-defined query

access pattern. Therefore, the creation of index and materialized

view in RDBMS is based on the paradigm of ‘schema first,

index definition later’.

FSD indexing shall be able to provide performance for both pre-

defined query access pattern and ad-hoc query access pattern.

Pre-defined query access pattern in the context of FSD means

that users are aware of the partial schema within FSD computed

from data-guide so that a relational projection out of FSD in the

form of FSD_VALUE() for a set of scalar value projections or

in the form of FSD_TABLE() for a set of relational view can be

defined. This is referred as ‘data first, schema later as index’

relational indexing approach. On the other hand, Ad-hoc query

access pattern in the context of FSD means users do not have

any prior knowledge of the FSD so that a FSD search index is

needed to provide efficient evaluation of FSD_EXISTS() with

ad-hoc query search. This is referred as ‘data first, schema

never’ search index approach, which is similar to full text

index style search index.

5.2 FSD Indexing Current Practices

5.2.1 Relational Columnar Index for Efficient Relational

Column Query Access Pattern Using FSD_VALUE()

In RDBMSs, the result of a SQL function expression over a

column is commonly used for range queries, e.g., for range

search over an UpperCase() function of a varchar type column, a

functional index [12,14] can be created on the result of

functional expression over a column to speed up range queries

over that functional expression; functional indices can be

defined on a FSD column using the FSD_VALUE() function.

We propose to use columnar compression techniques [36] to

handle result of FSD_VALUE() function. Columnar

compression technique clusters all column values of a single

column together, therefore, a column having many NULL values

and repetitive values is more amendable to columnar

compression and results in much smaller size. Therefore, the

size of FSD_VALUE() projection values encoded in compressed

columnar format is often small enough such that the whole

columnar encoded FSD_VALUE() can fit into main memory

allowing efficient in-memory scan and vector processing

leveraging hardware support, such as SIMD instructions. In

contrast to the classical columnar storage usage [15], we

promote the idea of using the columnar layout as a secondary

indexing structure and not as a primary storage structure. We

call this columnar index or in-memory columnar structure

[29]. The columnar index supports efficient range queries over

the columnar projection of FSD_VALUE() and returns a set of

DOCIDs, each of which is an ordinal number that identifies a

row of the base document-object-store table having FSD that

satisfy the range query. Unlike columnar storage, we don’t need

to stitch columnar data together to get the original FSD since the

original FSD can be obtained directly from the primary

document-object-store table using the DOCID returned by the

columnar index.

To support range queries over multiple scalar values projected

from FSD via a set of FSD_VALUE() functions, multiple

columnar indexes, each of which maps to a FSD_VALUE()

function, can be created. Boolean expression using multiple

FSD_VALUE() functions can be processed efficiently by using

bitmap merges of DOCIDs from multiple columnar index

lookups. Therefore, the columnar index gives us the benefit of

both worlds: efficient query processing using columnar

compression without the need to stitch to obtain the original

row. Indeed, we think that even for processing of pure relational

data, positioning columnar storage structure as an indexing or

in-memory columnar structure over the row storage gives us the

best of both worlds: fast columnar based search and query

without the need to do row stitch.

5.2.2 Relational Table Index for Efficient Relational View

Query Access Pattern Using FSD_TABLE()

FSD_VALUE() can only handle one-to-one scalar projection

relationship, not one-to-many master-detail expansion

relationship. However, FSD has internal hierarchy representing

one-to-many master-detail relationships. For example, both

XML and JSON have embedding collection objects in the form

of repeating XML elements in XML and JSON array. These

collection elements are typically projected out and accessed as

relational views defined using FSD_TABLE() by users.

To efficiently process FSD_TABLE() queries, we use the idea

of table index [11]. Table index can have two physical forms.

In a classical row store, table index can internally maintain

master-detail relational tables to hold the relational results

computed by evaluation of FSD_TABLE(). The master-detail

table is linked by internally generated primary foreign key so

that the column values in the master table are NOT repeatedly

stored in detail tables. Indeed, the table index layout in row store

is the same as if FSD were decomposed and stored relationally

using E-R design. This physical form is ideal for FSD OLTP

workload. However, a more attractive physical form of table

index is to leverage the power of columnar index and in-memory

columnar structure to load FSD_TABLE() results as in-memory

columnar structures without physical materialization. The

FSD_TABLE() in memory form can leverage columnar

compression techniques to efficiently handle repeated master

values and sparse NULL value filled entries so that queries over

the in-memory FSD_TABLE() can leverage the full power of in-

memory columnar scan and vector processing. This physical

form is ideal for FSD OLAP workload with mainly read-only

data.

