WANalytics: Analytics for a geo-
distributed data-intensive world

Ashish Vulimiri’, Carlo Curino®,
Brighten Godfrey’, Konstantinos Karanasos™,
George Vargheset

“UIUC * Microsoft

Large organizations today:
Massive data volumes

 Data collected across

« Use cases:

several data centers for
low end-user latency

— User activity logs
— Telemetry

Current scales: 10s-100s TB/day

across up to 10s of data centers

Microsoft n* 10s TB/day

Twitter 100 TB/day
Facebook 15 TB/day
Yahoo 10 TB/day

LinkedIn 10 TB/day

Data must be analyzed as a whole

* Need to analyze all this
data to extract insight

* Production workloads
today:

— Mix of SQL, MapReduce,
machine learning, ...

Analytics on geo-distributed data:
Centralized approach inadequate

Current solution: copy all data
to central DC, run analytics there

1. Consumes a lot of bandwidth
— Cross-DC bandwidth is expensive, very scarce
— “Total Internet capacity” only = 100 Tbps

2. Incompatible with sovereignty

— Many countries considering making copying
citizens’ data outside illegal

— Speculation: derived info will still be OK

Alternative: Geo-distributed analytics

we build system supporting geo-distributed
analytics execution

- Leave data partitioned across DCs

— Push compute down (distribute workflow
execution)

Geo-distributed analytics

adserve_log

MapReduce @ k-means
clustering

' sQL
click_log —>[Preprotess Mahout

click_log
MapReduce

reprocess
adserve_log**[prep

click_log

click_log

Centralized execution: 10 TB/day

Geo-distributed analytics

reprocess
adserve_log-*[prep

adserve_log

MapReduce @ k-means
clustering

' sQL
click_log —>[Preprotess Mahout

click_log
MapReduce

click_log

click_log

Centralized execution: 10 TB/day Distributed execution: 0.03 TB/day

t=0 t=1 t=2
push down distributed centralized
preprocess semi-join k-means

Geo-distributed analytics

reprocess
adserve_log—-)[prep

adserve_log

MapReduce @ k-means
: clustering
SQL
click_log 4{ Preprocess Mahout

click_log

click_log
MapReduce

click_log

Centralized execution: 10 TB/day Distributed execution: 0.03 TB/day

| 333x cost reduction

Building a system for
Geo-distributed analytics

* Possible challenges to address:
— Bandwidth
— Fault tolerance
— Sovereignty
— Latency
— Consistency

 Starting point: system we build targets the
batch applications considered earlier

PROBLEM DEFINITION

Computational model

* DAGs of arbitrary tasks over geo-distributed data
« Tasks can be |white box | or [s]EId[@sIe)

DC,

adserve_log preprocess
T e adserve_log

MapRed)
apreduce @ correlation

analysis

SQL

user-provided
code

preprocess
click_log

click_log

MapReduce

Unique characteristics
(what make this problem novel)

1. Arbitrary DAG of computational tasks

2. No control over data partitioning

— Partitioning dictated by external factors,
e.g. end-user latency

3. Cross-DC bandwidth is only scarce resource
— CPU, storage within DCs is relatively cheap

4. Unusual constraints:
— heterogeneous bandwidth cost/availability

— sovereignty

5. Bulk of load is stable, recurring workload
— Consistent with production logs

Problem statement

« Support arbitrary DAG workflows on
geo-distributed data

— Minimize bandwidth cost
— Handle fault-tolerance, sovereignty

« Configure system to optimize given
~stable recurring workload (set of DAGS)

KEY TAKE-AWAY 1.

Geo-distributed analytics is a fun and
industrially relevant new instance of classic

DB problems

OUR APPROACH

Architecture

DAGs logs

Coordinator exec, repl

Data transfer optimization A RN

Workload
Optimizer

&

Reporting
pipeline

Results

// \\
(@ A
/ Hive Mahout \\
/

! “
,' MapReduce \
I \§) !
1 A |
! Localt ETL |
\ I

\ End-user facing DB !

