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What are FPGAS?

Reprogrammable Fabric

Build custom application-specific circuits

— E.g. Join, Aggregation, etc.

Load different circuits onto the same FPGA chip

» Highly parallel by nature
— Designs are capable of managing thousands of threads concurrently




Memory Masking

Multithreaded architectures

— Issue memory request & stall the thread
— Fast context switching

— Resume thread on memory response

Multithreading is an alternative to caching

— Not a general purpose solution
« Requires highly parallel applications
« Good for irregular operations (i.e. hashing, graphs, etc.)

— Some database operations could benefit from multithreading

SPARC processors, and GPUs offer limited multithreading
FPGAs can offer full multithreading




Case Study: In-Memory Hash Join

* Relational Join
— Crucial to any OLAP workload
« Hash Join is faster than Sort-Merge join on multicore CPUs [2]

» Typically FPGAs implement Sort-Merge join [3]

« Building a hash table is non-trivial for FPGAs
« Store data on FPGA [4]
— Fast memory accesses, but small size (few MBs)

- Store data in memory
— Larger size, but longer memory accesses

 We propose the first end-to-end in memory Hash Join
Implementation with a FPGAs

[2] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013
[3] Casper, J. et al. Hardware Acceleration of Database Operations. FPGA'2014
[4] Halstead, R. et al. Accelerating Join Operation for Relational Databases with FPGAs. FPGA’2013




FPGA Implementation

» All data structures are maintained in memory
— Relations, Hash Table, and the Linked Lists
— Separate chaining with linked list for conflict resolution

 An FPGA engine is a digital circuit
— Separate Engines for the Build & Probe Phase
— Reads tuples, and updates hash table and linked list
— Handle multiple tuples concurrently
— Engines operate independent of each other
— Many engines can be placed on a single FPGA chip



FPGA Implementation: Build Phase Engine{_’i]ﬁ/

Every cycle a new tuple
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FPGA Area & Memory Channel Constraints !

Target platform: Convey-MX
— Xilinx Virtex 6 760 FPGAs

— 4 FPGAs

— 16 Memory channels per FPGA

FPGA Memory Channels

o 1] 2] | 13|14 ] 15
LIttt roer

Build Build Build Build
Engine Engine Engine Engine

Build engines need 4 channels
Probe engines need 5 channels

Designs are memory channel

FPGA Memory Channels

limited

# Engines Registers LUTs BRAMs
1 probe 65678 (7T%) 62521 (13%) | 104 (14%)
2 probe 81712 (9%) 74951 (16%) | 133 (18%)
3 probe 94799 (10%) 86200 (18%) | 154 (21%)
1 build 112476 (16%) | 118169 (33%) | 41 (4%)
2 build 117202 (17%) | 123890 (35%) | 48 (5%)
3 build 121408 (17%) | 129592 (37%) | 55 (6%)
4 build 125588 (18%) | 135908 (38%) | 62 (T%)

o 1] 2] |13 |14 15
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Software Implementation

« EXxisting state-of-the art multi-core software implementation was
used [5].

« Hardware-oblivious approach

— Relies on hyper-threading to mask memory & thread synchronization
latency

— Does not require any architecture configuration

« Hardware-conscious approach
— Performs preliminary Radix partitioning step

— Parameterized by L2 & TLB cache size (to determine number of
partitions & fan-out of partitioning algorithm)

. R S
« Data format, commoqu used in column <oy TPayioad <oy TPavioad
stores — two 4-byte wide columns: r s,
— Integer join ke " "rersie |
ger ) y : y s
— Random payload value " "

[5] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013




Experimental Evaluation

* Four synthetically generated datasets with varied key distributioﬁ"

— Unique: Shuffled sequentially increasing values (no-repeats)
— Random: Uniformly distributed random values (few-repeats)
— Zipf: Skewed values with skew factor 0.5 and 1

« Each dataset has a set of relation pairs (R&S) ranging from 1M to

1B tuples

* Results were obtained on Convey-MX heterogeneous platform

Software Region

Hardware Region

FPGA board

# FPGAs

Clock Freq.
Engines per FPGA
Memory Channels

Memory Bandwidth (total)
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4

150 MHz
4/3
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76.8 GB/s

CPU

# CPUs

Cores / Threads
Clock Freq.

L3 Cache

Memory Bandwidth (total)

Intel Xeon E5-2643
2

4/8

3.3GHz

10 MB

102.4 GB/s
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Throughput Results: Unique dataset
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« 1CPU (51.2 GB/s)

— Non-partitioned CPU approach is better than partitioned one, since
each bucket has exactly one linked list node

« 2 FPGAs (38.4 GB/s)
— 900 Mtuples/s when Probe Phase dominated
— 450 Mtuples/s when Build Phase dominated
— 2X Speedup over CPU
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Throughput Results: Random & Zipf 0.5
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« As the average chain length grows from one non-partitioned
CPU solution is outperformed by partitioned one

 FPGA has similar throughput, speedup ~3.4x
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Throughput Results: Zipf 1.0 dataset
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* FPGA throughput decreases significantly due to stalling during
probe phase
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Scale up Results: Probe-dominated
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« Partitioned CPU solution scales up, but at much lower rate than
FPGA
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Scale up Results: |R|=|S]
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(b) Build and Probe Relations both have 22% tuples

 FPGA does not scale better than partitioned CPU, but it is still ~2
times faster
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Conclusions

* Present first end-to-end in-memory Hash join implementation on
FPGAs

« Show memory masking can be a viable alternative to caching
— FPGA multi-threading can achieve 2x to 3.4x over CPUs
— Not reasonable for heavily skewed datasets (e.qg. Zipf 1.0)

17



Normalized throughput comparison

Throughput (MTuples/s) per

Bandwidth (GB/s)
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(a) Build Relation has 22!, Probe has 228 tuples (b) Build and Probe Relations both have 228 tuples

« Hash join is memory-bounded problem
« Convey-MX platform gives advantage to multicore solutions in
terms of memory bandwidth

 Normalized comparison shown that FPGA approach achieves
speedup up to 6x (Unique) and 10x (Random & Zipf_0.5) »