In summary, both the table index and the columnar index are

very flexible approaches because they are secondary structures

on top of the primary FSD store. Such secondary structures can

be dropped and re-created without affecting the base document-

object table. Therefore, users have the flexibility to decide what

to index based on query workload without the need of changing

the base storage. Although it is not feasible to use the relational-

tuple-store model to store FSD due to lack of a central schema

to describe every pieces of FSD, it is feasible to use the

relational-tuple-store model to define columnar index in the

form of FSD_VALUE() and FSD_TABLE() to index FSD when

the relational query patterns can be extracted out from query

workload and used as partial schema to define the index.

5.2.3 Search Index based on generalized inverted index for

Ad-hoc Query Access Pattern Using FSD_EXISTS()

Columnar based table index assume that users know the query

pattern and query workload. This is not possible for ad-hoc

query use cases. For the document search use case, the path

expressions that are used in FSD_EXISTS() may not be known

in advance. To handle such an ad-hoc query, a search index over

a FSD table without having users to specify what path structures

or values need to be indexed is built. In other words, a search

index indexes everything in a FSD collection. Search indices can

be built based on classical inverted index that indexes all

keywords in a document to provide ad-hoc keyword search

capability [16]. This provides the basic full text search capability

over document centric XML documents or JSON objects.

However, unlike classical inverted indices that index only

keywords in a document, a generalized inverted index is

extended to index hierarchical path structures inside FSD to

support path-aware full text search scalar range value search

workload queries.

Extending inverted index for indexing path structures to

handle path-aware full text search: Inverted index is

originally designed for full text search [16]. The advantage of

inverted indices is that even though they index all keywords of

all documents in a document collection, the posting list for each

keyword in the inverted index is highly compressed so that the

total size of the inverted index is still smaller than the size of

original document collection [16]. A smaller index size is

obviously I/O friendly since physical disk I/O is generally a

primary performance bottleneck in DBMS systems [17]. Each

FSD document in a FSD collection indexed by the search index

is identified by an ordinal number as a DOCID. The DOCIDs of

all documents containing the keyword are stored in a sorted

manner with delta-compression within a posting list so that

efficient multi-predicate Zig-Zag pre-sorted merge join

(MPPZZSMJ), is performed on the posting lists to efficiently

handle multi-keywords searches and phrase searches connected

by AND, OR, NOT Boolean predicates [17]. By indexing path

structures and their hierarchical relationship and leveraging

MPPZZSMJ, classical inverted indices can be extended to

support efficient processing of path containment query and path-

aware full text search [18] that is a common query for XML full

text search .

Search Index for XML: Consider Q1 that has predicate

XMLEXISTS() using XQuery full text search to find resumes

which has ‘xquery’ and ‘json’ keywords in their ‘experience’

element tag, this XMLEXISTS() predicate can be processed by a

generalized inverted index created on resume columns. Like

classical inverted indices, generalized inverted indices index all

keywords so that each distinct keyword (subject to stemming,

stop words rules) in XML text node is indexed as an entry in

inverted index with the posting list storing not only the DOCIDs

of documents containing the keyword but also the positions of

the keyword within the document. Such keyword position helps

to do phrase search or search a group of keywords within certain

distances. Unlike classical inverted indices, the extension in

generalized inverted indices is to index all XML tags of XML

documents stored in document object table. Each distinct XML

tag is indexed and stored as an entry in inverted index with the

posting list storing not only the DOCIDs of documents

containing the XML tags but also the range of tag open and

close positions within the document. These positions are used to

test hierarchical relationship for path traverse query and node

containing keyword query during the MPPZZSMJ process. The

key idea behind extending inverted index to index XML is that it

captures both XML path structures (tags and their hierarchical

relationships) and content data (full text) together in one index

[18]. With such an integrated index, querying structure and data

together can be processed efficiently.