0 9.0
“. ¢

N .
elopgeloy e NRO-O SNl
..YQ' a9 « ...0 Y (handles OLTP) /
XS OO "y ’
LR 50

End-users ~. e

Data transfer optimization:
Trading CPU/storage for bandwidth

* Runtime optimization that works irresp of
computation

» CPU, storage within DCs is cheap
« Bandwidth crossing DCs is expensive

* This is one way we trade CPU/storage for
bandwidth reduction

Data transfer optimization:
Caching

We use aggressive caching:
Cache all intermediate output

If computation recurs:
— recompute results
— send diff(new results, old results)

diff(r
Ford)

new’

Actually worsens CPU, storage use dst

But saves cross-DC bandwidth
— all we care about

Fold

Data transfer optimization:

Caching

» Caching naturally helps if one DAG arrives

repeatedly (intra-DAQG)

* But interestingly: also helps
inter-DAG

— When multiple DAGs share
common sub-operations

— (Because we cache all
intermediate output)

. E.g. TPC-CH
— 5.99x for a part of the workload

O

‘O

0 00600

Data transfer optimization:
Caching = View maintenance

« Caching is a low-level, mechanical form of
(materialized) view maintenance

+Works for arbitrary computation

- Compared to relational view maintenance

* |s less efficient (CPU, storage)
* Misses some opportunities

KEY TAKE-AWAY 2:

The extreme ratio of bandwidth to
CPU/storage allows for novel optimizations

WORKLOAD OPTIMIZER

Robust evolutionary approach

« Start by supporting existing “centralized” plan

« Continuous adaptation (loop):
— Come up with a set of alternative hypotheses

— Measure their costs using pseudo-distributed
execution
* Novel mechanism with zero bandwidth-cost overhead
— Compute new best plan
« Execution strategy
« Data replication strategy

— Deploy new best plan

Robust evolutionary approach

« Start by supporting existing “centralized” plan

« Continuous adaptation (loop):
— Come up with a set of alternative hypotheses

— Measure their costs using pseudo-distributed
execution
* Novel mechanism with zero bandwidth-cost overhead
— Compute new best plan
« Execution strategy
« Data replication strategy

— Deploy new best plan

Robust evolutionary approach

« Start by supporting existing “centralized” plan

« Continuous adaptation (loop):
— Come up with a set of alternative hypotheses

— Measure their costs using pseudo-distributed
execution
* Novel mechanism with zero bandwidth-cost overhead
— Compute new best plan
« Execution strategy
« Data replication strategy

— Deploy new best plan

today
(for rest see paper)

Optimizing execution:
Subproblem definition

» Given:
— Core workload: a set of recurrent DAGs
— Sovereignty, fault-tolerance requirements

* Need to decide best choice of:
— Strategy for each task (e.g. hash join vs semi join)
— Which task goes to which DC

Optimizing execution:
Difficulties

Optimizing execution:

Difficulties
1. Optimizing even one task in isolation
IS very hard
DAG: Optimal distributed join algo for P >t Q
150

(o
O
+—
(0
O
a
()
=

100 distributed

hash join
50

Q update rate
(GB/OLAP run)

centralize _
replicate Q

0 50 100 150
P update rate (GB/OLAP run)

Optimizing execution:
Difficulties

1. Optimizing even one task in isolation
IS very hard

2. Should jointly optimize all tasks in each DAG

3. Should jointly optimize all DAGs in workload
— Recall: caching helps when DAGs share sub-operations

4. Sovereignty, fault-tolerance

Optimizing execution:
Greedy heuristic

* Process all DAGs in parallel, separately.
In each DAG:

— Go over tasks in topological order

— For each task, greedily pick
lowest-cost available strategy

o _ o O
® _ O a O
o ¢ O

When does the greedy heuristic work?

« Contractive DAGs: picks optimal strategy
— make up 98% of DAGs in our experiments

filter aggr summarize

(J]
N
wv
©
=)
o
(]

When does the greedy heuristic work?

« Contractive DAGs: picks optimal strategy [98%]
* DAGs that expand then contract: may not [2%)]

extract features

combine

Data size

Optimizing execution:
Beyond the heuristic

« Have a precise ILP formulation for special cases

— SQL-only DAGs
— MapReduce-only DAGs

— (Handles fault-tolerance and sovereignity as
constraints)

 Alternate heuristics

* General problem remains open

KEY TAKE-AWAY 3.

