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Large organizations today:
Massive data volumes

 Data collected across

« Use cases:

several data centers for
low end-user latency

— User activity logs
— Telemetry



Current scales: 10s-100s TB/day

across up to 10s of data centers

Microsoft n* 10s TB/day

Twitter 100 TB/day
Facebook 15 TB/day
Yahoo 10 TB/day

LinkedIn 10 TB/day



Data must be analyzed as a whole

* Need to analyze all this
data to extract insight

* Production workloads
today:

— Mix of SQL, MapReduce,
machine learning, ...




Analytics on geo-distributed data:
Centralized approach inadequate

Current solution: copy all data
to central DC, run analytics there

1. Consumes a lot of bandwidth
— Cross-DC bandwidth is expensive, very scarce
— “Total Internet capacity” only = 100 Tbps

2. Incompatible with sovereignty

— Many countries considering making copying
citizens’ data outside illegal

— Speculation: derived info will still be OK



Alternative: Geo-distributed analytics

we build system supporting geo-distributed
analytics execution

- Leave data partitioned across DCs

— Push compute down (distribute workflow
execution)



Geo-distributed analytics
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Geo-distributed analytics
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Building a system for
Geo-distributed analytics

* Possible challenges to address:
— Bandwidth
— Fault tolerance
— Sovereignty
— Latency
— Consistency

 Starting point: system we build targets the
batch applications considered earlier



PROBLEM DEFINITION



Computational model

* DAGs of arbitrary tasks over geo-distributed data
« Tasks can be |white box | or [s]EId[@sIe)

DC,
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Unique characteristics
(what make this problem novel)

1. Arbitrary DAG of computational tasks

2. No control over data partitioning

— Partitioning dictated by external factors,
e.g. end-user latency

3. Cross-DC bandwidth is only scarce resource
— CPU, storage within DCs is relatively cheap

4. Unusual constraints:
— heterogeneous bandwidth cost/availability

— sovereignty

5. Bulk of load is stable, recurring workload
— Consistent with production logs



Problem statement

« Support arbitrary DAG workflows on
geo-distributed data

— Minimize bandwidth cost
— Handle fault-tolerance, sovereignty

« Configure system to optimize given
~stable recurring workload (set of DAGS)



KEY TAKE-AWAY 1.

Geo-distributed analytics is a fun and
industrially relevant new instance of classic

DB problems



OUR APPROACH



Architecture
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Data transfer optimization:
Trading CPU/storage for bandwidth

* Runtime optimization that works irresp of
computation

» CPU, storage within DCs is cheap
« Bandwidth crossing DCs is expensive

* This is one way we trade CPU/storage for
bandwidth reduction



Data transfer optimization:
Caching

We use aggressive caching:
Cache all intermediate output

If computation recurs:
— recompute results
— send diff(new results, old results)

diff(r
Ford)

new’

Actually worsens CPU, storage use dst

But saves cross-DC bandwidth
— all we care about

Fold



Data transfer optimization:

Caching

» Caching naturally helps if one DAG arrives

repeatedly (intra-DAQG)

* But interestingly: also helps
inter-DAG

— When multiple DAGs share
common sub-operations

— (Because we cache all
intermediate output)

. E.g. TPC-CH
— 5.99x for a part of the workload
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Data transfer optimization:
Caching = View maintenance

« Caching is a low-level, mechanical form of
(materialized) view maintenance

+Works for arbitrary computation

- Compared to relational view maintenance

* |s less efficient (CPU, storage)
* Misses some opportunities



KEY TAKE-AWAY 2:

The extreme ratio of bandwidth to
CPU/storage allows for novel optimizations



WORKLOAD OPTIMIZER



Robust evolutionary approach

« Start by supporting existing “centralized” plan

« Continuous adaptation (loop):
— Come up with a set of alternative hypotheses

— Measure their costs using pseudo-distributed
execution
* Novel mechanism with zero bandwidth-cost overhead
— Compute new best plan
« Execution strategy
« Data replication strategy

— Deploy new best plan
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Robust evolutionary approach

