FPGA-based Multithreading for In-Memory
Hash Joins

Robert J. Halstead,

lldar Absalyamov,

Walid A. Najjar,

Vassilis J. Tsotras

University of California, Riverside

Outline

« Background
— What are FPGAs
— Multithreaded Architectures & Memory Masking

« Case Study: In-memory Hash Join
— FPGA Implementation
— Software Implementation

* Experimental results

What are FPGAS?

Reprogrammable Fabric

Build custom application-specific circuits

— E.g. Join, Aggregation, etc.

Load different circuits onto the same FPGA chip

» Highly parallel by nature
— Designs are capable of managing thousands of threads concurrently

Memory Masking

Multithreaded architectures

— Issue memory request & stall the thread
— Fast context switching

— Resume thread on memory response

Multithreading is an alternative to caching

— Not a general purpose solution
« Requires highly parallel applications
« Good for irregular operations (i.e. hashing, graphs, etc.)

— Some database operations could benefit from multithreading

SPARC processors, and GPUs offer limited multithreading
FPGAs can offer full multithreading

Case Study: In-Memory Hash Join

* Relational Join
— Crucial to any OLAP workload
« Hash Join is faster than Sort-Merge join on multicore CPUs [2]

» Typically FPGAs implement Sort-Merge join [3]

« Building a hash table is non-trivial for FPGAs
« Store data on FPGA [4]
— Fast memory accesses, but small size (few MBs)

- Store data in memory
— Larger size, but longer memory accesses

 We propose the first end-to-end in memory Hash Join
Implementation with a FPGAs

[2] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013
[3] Casper, J. et al. Hardware Acceleration of Database Operations. FPGA'2014
[4] Halstead, R. et al. Accelerating Join Operation for Relational Databases with FPGAs. FPGA’2013

FPGA Implementation

» All data structures are maintained in memory
— Relations, Hash Table, and the Linked Lists
— Separate chaining with linked list for conflict resolution

 An FPGA engine is a digital circuit
— Separate Engines for the Build & Probe Phase
— Reads tuples, and updates hash table and linked list
— Handle multiple tuples concurrently
— Engines operate independent of each other
— Many engines can be placed on a single FPGA chip

FPGA Implementation: Build Phase Engine{_’i]ﬁ/

Every cycle a new tuple
enters the FPGA engine

Every tuple in R is treated as
a unique thread:

Fetch tuple from memory
Calculate hash value
Create new linked list node

Update Hash Table

» Has to be synchronized via
atomic operations

Insert the new node into the
linked list

Build
Relation

Hash
Table

Linked
Lists

Tuple 0

Tuple 1

FPGA Logic

Registers

- Hash Table si

- Build Rel. base address
- Build Rel. # tuples
- Hash Table base address

e

- Linked List base address

Tuple
OxFFFF_FFFF Request
0x0000_003F Tuple Response Hash F# Synch _
Function I-» Job FIFOs 1
1
[
- [
Write - 1
: Linked List 1
4 Atomic Request Update 1
. < <
list data Hash Table -:
0x0000_0003 I
list data ::
0x0000 002A | Atomic Response 7 Synch | _
— » Job FIFOs :
!
list data < Update _l
Linked List

OXFFFF_FFFF

Probe
Relation

Hash
Table

Linked
Lists

Main Memaory

Tuple 0

Tuple 1

FPGA Logic

Registers: Base addresses, sizes, etc.

Tuple Request |

Tuple N

> Hash Function =

]
Hash Table Lookup =

Synch

OXFFFF_FFFF

0x0000_003F

list data

0x0000_0003

list data

0x0000_002A

"| Job FIFOs
T

¥

New Recycled
lob FIFQ lob FIFO
T T

L== - =1

S

Arbiter
T

¥ ¥
Probe Synch

Linked List

lob FIFOs
|

¥

1
1
1
1
I
1
1
mmmmdmm !
I
1
1
I
I
1
1

list data

=i Analyze Job -

OXFFFF_FFFF

Join Tuple Data/Painters |<- !