The optimization space is massive, yet
simple heuristics seem to yield good results

EVALUATION

Prototype: WANalytics

* Implemented Hadoop-stack prototype
— MapReduce, Hive, OpenNLP, Mahout, ...

* Experiments up to 10s of TBs scale
— Real Microsoft production workload

— Three standard synthetic benchmarks:
BigBench, TPC-CH, Berkeley Big-Data

— Mix of relational and non-relational

Data transfer
TB (compressed)

Results: BigBench

10 =
: | |

=8=Centralized
157 & Distributed: no caching
=beDistributed: with caching
0.1
[AY
0.01 = o>
i -’
0.001
0.0001
000001 1 -+t -+t —t+—t—t+H } -+ } -+
0.0001 0.001 0.01 0.1 1 10

TB (raw, uncompressed)
Size of OLTP updates since last OLAP run

Data transfer
TB (compressed)

Results: TPC-CH

103 | |
=8=Centralized A
157 & Distributed: no caching
=beDistributed: with caching
0.1
v
0.01 & N
é‘...... 000000 ﬁ..ﬁ. ’
1 =
0.001 =
t o
-+ ’ ’
0.0001 +
000001 1 —t+—t—tt++H -+t —t+—t—t+H } -+ H-H
0.0001 0.001 0.01 0.1 1 10

TB (raw, uncompressed)
Size of OLTP updates since last OLAP run

Data transfer

)

Results: Microsoft
production workload

=@®=Centralized
* & Djstributed: no caching
=0=Distributed: with caching

Size of OLTP updates since last OLAP run

Results: Berkeley Big-Data

1 ¥ |
t =®=Centralized
0.1 - °#%e° Distributed: no caching

= =beDistributed: with caching
= © I 3.5x
o '
7 8 0.01 =
: |-l T
© o
= £
©
=8 0001 :
N I
O m
= Teooooo®®®
0.0001 =+
0.00001 : — : — : — =
0.0001 0.001 0.01 0.1

TB (raw, uncompressed)
Size of OLTP updates since last OLAP run

KEY TAKE-AWAY 4.

The opportunity here is substantial:

more than two orders of magnitude in
many workloads

OPEN PROBLEMS

Open Problems

Evolve optimizer beyond greedy

Even more general computational models
— e.qg. iteration

Latency
Consistency
Sovereignty / privacy

Open Problems

Evolve optimizer beyond greedy

Even more general computational models
— e.qg. iteration

Latency
Consistency
Sovereignty / privacy

Sovereignty: Partial support

» Our system respects “data-at-rest”
regulations (e.g., German data should not be
stored outside of Germany)

» But we allow arbitrary queries on the data

 Limitation: we don’t differentiate between

— Acceptable queries, e.g.
“what’s the total revenue from each city”

— Problematic queries, e.g.
SELECT * FROM Germany

Sovereignty: Partial support

« Solution: either
— Legally vet the core workload of queries/views
— Use differential privacy mechanism

* Open problem

KEY TAKE-AWAY 5:

This is just the first step, lots of related
work, lots of fun work ahead

Related Work

Distributed and parallel databases
Single-DC frameworks (Hadoop/Spark!/...)
Data warehouses

Scientific workflow systems

Sensor networks

Stream-processing systems

Unique characteristics
(what make this problem novel)

1. Arbitrary DAG of computational tasks

2. No control over data partitioning

— Partitioning dictated by external factors,
e.g. end-user latency

3. Cross-DC bandwidth is only scarce resource
— CPU, storage within DCs is relatively cheap

4. Unusual constraints:
— heterogeneous bandwidth cost/availability

— sovereignty

5. Bulk of load is stable, recurring workload
— Consistent with production logs

Summary

Centralized analytics is becoming untenable
Proposal: geo-distributed analytics execution

WANalytics, our system, introduces
— Pseudo-distributed measurement
— Joint multi-query + redundancy optimization
— Caching
On real and synthetic workloads:
up to 360x less bandwidth than centralized

Many challenges remain

