
FPGA-based Multithreading for In-Memory

Hash Joins

Robert J. Halstead,

Ildar Absalyamov,

Walid A. Najjar,

Vassilis J. Tsotras

University of California, Riverside

Outline

• Background

– What are FPGAs

– Multithreaded Architectures & Memory Masking

• Case Study: In-memory Hash Join

– FPGA Implementation

– Software Implementation

• Experimental results

2

What are FPGAs?

3

• Reprogrammable Fabric

• Build custom application-specific circuits

– E.g. Join, Aggregation, etc.

• Load different circuits onto the same FPGA chip

• Highly parallel by nature

– Designs are capable of managing thousands of threads concurrently

Memory Masking

• Multithreaded architectures

– Issue memory request & stall the thread

– Fast context switching

– Resume thread on memory response

• Multithreading is an alternative to caching

– Not a general purpose solution

• Requires highly parallel applications

• Good for irregular operations (i.e. hashing, graphs, etc.)

– Some database operations could benefit from multithreading

• SPARC processors, and GPUs offer limited multithreading

• FPGAs can offer full multithreading

4

Case Study: In-Memory Hash Join

• Relational Join

– Crucial to any OLAP workload

• Hash Join is faster than Sort-Merge join on multicore CPUs [2]

• Typically FPGAs implement Sort-Merge join [3]

• Building a hash table is non-trivial for FPGAs

• Store data on FPGA [4]

– Fast memory accesses, but small size (few MBs)

• Store data in memory

– Larger size, but longer memory accesses

• We propose the first end-to-end in memory Hash Join

implementation with a FPGAs

5

[2] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013
[3] Casper, J. et al. Hardware Acceleration of Database Operations. FPGA’2014
[4] Halstead, R. et al. Accelerating Join Operation for Relational Databases with FPGAs. FPGA’2013

FPGA Implementation

• All data structures are maintained in memory

– Relations, Hash Table, and the Linked Lists

– Separate chaining with linked list for conflict resolution

• An FPGA engine is a digital circuit

– Separate Engines for the Build & Probe Phase

– Reads tuples, and updates hash table and linked list

– Handle multiple tuples concurrently

– Engines operate independent of each other

– Many engines can be placed on a single FPGA chip

6

FPGA Implementation: Build Phase Engine

• Every cycle a new tuple

enters the FPGA engine

• Every tuple in R is treated as

a unique thread:

– Fetch tuple from memory

– Calculate hash value

– Create new linked list node

– Update Hash Table

• Has to be synchronized via

atomic operations

– Insert the new node into the

linked list

7

FPGA Implementation: Probe Phase Engine

• Every tuple in R is treated
as a unique thread:

– Fetch tuple from memory

– Calculate hash value

– Probe Hash Table for linked

list head pointer

• Drop tuples if the hash table

location is empty

– Search linked list for a match

• Recycle threads through the

data-path until they reach the

last node

– Tuples with matches are

joined

• Stalls can be issued between

New & Recycled Jobs

8

FPGA Area & Memory Channel Constraints

9

• Target platform: Convey-MX

– Xilinx Virtex 6 760 FPGAs

– 4 FPGAs

– 16 Memory channels per FPGA

• Build engines need 4 channels

• Probe engines need 5 channels

• Designs are memory channel
limited

Software Implementation

• Existing state-of-the art multi-core software implementation was

used [5].

• Hardware-oblivious approach

– Relies on hyper-threading to mask memory & thread synchronization

latency

– Does not require any architecture configuration

• Hardware-conscious approach

– Performs preliminary Radix partitioning step

– Parameterized by L2 & TLB cache size (to determine number of

partitions & fan-out of partitioning algorithm)

10

[5] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013

• Data format, commonly used in column

stores – two 4-byte wide columns:

– Integer join key

– Random payload value

⨝R.key=S.ke

y

R
Key Payload
r1 …

.. …

rn …

S
Key Payload
s1 …

.. …

sm …

Experimental Evaluation

• Four synthetically generated datasets with varied key distribution

– Unique: Shuffled sequentially increasing values (no-repeats)

– Random: Uniformly distributed random values (few-repeats)

– Zipf: Skewed values with skew factor 0.5 and 1

• Each dataset has a set of relation pairs (R&S) ranging from 1M to

1B tuples

• Results were obtained on Convey-MX heterogeneous platform

11

Hardware Region

FPGA board Virtex-6 760

FPGAs 4

Clock Freq. 150 MHz

Engines per FPGA 4 / 3

Memory Channels 32

Memory Bandwidth (total) 76.8 GB/s

Software Region

CPU Intel Xeon E5-2643

CPUs 2

Cores / Threads 4 / 8

Clock Freq. 3.3 GHz

L3 Cache 10 MB

Memory Bandwidth (total) 102.4 GB/s

Throughput Results: Unique dataset

12

• 1 CPU (51.2 GB/s)

– Non-partitioned CPU approach is better than partitioned one, since
each bucket has exactly one linked list node

• 2 FPGAs (38.4 GB/s)

– 900 Mtuples/s when Probe Phase dominated

– 450 Mtuples/s when Build Phase dominated

– 2x Speedup over CPU

Throughput Results: Random & Zipf_0.5

13

• As the average chain length grows from one non-partitioned

CPU solution is outperformed by partitioned one

• FPGA has similar throughput, speedup ~3.4x

Throughput Results: Zipf_1.0 dataset

14

• FPGA throughput decreases significantly due to stalling during

probe phase

Scale up Results: Probe-dominated

15

• Scale up: each 4 CPU

threads are compared to 1

FPGA (roughly matches

memory bandwidth)

• Only Unique dataset is

shown, Random & Zipf_0.5

behave similarly

• FPGA does not scale on

Zipf_1.0 data

• Partitioned CPU solution scales up, but at much lower rate than

FPGA

Scale up Results: |R|=|S|

16

• FPGA does not scale better than partitioned CPU, but it is still ~2

times faster

Conclusions

17

• Present first end-to-end in-memory Hash join implementation on

FPGAs

• Show memory masking can be a viable alternative to caching

– FPGA multi-threading can achieve 2x to 3.4x over CPUs

– Not reasonable for heavily skewed datasets (e.g. Zipf 1.0)

Normalized throughput comparison

18

• Hash join is memory-bounded problem

• Convey-MX platform gives advantage to multicore solutions in

terms of memory bandwidth

• Normalized comparison shown that FPGA approach achieves

speedup up to 6x (Unique) and 10x (Random & Zipf_0.5)

