
DataHub: Collaborative Data
Science and Dataset Version

Management at Scale

Aditya Parameswaran
U Illinois 1

Deep, Dark Secrets of Data Science

2

Mo#va#on'
!  The'“pain'point”'is'increasingly'managing'the'process'

!  Which'datasets'are'being'used'and'where'did'they'come'from'
!  Who'is'edi#ng'what'or'who'generated'which'results'
!  What'types'of'analyses'have'been'conducted'
!  Where'did'this'“plot.png”'file'come'from'
!  What'to'do'when'I'discover'an'error'in'a'dataset'
!  How'did'today’s'results'compare'to'yesterday’s'results'
!  Which'datasets'should'I'use'to'further'my'analysis'

!  Many'ad'hoc'data'management'systems'(e.g.,'Dropbox)'being'used'

!  Much'of'the'data'is'unstructured'so'typically'can’t'use'DBs'
!  The'process'of'data'science'itself'is'quite'ad'hoc'and'exploratory'
!  Scien#sts/researchers/analysts'are'preTy'much'on'their'own'

Courtesy: XKCD

How bad could dataset
management get?

3

4

Chicago Illinois Maryland MIT

Aaron
Elmore

Aditya
Parameswaran

Amol
Deshpande

Sam
Madden

Amit Chavan

Souvik
Bhattacherjee

Anant
Bhardwaj

The Investigator Team

Amit
Chavan

Shouvik
Bhattacherjee

A True (Horror) Story of
Dataset Management

5

Before

What did we learn?

6

We use about 100TB of data across
20-30 researchers

We spend a LOT of money on this.

Everything is organized around shared
folders, and everyone has access.

Our dataset management scheme
is so simple, it’s great!

Research
Scientist

What did we learn?

7

They typically make a private copy.

Us

So how do users work on datasets?

But wouldn’t that mean lots of
redundant versions and duplication?

Yes. That’s why our storage is 100TB.

1: Massive redundancy
in stored datasets

What did we learn?

8

Sure, but we have no way of knowing
or resolving modifications

Us

Do you have datasets being analyzed
by multiple users simultaneously?

But wouldn’t that mean you cannot
combine work across users

True. The users will need to discuss.

II: True collaboration
 is near impossible!

What did we learn?

9

All the time!

Us

Do you get rid of redundant datasets,
given that you have space issues?

What if the user had left, and if the
dataset is crucial for reproducibility?

We cross our fingers!

III: Unknown
dependencies

between datasets

What did we learn?

10

Not really. They talk to me.

Us

Is there any way users can search for
specific dataset versions of interest?

What if you leave?

Let’s pray for the group’s sake that that
doesn’t happen!

IV: No organization
or management of

dataset versions.

What did we learn?

11

1.  Massive redundancy in stored datasets
2.  Truly collaborative data science is impossible
3.  Unknown dependencies between dataset versions
4.  No efficient organization or management of datasets

The four

Happens all the time…

12

1.  Massive redundancy in stored datasets
2.  Truly collaborative data science is impossible
3.  Unknown dependencies between dataset versions
4.  No efficient organization or management of datasets

Every collaborative data science project ends up in
dataset version management hell

Surely, there must
be a better way?

Have we seen this before?

13

Analogous to management of source code
before source code version control!

How about:
DataHub: a “GitHub for data”

1.  Massive redundancy in stored datasets
2.  Truly collaborative data science is impossible
3.  Unknown dependencies between versions
4.  No efficient organization or management

Compact storage
“Branching” allowed
Explicit and implicit
Rich retrieval methods

Solving the “AYS” problems

What about alternatives?

14

Many issues with directly using GitHub or SC-VC:

•  Cannot handle large datasets or large # of versions
•  Querying and retrieval functionality is primitive
•  Datasets have regular repeating structure

Many issues with temporal databases: similar issues, plus
one major one:

•  Only supports a linear chain of versions

The Vision for DataHub

15

The

for collaborative data science and
dataset version management

satisfying all your dataset book-keeping needs.