Job doesn’t
match

Job does
match

as a unique thread:

Fetch tuple from memory

Calculate hash value

Probe Hash Table for linked
list head pointer

» Drop tuples if the hash table
location is empty

Search linked list for a match

» Recycle threads through the
data-path until they reach the
last node

Tuples with matches are
joined

Stalls can be issued between
New & Recycled Jobs

FPGA Area & Memory Channel Constraints !

Target platform: Convey-MX
— Xilinx Virtex 6 760 FPGAs

— 4 FPGAs

— 16 Memory channels per FPGA

FPGA Memory Channels

o 1] 2] | 13|14] 15
LIttt roer

Build Build Build Build
Engine Engine Engine Engine

Build engines need 4 channels
Probe engines need 5 channels

Designs are memory channel

FPGA Memory Channels

limited

Engines Registers LUTs BRAMs
1 probe 65678 (7T%) 62521 (13%) | 104 (14%)
2 probe 81712 (9%) 74951 (16%) | 133 (18%)
3 probe 94799 (10%) 86200 (18%) | 154 (21%)
1 build 112476 (16%) | 118169 (33%) | 41 (4%)
2 build 117202 (17%) | 123890 (35%) | 48 (5%)
3 build 121408 (17%) | 129592 (37%) | 55 (6%)
4 build 125588 (18%) | 135908 (38%) | 62 (T%)

o 1] 2] |13 |14 15
titt rrett rett

Software Implementation

« EXxisting state-of-the art multi-core software implementation was
used [5].

« Hardware-oblivious approach

— Relies on hyper-threading to mask memory & thread synchronization
latency

— Does not require any architecture configuration

« Hardware-conscious approach
— Performs preliminary Radix partitioning step

— Parameterized by L2 & TLB cache size (to determine number of
partitions & fan-out of partitioning algorithm)

. R S
« Data format, commoqu used in column <oy TPayioad <oy TPavioad
stores — two 4-byte wide columns: r s,
— Integer join ke " "rersie |
ger) y : y s
— Random payload value " "

[5] Balkesen, C. et al. Main-memory Hash Joins on Multi-core CPUs: Tuning to the underlying hardware. ICDE’2013

Experimental Evaluation

* Four synthetically generated datasets with varied key distributioﬁ"

— Unique: Shuffled sequentially increasing values (no-repeats)
— Random: Uniformly distributed random values (few-repeats)
— Zipf: Skewed values with skew factor 0.5 and 1

« Each dataset has a set of relation pairs (R&S) ranging from 1M to

1B tuples

* Results were obtained on Convey-MX heterogeneous platform

Software Region

Hardware Region

FPGA board

FPGAs

Clock Freq.
Engines per FPGA
Memory Channels

Memory Bandwidth (total)

Virtex-6 760
4

150 MHz
4/3

32

76.8 GB/s

CPU

CPUs

Cores / Threads
Clock Freq.

L3 Cache

Memory Bandwidth (total)

Intel Xeon E5-2643
2

4/8

3.3GHz

10 MB

102.4 GB/s
11

Throughput Results: Unique dataset

°°°°° FPGA 221 = =CPU non-part 221 w——(CPU part 221
----- FPGA 228 CPU non-part 228 ===CpU part 228

o 900 T ivieesesesssesassassansans

& | g eeneeseene

® .| e

280 e

a 700

= :

E 600

g [

Ly —e— p——EE L R

f=, 400 — e

(o]

= 300

=

100

220 221 522 523 524 525 526 27 528 529 530
Probe Relation size (# Tuples)
« 1CPU (51.2 GB/s)

— Non-partitioned CPU approach is better than partitioned one, since
each bucket has exactly one linked list node

« 2 FPGAs (38.4 GB/s)
— 900 Mtuples/s when Probe Phase dominated
— 450 Mtuples/s when Build Phase dominated
— 2X Speedup over CPU

12

Throughput Results: Random & Zipf 0.5

MTuples / sec)

