
WANalytics: Analytics for a geo-
distributed data-intensive world

Ashish Vulimiri*, Carlo Curino+, 
Brighten Godfrey*, Konstantinos Karanasos+,

George Varghese+

* UIUC + Microsoft

Large organizations today: 
Massive data volumes

•  Data collected across 
several data centers for 
low end-user latency

•  Use cases:
–  User activity logs
–  Telemetry
–  …

DC1	
DC2	

DC3	

Current scales: 10s-100s TB/day

Microsoft n * 10s TB/day
Twitter 100 TB/day
Facebook 15 TB/day
Yahoo 10 TB/day
LinkedIn 10 TB/day

across up to 10s of data centers

Data must be analyzed as a whole

•  Need to analyze all this
data to extract insight 
 
 

•  Production workloads
today:
– Mix of SQL, MapReduce,

machine learning, …

Analy&cs	

SQL	

MR	

ML	

MR	

MR	
k-‐means	

Analytics on geo-distributed data: 
Centralized approach inadequate

Current solution: copy all data  
to central DC, run analytics there

1.  Consumes a lot of bandwidth
–  Cross-DC bandwidth is expensive, very scarce
–  “Total Internet capacity” only ≈ 100 Tbps

2.  Incompatible with sovereignty
–  Many countries considering making copying  

citizens’ data outside illegal
–  Speculation: derived info will still be OK

Alternative: Geo-distributed analytics

we build system supporting geo-distributed 
analytics execution
-  Leave data partitioned across DCs
-  Push compute down (distribute workflow

execution)

Geo-distributed analytics
preprocess	
adserve_log	

⋈
MapReduce	 click_log	

DC1	 adserve_log	

SQL	

k-‐means	
clustering	

Mahout	 preprocess	
click_log	

MapReduce	

adserve_log	

click_log	

Distributed	 execu&on:	 	 	 0.03	 TB/day	 Centralized	 execu&on:	 	 	 10	 TB/day	
t	 =	 0	
push	 down	
preprocess	

click_log	

DCn	 adserve_log	

t	 =	 1	
distributed	
semi-‐join	

t	 =	 2	
centralized	
k-‐means	

Geo-distributed analytics
preprocess	
adserve_log	

⋈
MapReduce	 click_log	

DC1	 adserve_log	

SQL	

k-‐means	
clustering	

Mahout	 preprocess	
click_log	

MapReduce	

adserve_log	

click_log	

Distributed	 execu&on:	 	 	 0.03	 TB/day	 Centralized	 execu&on:	 	 	 10	 TB/day	
t	 =	 0	
push	 down	
preprocess	

click_log	

DCn	 adserve_log	

t	 =	 1	
distributed	
semi-‐join	

t	 =	 2	
centralized	
k-‐means	

Geo-distributed analytics
preprocess	
adserve_log	

⋈
MapReduce	 click_log	

DC1	 adserve_log	

SQL	

k-‐means	
clustering	

Mahout	 preprocess	
click_log	

MapReduce	

adserve_log	

click_log	

Distributed	 execu&on:	 	 	 0.03	 TB/day	 Centralized	 execu&on:	 	 	 10	 TB/day	

click_log	

DCn	 adserve_log	

t	 =	 0	
push	 down	
preprocess	

t	 =	 1	
distributed	
semi-‐join	

t	 =	 2	
centralized	
k-‐means	

333x	 cost	 reducKon	

Building a system for 
Geo-distributed analytics

•  Possible challenges to address:
– Bandwidth
– Fault tolerance
– 
– Latency
– Consistency

•  Starting point: system we build targets the
batch applications considered earlier

Sovereignty

PROBLEM DEFINITION

Computational model
•  DAGs of arbitrary tasks over geo-distributed data
•  Tasks can be orwhite box black box

preprocess	
adserve_log	

⋈
MapReduce	

click_log	

DC1	

adserve_log	

click_log	

DCn	

adserve_log	 preprocess	
click_log	
MapReduce	

SQL	

correlaKon	
analysis	

user-‐provided	
code	

Unique characteristics 
(what make this problem novel)

1.  Arbitrary DAG of computational tasks
2.  No control over data partitioning
–  Partitioning dictated by external factors, 

e.g. end-user latency

3.  Cross-DC bandwidth is only scarce resource
–  CPU, storage within DCs is relatively cheap

4.  Unusual constraints:
–  heterogeneous bandwidth cost/availability
–  sovereignty

5.  Bulk of load is stable, recurring workload
–  Consistent with production logs

Problem statement
•  Support arbitrary DAG workflows on  

geo-distributed data
– Minimize bandwidth cost
– Handle fault-tolerance, sovereignty