The Vision for DataHub

16

Basics:
•  Efficient maintenance and management of

dataset versions

DataHub will also have:
•  A rich query language encompassing data and

versions
•  In-built essential data science functionality such as

ingestion, and integration, plus API hooks to
external apps (MATLAB, R, …)

17

Ingest (Import)

Version
Management

Sharing, Collaboration

Raw Files

Fork, Branch,
Merge

Database System

Query Language

Integrate / Visualize / Other Apps

DataHub Architecture

18

Data:

Versioned
Datasets

Metadata:

Version Graphs
Indexes,

Provenance

Dataset Versioning Manager

Versioning API Versioning QL

INGEST INTEGRATE OTHER Client Applications

Client Applications

DataHub: A Collaborative Dataset Management Platform

Support for Data Science

Data Model and Basic API

19

Key Value
Sam (Berkeley, 2003, Hellerstein)
Amol (Berkeley, 2004, Hellerstein)

Aaron (UCSB, 2014, El Abbadi and
Agrawal)

Key School Year Advisor
Sam Berkeley 2003 Hellerstein

Amol Berkeley 2004 Hellerstein

Aaron UCSB 2014 El Abbadi and
Agrawal

Flexible “Schema-later” Data Model
Groups of records with different schemas in same table

Standard git commands: branch, commit, fork,
merge, rollback, checkout

Versions

Metadata

Storing and Retrieving Versions

20

contain one or more predicates, this way the query input involves
“data”, and the output is once again “data”. On the other hand, the
square in the upper left corner allows us to specify which version
or versions we would like the standard SQL queries to be executed.
For instance, VQL supports the query

SELECT * FROM R(v124), R(v135)
WHERE R(v124).id = R(v135).id

where v124, v135 are version numbers. Once again, the query
specifies “data”, but also specifies one or more “versions”.

The squares in the right hand side are a bit different: in this case,
the result is one or more version numbers. Here, we add to SQL
two new keywords: VNUM and VERSIONS, which can be used
in the following manner:

SELECT VNUM FROM VERSIONS(R)
WHERE EXISTS (SELECT * FROM R(VNUM)
WHERE name = ‘Hector’)

This query selects all versions where a tuple with name Hector ex-
ists. The attribute VNUM refers to a version number, while VER-
SIONS(R) refers to a special single-column table containing all the
version numbers of R. The example above is a VQL query that fits
in the right bottom corner of the chart, while a VQL query that
provides a version as input and asks for similar versions (based on
user-specified predicates) would fit into the right top corner.

SELECT VNUM FROM VERSIONS(R)
WHERE 10 > DIFF_RECS(R, VNUM, 10)

where DIFF_RECS is a special function that returns the number
of records that are different across the two versions. VQL will
support several such functions that operate on versions (e.g., DIS-
TANCE(R, 10, 20) will return the derivation distance between the
versions 10 and 20 of R (the result is -1 if 20 is not a descendant of
10 in the version graph).)

Naturally, there are examples that span multiple regions in the
quadrant as well: as an example, the following query selects the
contents of a relation S from the first time when a large number of
records were added between two versions of another relation R in
the same dataset.

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM
VERSIONS(R) VR1, VERSIONS(R) VR2
WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1
AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Research Challenges: The query above is somewhat unwieldy;
fleshing out VQL into a more complete, easy-to-use language is
one of the major research challenges we plan to address during our
work. In particular, we would like our eventual query language to
be able to support the following features, as well as those discussed
above, while still being usable:
• Once a collection of VNUMs is retrieved, performing operations

on the data contained in the corresponding versions is not easily
expressible via VQL as described. For example, users may want
the ability to use a for clause, e.g., do X for all versions satis-
fying some property. For this, concepts from nested relational
databases [15] may be useful, but would need further investiga-
tion.

• Specifying and querying for a subgraph of versions is also not
easy using VQL described thus far; for this, we may want to use
a restricted subset of graph query languages or semi-structured
query languages.

• Users should be able to seamlessly query provenance metadata
about versions, as well as derived products (specified via hooks),
in addition to the versions, e.g., find all datasets that used a spe-
cific input tuple found to be erroneous later, or find datasets that
were generated by applying a specific cleaning program.

Version 0
Sam, $50, 1

Amol, $100, 1

Master
+ Mike, $150, 1

Version 1
+ Aditya, $80, 1

Version 1.1
+ Amol, $100, 0

T1

T2 T3

T4
visible bit

Deletes Amol

Figure 3: Example of relational tables created to encode 4 ver-
sions, with deletion bits.
In addition to VQL, which is a SQL-like language, DSVC will
also support a collection of flexible operators for record splitting
and string manipulation, including regex functionality, similarity
search, and other operations to support the data cleaning engine, as
well as arbitrary user-defined functions.

