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Large organizations today: 
Massive data volumes

•  Data collected across 
several data centers for 
low end-user latency

•  Use cases:
–  User activity logs
–  Telemetry
–  …
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Current scales: 10s-100s TB/day

Microsoft n * 10s TB/day
Twitter 100 TB/day
Facebook 15 TB/day
Yahoo 10 TB/day
LinkedIn 10 TB/day

across up to 10s of data centers



Data must be analyzed as a whole

•  Need to analyze all this 
data to extract insight 
 
 

•  Production workloads 
today:
– Mix of  SQL, MapReduce, 

machine learning, …
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Analytics on geo-distributed data: 
Centralized approach inadequate

Current solution: copy all data  
to central DC, run analytics there

1.  Consumes a lot of bandwidth
–  Cross-DC bandwidth is expensive, very scarce
–  “Total Internet capacity” only ≈ 100 Tbps

2.  Incompatible with sovereignty
–  Many countries considering making copying  

citizens’ data outside illegal
–  Speculation: derived info will still be OK



Alternative: Geo-distributed analytics

we build system supporting geo-distributed 
analytics execution
-  Leave data partitioned across DCs
-  Push compute down (distribute workflow 

execution)
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Building a system for 
Geo-distributed analytics

•  Possible challenges to address:
– Bandwidth
– Fault tolerance
–   
– Latency
– Consistency

•  Starting point: system we build targets the 
batch applications considered earlier

Sovereignty



PROBLEM DEFINITION



Computational model
•  DAGs of arbitrary tasks over geo-distributed data
•  Tasks can be                     orwhite box black box 
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Unique characteristics 
(what make this problem novel)

1.  Arbitrary DAG of computational tasks
2.  No control over data partitioning
–  Partitioning dictated by external factors, 

e.g. end-user latency

3.  Cross-DC bandwidth is only scarce resource
–  CPU, storage within DCs is relatively cheap

4.  Unusual constraints:
–  heterogeneous bandwidth cost/availability
–  sovereignty

5.  Bulk of load is stable, recurring workload
–  Consistent with production logs



Problem statement
•  Support arbitrary DAG workflows on  

geo-distributed data
– Minimize bandwidth cost
– Handle fault-tolerance, sovereignty

•  Configure system to optimize given  
~stable recurring workload (set of DAGs)



KEY TAKE-AWAY 1: 

Geo-distributed analytics is a fun and 
industrially relevant new instance of classic 
DB problems



OUR APPROACH



Architecture
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Data transfer optimization: 
Trading CPU/storage for bandwidth

•  Runtime optimization that works irresp of 
computation

•  CPU, storage within DCs is cheap
•  Bandwidth crossing DCs is expensive
•  This is one way we trade CPU/storage for 

bandwidth reduction



Data transfer optimization: 
Caching

•  We use aggressive caching: 
Cache all intermediate output 

•  If computation recurs:
–  recompute results
–  send   diff(new results, old results) 

•  Actually worsens CPU, storage use  

•  But saves cross-DC bandwidth
–  all we care about
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Data transfer optimization: 
Caching

•  Caching naturally helps if one DAG arrives 
repeatedly (intra-DAG)

•  But interestingly: also helps 
inter-DAG
–  When multiple DAGs share  

common sub-operations
–  (Because we cache all  

 intermediate output)
•  E.g. TPC-CH
–  5.99x for a part of the workload



Data transfer optimization: 
Caching ≈ View maintenance

•  Caching is a low-level, mechanical form of 
(materialized) view maintenance

+ Works for arbitrary computation
- Compared to relational view maintenance
•  Is less efficient (CPU, storage)
•  Misses some opportunities



KEY TAKE-AWAY 2: 

The extreme ratio of bandwidth to 
CPU/storage allows for novel optimizations



WORKLOAD OPTIMIZER



Robust evolutionary approach

•  Start by supporting existing “centralized” plan
•  Continuous adaptation (loop):
–  Come up with a set of alternative hypotheses 
–  Measure their costs using pseudo-distributed 
execution
•  Novel mechanism with zero bandwidth-cost overhead

–  Compute new best plan
•  Execution strategy
•  Data replication strategy

–  Deploy new best plan
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Robust evolutionary approach

•  Start by supporting existing “centralized” plan
•  Continuous adaptation (loop):
–  Come up with a set of alternative hypotheses 
–  Measure their costs using pseudo-distributed 
execution
•  Novel mechanism with zero bandwidth-cost overhead