« Start by supporting existing “centralized” plan

« Continuous adaptation (loop):
— Come up with a set of alternative hypotheses

— Measure their costs using pseudo-distributed
execution
* Novel mechanism with zero bandwidth-cost overhead
— Compute new best plan
« Execution strategy
« Data replication strategy

— Deploy new best plan

today
(for rest see paper)



Optimizing execution:
Subproblem definition

» Given:
— Core workload: a set of recurrent DAGs
— Sovereignty, fault-tolerance requirements

* Need to decide best choice of:
— Strategy for each task (e.g. hash join vs semi join)
— Which task goes to which DC



Optimizing execution:
Difficulties
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Optimizing execution:
Difficulties

1. Optimizing even one task in isolation
IS very hard

2. Should jointly optimize all tasks in each DAG

3. Should jointly optimize all DAGs in workload
— Recall: caching helps when DAGs share sub-operations

4. Sovereignty, fault-tolerance



Optimizing execution:
Greedy heuristic

* Process all DAGs in parallel, separately.
In each DAG:

— Go over tasks in topological order

— For each task, greedily pick
lowest-cost available strategy
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When does the greedy heuristic work?

« Contractive DAGs: picks optimal strategy
— make up 98% of DAGs in our experiments
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When does the greedy heuristic work?

« Contractive DAGs: picks optimal strategy [98%]
* DAGs that expand then contract: may not [2%)]

extract features

combine

Data size




Optimizing execution:
Beyond the heuristic

« Have a precise ILP formulation for special cases

— SQL-only DAGs
— MapReduce-only DAGs

— (Handles fault-tolerance and sovereignity as
constraints)

 Alternate heuristics

* General problem remains open



KEY TAKE-AWAY 3.

The optimization space is massive, yet
simple heuristics seem to yield good results



EVALUATION



Prototype: WANalytics

* Implemented Hadoop-stack prototype
— MapReduce, Hive, OpenNLP, Mahout, ...

* Experiments up to 10s of TBs scale
— Real Microsoft production workload

— Three standard synthetic benchmarks:
BigBench, TPC-CH, Berkeley Big-Data

— Mix of relational and non-relational
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Data transfer
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Results: TPC-CH
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Data transfer
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Results: Berkeley Big-Data
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KEY TAKE-AWAY 4.

The opportunity here is substantial:

more than two orders of magnitude in
many workloads



OPEN PROBLEMS



Open Problems

Evolve optimizer beyond greedy

Even more general computational models
— e.qg. iteration

Latency
Consistency
Sovereignty / privacy
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Sovereignty: Partial support

» Our system respects “data-at-rest”
regulations (e.g., German data should not be
stored outside of Germany)

» But we allow arbitrary queries on the data

 Limitation: we don’t differentiate between

— Acceptable queries, e.g.
“what’s the total revenue from each city”

— Problematic queries, e.g.
SELECT * FROM Germany



Sovereignty: Partial support

« Solution: either
— Legally vet the core workload of queries/views
— Use differential privacy mechanism

* Open problem



KEY TAKE-AWAY 5:

This is just the first step, lots of related
work, lots of fun work ahead



Related Work

Distributed and parallel databases
Single-DC frameworks (Hadoop/Spark!/...)
Data warehouses

Scientific workflow systems

Sensor networks

Stream-processing systems



Unique characteristics
(what make this problem novel)

1. Arbitrary DAG of computational tasks

2. No control over data partitioning

— Partitioning dictated by external factors,
e.g. end-user latency

3. Cross-DC bandwidth is only scarce resource
— CPU, storage within DCs is relatively cheap

4. Unusual constraints:
— heterogeneous bandwidth cost/availability

— sovereignty

5. Bulk of load is stable, recurring workload
— Consistent with production logs



Summary

Centralized analytics is becoming untenable
Proposal: geo-distributed analytics execution

WANalytics, our system, introduces
— Pseudo-distributed measurement
— Joint multi-query + redundancy optimization
— Caching
On real and synthetic workloads:
up to 360x less bandwidth than centralized

Many challenges remain