•  Configure system to optimize given  
~stable recurring workload (set of DAGs)

KEY TAKE-AWAY 1: 

Geo-distributed analytics is a fun and
industrially relevant new instance of classic
DB problems

OUR APPROACH

Architecture

End-‐users	

End-‐user	 facing	 DB	
(handles	 OLTP)	

Hive	 Mahout	

MapReduce	

Local	 	 	 ETL	

Workload	
OpKmizer	

logs	

exec,	 repl	
policy	

Coordinator	
ReporKng	
pipeline	

DAGs	

Results	

Data	 transfer	 opKmizaKon	

Data transfer optimization: 
Trading CPU/storage for bandwidth

•  Runtime optimization that works irresp of
computation

•  CPU, storage within DCs is cheap
•  Bandwidth crossing DCs is expensive
•  This is one way we trade CPU/storage for

bandwidth reduction

Data transfer optimization: 
Caching

•  We use aggressive caching: 
Cache all intermediate output 

•  If computation recurs:
–  recompute results
–  send diff(new results, old results) 

•  Actually worsens CPU, storage use  

•  But saves cross-DC bandwidth
–  all we care about

rold	

rnew	

rold	

src	

dst	

diff(rnew,	
	 	 	 	 	 	 	 rold)	

Data transfer optimization: 
Caching

•  Caching naturally helps if one DAG arrives
repeatedly (intra-DAG)

•  But interestingly: also helps 
inter-DAG
–  When multiple DAGs share  

common sub-operations
–  (Because we cache all  

 intermediate output)
•  E.g. TPC-CH
–  5.99x for a part of the workload

Data transfer optimization: 
Caching ≈ View maintenance

•  Caching is a low-level, mechanical form of
(materialized) view maintenance

+ Works for arbitrary computation
- Compared to relational view maintenance
•  Is less efficient (CPU, storage)
•  Misses some opportunities

KEY TAKE-AWAY 2: 

The extreme ratio of bandwidth to 
CPU/storage allows for novel optimizations

WORKLOAD OPTIMIZER

Robust evolutionary approach

•  Start by supporting existing “centralized” plan
•  Continuous adaptation (loop):
–  Come up with a set of alternative hypotheses
–  Measure their costs using pseudo-distributed
execution
•  Novel mechanism with zero bandwidth-cost overhead

–  Compute new best plan
•  Execution strategy
•  Data replication strategy

–  Deploy new best plan

Robust evolutionary approach

•  Start by supporting existing “centralized” plan
•  Continuous adaptation (loop):
–  Come up with a set of alternative hypotheses
–  Measure their costs using pseudo-distributed
execution
•  Novel mechanism with zero bandwidth-cost overhead

–  Compute new best plan
•  Execution strategy
•  Data replication strategy

–  Deploy new best plan

Robust evolutionary approach

•  Start by supporting existing “centralized” plan
•  Continuous adaptation (loop):
–  Come up with a set of alternative hypotheses
–  Measure their costs using pseudo-distributed
execution
•  Novel mechanism with zero bandwidth-cost overhead

–  Compute new best plan
•  Execution strategy
•  Data replication strategy

–  Deploy new best plan

today	
(for	 rest	 see	 paper)	

Optimizing execution: 
Subproblem definition

•  Given:
–  Core workload: a set of recurrent DAGs
–  Sovereignty, fault-tolerance requirements

•  Need to decide best choice of:
–  Strategy for each task (e.g. hash join vs semi join)
–  Which task goes to which DC

Optimizing execution: 
Difficulties

1.  Optimizing even one task in isolation  
is very hard  

2.  Should jointly optimize all tasks in each DAG 

3.  Should jointly optimize all DAGs in workload
–  Caching  

4.  Sovereignty, fault-tolerance

Optimizing execution: 
Difficulties

1.  Optimizing even one task in isolation  
is very hard

DAG:	

Data:	

⋈

DC1	
P1	 Q1	

DCn	
Pn	 Qn	

P	

Q	

Optimizing execution: 
Difficulties

1.  Optimizing even one task in isolation  
is very hard  

2.  Should jointly optimize all tasks in each DAG 

3.  Should jointly optimize all DAGs in workload
–  Recall: caching helps when DAGs share sub-operations 

4.  Sovereignty, fault-tolerance

Optimizing execution: 
Greedy heuristic

•  Process all DAGs in parallel, separately. 
In each DAG:
– Go over tasks in topological order
– For each task, greedily pick 

lowest-cost available strategy 

When does the greedy heuristic work?