–  Compute new best plan
•  Execution strategy
•  Data replication strategy

–  Deploy new best plan

today	  
(for	  rest	  see	  paper)	  



Optimizing execution: 
Subproblem definition

•  Given: 
–  Core workload: a set of recurrent DAGs 
–  Sovereignty, fault-tolerance requirements 

 
 

•  Need to decide best choice of: 
–  Strategy for each task (e.g. hash join vs semi join) 
–  Which task goes to which DC 



Optimizing execution: 
Difficulties

1.  Optimizing even one task in isolation  
is very hard  

2.  Should jointly optimize all tasks in each DAG 

3.  Should jointly optimize all DAGs in workload
–  Caching  

4.  Sovereignty, fault-tolerance
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Optimizing execution: 
Difficulties

1.  Optimizing even one task in isolation  
is very hard  

2.  Should jointly optimize all tasks in each DAG 

3.  Should jointly optimize all DAGs in workload
–  Recall: caching helps when DAGs share sub-operations 

4.  Sovereignty, fault-tolerance



Optimizing execution: 
Greedy heuristic

•  Process all DAGs in parallel, separately. 
In each DAG:
– Go over tasks in topological order
– For each task, greedily pick 

lowest-cost available strategy 



When does the greedy heuristic work?

•  Contractive DAGs:  picks optimal strategy
–  make up 98% of DAGs in our experiments
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When does the greedy heuristic work?

•  Contractive DAGs:  picks optimal strategy [98%]
•  DAGs that expand then contract: may not [2%]
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Optimizing execution: 
Beyond the heuristic

•  Have a precise ILP formulation for special cases
–  SQL-only DAGs
–  MapReduce-only DAGs
–  (Handles fault-tolerance and sovereignity as 

constraints)
•  Alternate heuristics

•  General problem remains open



KEY TAKE-AWAY 3: 

The optimization space is massive, yet 
simple heuristics seem to yield good results 



EVALUATION



Prototype: WANalytics
•  Implemented Hadoop-stack prototype
– MapReduce, Hive, OpenNLP, Mahout, … 

•  Experiments up to 10s of TBs scale
– Real Microsoft production workload
– Three standard synthetic benchmarks: 

       BigBench, TPC-CH, Berkeley Big-Data
– Mix of relational and non-relational
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KEY TAKE-AWAY 4: 

The opportunity here is substantial:
more than two orders of magnitude in 
many workloads



OPEN PROBLEMS



Open Problems
•  Evolve optimizer beyond greedy
•  Even more general computational models
– e.g. iteration

•  Latency
•  Consistency
•  Sovereignty / privacy
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Sovereignty: Partial support
•  Our system respects “data-at-rest” 

regulations (e.g., German data should not be 
stored outside of Germany)

•  But we allow arbitrary queries on the data
•  Limitation: we don’t differentiate between
– Acceptable queries, e.g. 

    “what’s the total revenue from each city”
– Problematic queries, e.g. 

    SELECT * FROM Germany



Sovereignty: Partial support
•  Solution: either
– Legally vet the core workload of queries/views
– Use differential privacy mechanism

•  Open problem



KEY TAKE-AWAY 5: 

This is just the first step, lots of related 
work, lots of fun work ahead



Related Work
•  Distributed and parallel databases
•  Single-DC frameworks (Hadoop/Spark/…)
•  Data warehouses
•  Scientific workflow systems
•  Sensor networks
•  Stream-processing systems
•  …



Unique characteristics 
(what make this problem novel)

1.  Arbitrary DAG of computational tasks
2.  No control over data partitioning
–  Partitioning dictated by external factors, 

e.g. end-user latency

3.  Cross-DC bandwidth is only scarce resource
–  CPU, storage within DCs is relatively cheap

4.  Unusual constraints:
–  heterogeneous bandwidth cost/availability
–  sovereignty

5.  Bulk of load is stable, recurring workload
–  Consistent with production logs



Summary
•  Centralized analytics is becoming untenable
•  Proposal: geo-distributed analytics execution
•  WANalytics, our system, introduces
– Pseudo-distributed measurement
–  Joint multi-query + redundancy optimization
– Caching

•  On real and synthetic workloads: 
   up to 360x less bandwidth than centralized

•  Many challenges remain