Search Index for JSON: In the same way, an inverted index can

be extended to index JSON objects stored in JSON collection

table as well [21]. Like XML tree nodes, JSON objects and

arrays form nested hierarchical relationship that can be indexed

using their positions within the JSON object. All JSON object

field names are like XML tag names that can be indexed with a

posting list containing the DOCIDs of JSON object that contains

the object field names and their positions within the JSON

object so that JSON_EXISTS() path query can be answered

using an inverted index. Full text in JSON object field content

can be indexed to facilitate full text query within a JSON path.

Extending inverted index for indexing scalar values to

handle path-aware scalar range query search: Compared

with XML documents, JSON objects are more data centric.

Many JSON object leaf fields are scalar values of numbers,

dates and timestamp relational column like datatypes. In

classical full text search, it is not capable of processing range

predicate query on such scalar data. In XQuery, a range scalar

type query is typically mixed with full text query, all of which

are searched within a context defined by XPath. Considering

Q2, XQuery used in the XMLEXISTS() predicate requires not

only full text query search but also range query over scalar data

embedded in specific XML element, a date range search and a

number range search:

 ‘.//employmentHistory/employment[starting-time >

xs:date(“2000-01-01”)] and .//GPA[. > 3.5]’.

Processing such range expressions requires extending the

inverted index to auto detect number, date, timestamp scalar

values embedded in FSD and then index them. The range-data

index structure maps a range of typed data value for a particular

datatype to a posting list. The posting list contains the set of

DOCIDs of FSD data having that value together with its

positions within the document. The MPPZZSMJ processing can

be extended to join posting lists for ranged-typed scalar data,

textual keywords and path structures using DOCIDs, word

positions and range value positions. The generalized inverted

index essentially accomplishes the goal of efficient processing of

join-of range data query and full text search query.

5.3 FSD Indexing Limitations and Research Challenges

Both the columnar index and inverted index share the same

property that their compact layout is very query friendly for

efficient set processing and updated in batch model. Columnar

index and inverted index is not instance update friendly

compared with B+ tree index. Columnar store requires in-

memory buffering, tuple mover and partition-merging to

transform ingestion friendly row format into columnar format.

Query over columnar format provides snapshot isolation.

Inverted indices [13] are typically asynchronously maintained

for large batch of documents and search results are based on

snapshot semantics. Providing a real time inverted index has

been researched [16]. The solution generally relies on querying

the read-friendly indexing structures union with the querying

over delta documents that are temporarily in write-friendly

structures. It is a research opportunity to integrate columnar

index and inverted index layout together so that their presence to

users is one index and is always maintained in real time [37].

Furthermore, in the context of RDBMS, the inverted index must

provide transactional consistency between the dual formats:

instance ingestion friendly OLTP format and set query friendly

OLAP and search format.

6. Advanced Data Management Support

In addition to the storage, index query and update requirements,

advanced data management capabilities developed for relational

data, such as: Bi-temporal support [8], provenance, query

expression data [9] are equally applicable to the management of

FSD data. These advanced data management services in

RDBMS provide advanced declarative data services that

applications can easily exploit. It would be extremely time

consuming and costly to provide these advanced data

management services in the application tier.

Figure 2 – Unified RDBMS Architecture for supporting both

relational data and flexible schema data

In summary, by applying these three principles, Figure 2 shows

the unified RDBMS architecture to manage both relational data

and FSD. At high level, our storage, query, index principles to

manage FSD is similar to the idea of OCTOPUSDB [39]. That

is, rather than creating a zoo of DBMS systems with Polyglot

persistence [40], we think the primary storage shall be a simple

log based document object store with many different storage

views maintained as secondary structures: such as index,

materialized view or in-memory structures to speed up query

and DML workloads from different kinds of usecases.

Furthermore, regardless of the choice of primary data storage

structures or secondary auxiliary structures to speed up query

workload, database application transparency shall be maintained

via supporting a declarative query language interface, such as

SQL so that the application programs that access data via SQL

need NOT be changed. The spirit of storage, query and index

principles for FSD can be further applied to big data

environment where the primary data can be stored in various

forms. SQL extended with domain language remains to be the

declarative language to query the data. Intelligent secondary

auxiliary structures can be created in-memory to deliver ultra

query performance.

7. Conclusion

With the rapid growth of flexible schema data, we are living in

interesting time where E.F Codd’s relational model [6] that

assumes the existence of data schema to manage data is being

challenged. A strength of NoSQL systems is the support of the

‘data first, schema later/never’ approach; i.e., data can be stored

without designing a schema first. In this paper, we have shown

that RDBMSs can be extended to handle FSD by following three

principles: leveraging document-store model, opening SQL with

extension functions to declaratively query and update FSD, and

adopting relational indexing and inverted indexing strategies.