•  Contractive DAGs: picks optimal strategy
–  make up 98% of DAGs in our experiments

filter	 aggr	 summarize	

Da
ta
	 si
ze
	

extract	 features	

combine	

Da
ta
	 si
ze
	

When does the greedy heuristic work?

•  Contractive DAGs: picks optimal strategy [98%]
•  DAGs that expand then contract: may not [2%]

filter	 aggr	 summarize	

Da
ta
	 si
ze
	

extract	 features	

combine	

Da
ta
	 si
ze
	

Optimizing execution: 
Beyond the heuristic

•  Have a precise ILP formulation for special cases
–  SQL-only DAGs
–  MapReduce-only DAGs
–  (Handles fault-tolerance and sovereignity as

constraints)
•  Alternate heuristics

•  General problem remains open

KEY TAKE-AWAY 3: 

The optimization space is massive, yet
simple heuristics seem to yield good results

EVALUATION

Prototype: WANalytics
•  Implemented Hadoop-stack prototype
– MapReduce, Hive, OpenNLP, Mahout, … 

•  Experiments up to 10s of TBs scale
– Real Microsoft production workload
– Three standard synthetic benchmarks: 

 BigBench, TPC-CH, Berkeley Big-Data
– Mix of relational and non-relational

0.00001

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10

Da
ta

 tr
an

sf
er
 

TB
 (c

om
pr

es
se

d)

TB (raw, uncompressed)  
Size of OLTP updates since last OLAP run

Centralized
Distributed: no caching
Distributed: with caching

Results: BigBench

330x	

0.00001

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10

Da
ta

 tr
an

sf
er
 

TB
 (c

om
pr

es
se

d)

TB (raw, uncompressed)  
Size of OLTP updates since last OLAP run

Centralized
Distributed: no caching
Distributed: with caching

Results: TPC-CH

360x	

Da
ta

 tr
an

sf
er
 

 
Size of OLTP updates since last OLAP run

Centralized
Distributed: no caching
Distributed: with caching

Results: Microsoft 
production workload

257x	

0.00001

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1

Da
ta

 tr
an

sf
er
 

TB
 (c

om
pr

es
se

d)

TB (raw, uncompressed)  
Size of OLTP updates since last OLAP run

Centralized
Distributed: no caching
Distributed: with caching

Results: Berkeley Big-Data

3.5x	

KEY TAKE-AWAY 4: 

The opportunity here is substantial:
more than two orders of magnitude in 
many workloads

OPEN PROBLEMS

Open Problems
•  Evolve optimizer beyond greedy
•  Even more general computational models
– e.g. iteration

•  Latency
•  Consistency
•  Sovereignty / privacy

Open Problems
•  Evolve optimizer beyond greedy
•  Even more general computational models
– e.g. iteration

•  Latency
•  Consistency
•  Sovereignty / privacy

Sovereignty: Partial support
•  Our system respects “data-at-rest”

regulations (e.g., German data should not be
stored outside of Germany)

•  But we allow arbitrary queries on the data
•  Limitation: we don’t differentiate between
– Acceptable queries, e.g. 

 “what’s the total revenue from each city”
– Problematic queries, e.g. 

 SELECT * FROM Germany

Sovereignty: Partial support
•  Solution: either
– Legally vet the core workload of queries/views
– Use differential privacy mechanism

•  Open problem

KEY TAKE-AWAY 5: 

This is just the first step, lots of related
work, lots of fun work ahead

Related Work
•  Distributed and parallel databases
•  Single-DC frameworks (Hadoop/Spark/…)
•  Data warehouses
•  Scientific workflow systems
•  Sensor networks
•  Stream-processing systems
•  …

Unique characteristics 
(what make this problem novel)

1.  Arbitrary DAG of computational tasks
2.  No control over data partitioning
–  Partitioning dictated by external factors, 

e.g. end-user latency

3.  Cross-DC bandwidth is only scarce resource
–  CPU, storage within DCs is relatively cheap

4.  Unusual constraints:
–  heterogeneous bandwidth cost/availability
–  sovereignty

5.  Bulk of load is stable, recurring workload
–  Consistent with production logs

Summary
•  Centralized analytics is becoming untenable
•  Proposal: geo-distributed analytics execution
•  WANalytics, our system, introduces
– Pseudo-distributed measurement
–  Joint multi-query + redundancy optimization
– Caching

•  On real and synthetic workloads: 
 up to 360x less bandwidth than centralized

•  Many challenges remain