4. STORAGE REPRESENTATIONS
In this section, we describe two possible ways to represent a ver-

sion graph: the version-first representation, where, for each ver-
sion, we (logically) store the collection of records that are a part of
that version, possibly in terms of deltas from a chain of parent ver-
sions. The second way of representing dataset versions is what we
call a record-first representation, where we (logically) store each
record, and for each record, we store the (compressed) list of ver-
sions that that record appears in. We describe these two approaches
in turn.

4.1 Version-First Representation
The version-first representation is the most natural, because, as

in git-like systems, it makes it easy for users to “check out” all of
the records in a particular version.

Abstractly, we can think of encoding a branching history of ver-
sions in a storage graph, with one or more fully materialized ver-
sions, and a collection of deltas representing non-materialized ver-
sions. Retrieval queries can be answered by “walking” this storage
graph appropriately. Note that nodes in this storage graph may not
have a one-to-one correspondance with nodes in the version graph,
as we may want to add additional nodes to make retrieval more
efficient. We describe this idea in more detail below.

For relational datasets, it is relatively straightforward to emulate
this abstract model in SQL. Whenever the user performs a branch
command, we simply create a new table to represent changes made
to the database after this branch was created. This new table has
the same schema as the base table. In addition, each record is ex-
tended with a deleted bit that allows us to track whether the record
is active in a particular version. To read the data as a particular
version, a we can take the union of all of the ancestor tables of
a particular version, being careful to filter out records removed in
later versions. In addition, updates need to be encoded as deletes
and re-insertions. An example of this approach is shown in Fig-
ure 3. Here, there are two branches. At the head of the “Master”
branch, the table contains Sam, Amol, Mike. At the head of the
Version 1 branch (labeled “Version 1.1”), the table contains Sam,
Aditya because the Amol has been marked as deleted. It is pos-
sible to implement this scheme completely in SQL, in any existing
database using simply filters and union queries. Of course, the per-
formance may be suboptimal, as lots of UNIONs and small tables
can inhibit scan and index performance, so investigating schemes
that encode versions below the SQL interface will be important.
Additionally, non-relational datasets may be difficult to encode in
this representation, requiring other storage models.

In the rest of this section, we describe challenges in implement-
ing this version-first representation, in either the SQL-based or inside-

Simplest Strawman Approach:
Store: For every version, store “delta” from previous DAG version
Retrieve: Start from version pointer, walk up to root

The Good:
•  Somewhat Compact

The Bad:
•  Inefficient to construct versions

Walk up entire chains
•  Inefficient to look up all versions

that contain a tuple

Q: Why store delta from the previous version?
Q: Why not materialize some versions completely?

Q: What kind of indexes should we use?

Branching and Merging

21

More questions than answers!

•  Q: How do we allow users operate on servers and/or their
local machines without missing updates?

•  Q: What if the datasets are large? Can users work on
samples?

•  Q: How do we detect conflicts and allow users to merge
conflicting branches with as little effort as possible?

Rich Query Language

22

Can combine versions and data!

SELECT * FROM R[V1], R[V4] WHERE R[V1].ID = R[V4].ID

SELECT VNUM FROM VERSIONS(R) WHERE EXISTS
(SELECT * FROM R[VNUM] WHERE NAME=‘AARON’)

Other examples: Find…
•  All versions that are vastly different in size from a given version.
•  The first version where a certain tuple was introduced
•  All tuples that were introduced in a given version and

subsequently deleted

Still a w
ork in progress!

Screenshots

23

App: Ingest by Example

24

Example from
Data Wrangler

Paper

App: Automatic Visualization

25

Papers in the works..

• Fundamentals:
• Blobs: Exploring the trade-off between storage
and recreation/retrieval cost for blob stores

• Relational: Exploring SQL-based versioning
implementations and indexing

• Add-on functionality:
• Ingest: Ingest by example
• Viz: Automatically generating query visualizations

26

To Summarize
• Dataset management as of today is bad, bad, bad

• DataHub is “GitHub for data”; an essential prerequisite to
collaborative data science
• Tracking, managing, reasoning about, and retrieving versions
•  Fundamental building block for study of other problems

• DataHub has in-built data science functionality, plus hooks
•  Ingestion: ingest by example
•  Integration: search, and auto-integrate
• Provenance: explicit and implicit
• Visualization: manual and automatic

27

Lots of related work!

Integrated with
versioned storage

To find out more and
contribute…

28

datahub.csail.mit.edu

Aditya Parameswaran
data-people.cs.illinois.edu