These principles can be implemented in the RDBMS kernels at

data storage, query, and indexing layer to make RDBMS a

unified platform to manage both kinds of data. The underlying

philosophy for the principles is simple: Treat Schema as if it

were data: Store, Index and Query schema along with the

data for FSD. However, there are issues, limitations, and

research opportunities to mature FSD data management in

RDBMS. In fact, most of the issues do exist in specialized

DBMS to manage FSD as well. In contrary to [2], we think that

SQL is not dead, relational mode is not dead. Being RDBMS

researchers and developers, we shall feel good about living in

such exciting time to provide declarative management of data

regardless of their existence of schema or not. Let’s hope that

the year 2015 will be for RDBMS like 1905 for Physics in

which the classical framework for a mature field is being

challenged to accommodate new phenomenon.

8. Acknowledgements

The authors like to express their thanks to following colleagues:

Andreas Behrend, Eric S. Chan, Ronny Fehling, Adel

Ghoneimy, Boris Glavic, Oliver Kennedy, and Venkatesh

Radhakrishnan, for their constructive suggestions, comments,

and critics.

9. REFERENCES

[1] R. Agrawal, A. Somani, Y. Xu: Storage and Querying of E-

Commerce Data. VLDB 2001

[2] P. Atzeni, C.S. Jensen, G. Orsi, S. Ram, L. Tanca, R.

Torlone: The relational model is dead, SQL is dead, and I

don’t feel so good myself. SIGMOD Record, 42(2):64-68,

2013

[3] J. L. Beckmann, A. Halverson, R. Krishnamurthy, J. F.

Naughton: Extending RDBMS To Support Sparse Datasets

Using An Interpreted Attribute Storage Format

[4] R. Cattell: Scalable SQL and NoSQL data stores. SIGMOD

Record, 39(4):12-27, 2010.

RDBMS with Advanced Capabilities:

E.g., Bi-Temporal, Provenance, Expression Data

Relational Data:
Schema First/Data Later

Relational-Tuple Model

Flexible Schema Data:
Data First/Schema Later

or Never

Document-Object Model

B
+
T
r
e
e
 In

d
e
x

B
itM

a
p
 In

d
e
x

R
e
la
tio

n
 In

d
e
x

In
v
e
r
te
d
 In

d
e
x

No-SQL

Naturally open Set-oriented Query Language

[5] Chen P.: The Enity-Relationship Model: Toward a Unified

View of Data. VLDB 1975: 173

[6] Codd, E. A Relational Model of Data for Large Shared

Data Banks. Commun. ACM 13(6): 377-387 (1970)

[7] Postgress SQL for JSON:

http://www.postgresql.org/docs/9.3/static/datatype-

json.html.

[8] Gawlick, D: Querying the Past, the Present, and the Future.

ICDE 2004: 867

[9] A. Yalamanchi, J. Srinivasan, D. Gawlick: Managing

Expressions as Data in Relational Database Systems. CIDR

2003.

[10] I.O. for Standardization (ISO). Information Technology-

Database Language SQL-Part 14: XML-Related

Specifications (SQL/XML)

[11] Z. H. Liu, M. Krishnaprasad, H. J. Chang, V. Arora:

XMLTABLE Index - An Efficient Way of Indexing and

Querying XML Property Data, ICDE 2007

[12] Z. H. Liu. "Object-Relational Features in Informix Internet

Foundation."Informix technical notes. 9.4(Q4 1999):77-95.

[13] G. Salton and M. McGill. Introduction to Modern

Information Retrieval. McGraw-Hill, New York, 1983.

[14] Stonebraker,M;, Brown,P; Moore, D. Object-Relational

DBMSs, Second Edition Morgan Kaufmann 1998

[15] Stonebraker, M.; Abadi, D; Batkin, A.;Chen,X.;Cherniack,

M;Ferreira,M.;Lau, E.;Lin,A.;Madden,S; O’Neil,

E.;O’Neil,P.;Rasin,A.;Tran,N.;Zdonik,S. C-Store: A

Column-oriented DBMS. VLDB 2005: 553-564

[16] J. Zobel, A. Moffat: Inverted files for text search engines.

