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Overview

Deuteronomy: componentized DB stack
Separates transaction, record, and storage management
Deployment flexibility, reusable in many systems and applications

Conventional wisdom: layering incompatible with performance

Build from the ground up for modern hardware
Lock/latch-freedom, multiversion concurrency control,
cache-coherence-friendly techniques

Result: 1.5M TPS
Performance rivaling in-memory database systems but
clean separation & works even without in-memory data



The Deuteronomy Database Architecture
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Deployment Flexibility
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The First Implementation
Transactional Component (TC)
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The New Transactional 
Component



Key Mechanisms for Millions of TPS
Multiversion concurrency control (MVCC)

Transactions never block one another
Multiversioning limited to TC only

Lock and latch freedom throughout
Buffer management, concurrency control, caches, allocators, …

In-memory recovery log buffers as version cache
Redo-only recovery doubles in-memory cache density
Only committed versions sent to DC, shipped in log buffer units

TC and DC run on separate sockets (or machines)
Task parallelism/pipelining to gain performance
Data parallel when possible, but not at the expense of the user

Eliminate blocking

Mitigate latency

Maximize concurrency



TC Overview
MVCC enforces serializability

Recovery log acts as version cache

Log buffers batch updates to DC

Parallel log replay engine at DC
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Latch-free
Multiversion
Concurrency
Control



Timestamp MVCC

Each transaction has a timestamp assigned on begin
Transactions read, write, and commit at that timestamp

Each version marked with create timestamp
and last read timestamp



In-memory

recovery log buffers 
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Hash Table

In-memory

recovery log buffers 
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Ordered version lists chained off each record



Key A Version List Read Time 40

In-memory

recovery log buffers 
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In-memory

recovery log buffers 

+

cache
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DC
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Hash Table

Log OffsetCreate TxID 18

Log OffsetCreate TxID 4

Key Y Version List Read Time 50

Version Manager

Log OffsetCreate TxID 10

Latch-free MVCC Table: Reads

Key A Version List Read Time 40

Read: find a visible, committed version;

compare-and-swap read timestamp



In-memory

recovery log buffers 
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Log OffsetCreate TxID 18

Log OffsetCreate TxID 4

Key Y Version List Read Time 50

Version Manager

Latch-free MVCC Table: Reads

Key A Version List Read Time 40

Log OffsetCreate TxID 10

Data is pointed to directly in

in-memory recovery log buffers



In-memory

recovery log buffers 

+

cache

+

DC
Key A Version List Read Time 50
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In-memory

recovery log buffers 

+

cache

+

DC
Key A Version List Read Time 50

. . .

Hash Table

Log OffsetCreate TxID 10

Log OffsetCreate TxID 18

Log OffsetCreate TxID 4

Key Y Version List Read Time 50

Latch-free MVCC Table: Writes

Version Manager

Append new version to in-memory log



In-memory

recovery log buffers 

+

cache

+

DC
Key A Version List Read Time 50

. . .

Hash Table

Log OffsetCreate TxID 10

Log OffsetCreate TxID 18

Log OffsetCreate TxID 4

Key Y Version List Read Time 50

Latch-free MVCC Table: Writes

Version Manager

Create new version metadata that points to it

Log OffsetCreate TxID 4



In-memory

recovery log buffers 

+

cache

+

DC

. . .

Hash Table

Log OffsetCreate TxID 10

Log OffsetCreate TxID 18

Log OffsetCreate TxID 4

Key Y Version List Read Time 50

Latch-free MVCC Table: Writes

Version Manager

Install version atomically with compare-and-swap

Log OffsetCreate TxID 4
Compare and swap

Key A Version List Read Time 50



MVCC Garbage Collection

Track
Oldest active transaction (OAT)

Version application progress at the DC

Remove versions older than OAT and applied at the DC

Later requests for most recent version of the record go to DC



Latch-free Log Buffer Allocation



Serialized Log Allocation, Parallel Filling

Only allocation is serialized, not data copying

Log Buffer Tail = 80

Allocated & filling FilledUnallocated



Fast Atomic Operations for Log Allocation

Log Buffer Tail = 80

Thread 1: CompareAndSwap(&tail, 80, 90) → ok

Thread 2: CompareAndSwap(&tail, 80, 85) → fail

Wasted shared-mode load for ‘pre-image’

Dilated conflict window creates retries

Thread 1: AtomicAdd(&tail, 10) → 90

Thread 2: AtomicAdd(&tail, 5) → 95

No need for load of ‘pre-image’

Order non-deterministic, but both succeed

FilledUnallocated



TC Proxy
DC-side multicore parallel redo-replay



Multicore Replay at the DC

Each received log buffer replayed 
by dedicated hw thread

Fixed-size thread pool
Backpressure if entire socket busy

“Blind writes” versions to DC
“Delta chains”  avoid read cost for 
writes

Out-of-order and redo-only safe
LSNs, only replay committed entries, 
shadow transaction table

TC Proxy

Data Component

(Bw-tree)

Incoming Log Buffers from TC

HW Threads



Evaluation



Hardware for Experiments

4x Intel Xeon @ 2.8 GHz
64 total hardware threads

Commodity SSD ~450 MB/s

Socket 0 Socket 1

Socket 2Socket 3

TC Proxy + DC (Bw-tree)

TC



More than half of all records 
access every 20 seconds

Heavily stresses concurrency 
control and logging overheads

Experimental Workload

YCSB-like

50 million 100-byte values

4 ops/transaction

~“80-20” Zipfian access skew

DC on separate NUMA socket;

also running periodic checkpoints



Evaluation: Transaction Throughput

84% reads
50% read-only transactions

1.5M TPS
Competitive w/
in-memory systems



Evaluation: Impact of Writes

~350,000 TPS w/100% writes

Disk close to saturation
90% disk bandwidth utilization

DRAM latency limits
write-heavy loads

More misses for DC update 
than for “at TC” read



For lack of time; fun stuff in the paper

Unapologetically racy
log-structured read-cache

Fast async pattern
Eliminates context switch and
memory allocation overhead

Lightweight pointer stability
Epoch protection for latch-free 
data structures free of atomic ops 
on the fast path

Fast commit with read-only 
transaction optimization

Recovery log as queue for 
durable commit notification

Thread management & NUMA
details



Related Work

Modern in-memory database engines
Hekaton [Diaconu et al]

HANA

HyPer [Kemper and Neumann]

Silo [Tu et al]

Multiversion Timestamp Order [Bernstein, Hadzilacos, Goodman]

Strict Timestamp Order CC
Hyper [Wolf et al]



Future Directions

Dealing with ranges

Timestamp concurrency control may be fragile

More performance work

More functionality

Evaluating scale-out



Conclusions

Deuteronomy: clean DB kernel separation needn’t be costly
Separated transaction, record, and storage management

Flexible deployment allows reuse in many scenarios
Embedded, classic stateless apps, large-scale fault-tolerant

Integrate the lessons of in-memory databases
Eliminate all blocking, locking, and latching
MVCC, cache-coherence-friendly techniques

1.5M TPS rivals in-memory database systems
but clean separation & works even without in-memory data