Throughput (

----- FPGA 2% = =CPU non-part 2>* ===CPU part 2% eeeFPGA 221 = =CPU non-part 2°! ===CPU part 2*!
----- FPGA 228 = =CPU non-part 22 ——CPU part 2% «eee-FPGA 2% = =CPU non-part 2°® ===CpU part 2%
ool IO e e s peseser T 900
800 e . ::- 800 e
700 e - ¢ 700 e
600 et 2 600 -
500 et E ocop dbowwennee=®" e
-------------------------------------- S 500
400 & 400
300 \ -'F: 300
200 — — - —m—===—= —\\- 3 200 /—— _______ —\X\\.
100 T S S e s e s s s s = = - ——— - £10 =B === =
0)
220 221 222 223 224 225 226 22? 228 229 230 220 221 222 223 224 225 226 22? 223 229 230
Probe Relation size (# Tuples) Probe Relation size (# Tuples)
(b) Random dataset (c) Zipf-0.5 dataset

« As the average chain length grows from one non-partitioned
CPU solution is outperformed by partitioned one

 FPGA has similar throughput, speedup ~3.4x

13

Throughput Results: Zipf 1.0 dataset

= =CPU non-part 221 —=—cpu part 221

== =CPU non-part 228 ——cpy part 2%
300

250

200

150

100

Throughput (MTuples / sec)

50

220 221 222 223 224 225 226 227 228 229 230

Probe Relation size (# Tuples)

* FPGA throughput decreases significantly due to stalling during
probe phase

14

Scale up Results: Probe-dominated

*****FPGA Unique =—CPU part Unique
° Scale up each 4 CPU *++++FPGA Zipf_1.0 = =CPU non-part Unique
threads are compared to 1 T oo
FPGA (roughly matches g 1400
memory bandwidth) g -
. . — 800
* Only Unique dataset is o
hown, Random & Zipf O. 3 400 : e -
S O ! a _do & p —O 5 £ 200 W ..
behave similarly o
4 Threads 8 Threads 12 Threads 16 Threads
« FPGA does not scale on (1 FPGA) (2 FPGA) (3 FPGA) (4 FPGA)
Z|pf_10 data (a) Build Relation has 22!, Probe has 22® tuples

« Partitioned CPU solution scales up, but at much lower rate than
FPGA

15

Scale up Results: |R|=|S]

----- FPGA Unique —CPU part Unique
+FPGA Zipf_1.0 = =CPU non-part Unique
800
700
600
500
400
300
200
100

Throughput (MTuples / sec)

4 Threads 8 Threads 12 Threads 16 Threads
(1 FPGA) (2 FPGA) (3 FPGA) (4 FPGA)

(b) Build and Probe Relations both have 22% tuples

 FPGA does not scale better than partitioned CPU, but it is still ~2
times faster

16

Conclusions

* Present first end-to-end in-memory Hash join implementation on
FPGAs

« Show memory masking can be a viable alternative to caching
— FPGA multi-threading can achieve 2x to 3.4x over CPUs
— Not reasonable for heavily skewed datasets (e.qg. Zipf 1.0)

17

Normalized throughput comparison

Throughput (MTuples/s) per

Bandwidth (GB/s)

M Unique Random MZipf 0.5 ™Zipf 1.0 M Unique Random ™ Zipf 0.5

Wlll.... llllllluu.u

& & 'C\a [C\a & e &
'a > > Q Q 2 > 2
o \>°°°Q S o o) & '\CQ q,CQOQ \)OOOQ \)<\°°Q
(o3 \,C? 19?

N
wm

25

N

o
N
o

-

w
-
(V]

[y
o

—
o
Throughput (MTuples/s) per
Bandwidth (GB/s)

w
wv

o

C\a C\a
<& &
N 12 SN QD QD
\,(' ’L(‘ Qo“

¢
N 9

(a) Build Relation has 22!, Probe has 228 tuples (b) Build and Probe Relations both have 228 tuples

« Hash join is memory-bounded problem
« Convey-MX platform gives advantage to multicore solutions in
terms of memory bandwidth

 Normalized comparison shown that FPGA approach achieves
speedup up to 6x (Unique) and 10x (Random & Zipf_0.5) »