ACM Computing. Surveys. 38(2): (2006).

[17] I. Rae, A. Halverson, J. Naughton: In-RDBMS Inverted

Indexes revisited. ICDE 2014: 352-363

[18] Z.H.Liu, Y. Lu, H.Chang: Efficient Support of XQuery Full

Text in SQL/XML Enabled RDBMS. ICDE 2014: 1132-

1143

[19] R. Goldman, J. Widom: DataGuides: Enabling Query

Formulation and Optimization in Semi-structured

Databases. VLDB 1997: 436-445

[20] H. V. Jagadish, Laks V. S. Lakshmanan, Monica

Scannapieco, Divesh Srivastava, Nuwee Wiwatwattana:

Colorful XML: One Hierarchy Isn't Enough. SIGMOD

Conference 2004: 251-262

[21] Z. H. Liu, B. Christoph Hammerschmidt, D. McMahon:

JSON data management: supporting schema-less

development in RDBMS. SIGMOD Conference 2014:

1247-1258

[22] D. Tahara, T. Diamond, D. J. Abadi: Sinew: a SQL system

for multi-structured data. SIGMOD Conference 2014: 815-

826

[23] C. E. Dyreson, S. S. Bhowmick, R. Grapp: Querying virtual

hierarchies using virtual prefix-based numbers. SIGMOD

Conference 2014: 791-802

[24] Vertica Flex Table:

https://my.vertica.com/docs/7.0.x/PDF/HP_Vertica_7.0.x_

Flex_Tables.pdf

[25] TeraData JSON data support:

http://www.computerweekly.com/news/2240217675/Terad

ata-Database-15-adds-JSON-addresses-internet-of-things

[26] D. Spivak:

http://math.mit.edu/~dspivak/technical_proposalONR--

2013.pdf

[27] N. Malviya, A.Weisberg, S.Madden, M. Stonebraker:

Rethinking main memory OLTP recovery. ICDE 2014:

604-615

[28] M. Zukowski, P. A. Boncz: From x100 to vectorwise:

opportunities, challenges and things most researchers do

not think about. SIGMOD Conference 2012: 861-862

[29] http://www.oracle.com/technetwork/database/options/datab

ase-in-memory-ds-2210927.pdf

[30] F. Li, T. Pan, H. V. Jagadish: Schema-free SQL. SIGMOD

Conference 2014: 1051-1062

[31] Stonebraker,M; Çetintemel, U: "One Size Fits All": An

Idea Whose Time Has Come and Gone (Abstract). ICDE

2005: 2-11

[32] Stonebraker,M.; Hellerstein, J. What Goes Around Comes

Around. In readings in Database Systems. The MIT Press,

4th edition, 2005.

[33] MongoDB: http://www.mongodb.org/

[34] MarkLogic: http://www.marklogic.com/

[35] I. Elghandour, A. Aboulnaga, D. C. Zilio, C. Zuzarte:

Recommending XML physical designs for XML databases.

VLDB J. 22(4): 447-470 (2013)

[36] D. J. Abadi, S. Madden, M. Ferreira: Integrating

compression and execution in column-oriented database

systems. SIGMOD Conference 2006: 671-682

[37] http://www.cs.cornell.edu/bigreddata/publications/2009/use

timpaper.pdf

[38] S. Melnik, A. Gubarev, J.J. Long, G. Romer, S.

Shivakumar, M. Tolton, T. Vassilakis: Dremel: Interactive

Analysis of Web-Scale Datasets. PVLDB 3(1): 330-339

(2010)

[39] J. Dittrich, A. Jindal: Towards a One Size Fits All Database

Architecture. CIDR 2011: 195-198

[40] P. J. Sadalage, M. Fowler: NoSQL Distilled: A Brief

Guide to the Emerging World of Polyglot Persistence –

August 18, 2012

[41] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W. Warner,

V. Arora, S. Kotsovolos: Query Rewrite for XML in Oracle

XML DB. VLDB 2004: 1122-1133

[42] P. Pistor, F. Andersen: Designing a generalized NF2 Model

with an SQL-Type Language Interface. VLDB 1986” 278-

285

[43] Mohan C: History repeats itself: sensible and NonsenSQL

aspects of the NoSQL hoopla. EDBT 2013

