WANalytics: Analytics for a geodistributed data-intensive world

Ashish Vulimiri^{*}, Carlo Curino⁺, Brighten Godfrey^{*}, Konstantinos Karanasos⁺, George Varghese⁺

* UIUC

+ Microsoft

Large organizations today: Massive data volumes

- Data collected across several data centers for low end-user latency
- Use cases:
 - User activity logs
 - Telemetry

Current scales: 10s-100s TB/day

across up to 10s of data centers

Microsoft n * 10s TB/day

Twitter100 TB/day

Facebook 15 TB/day

Yahoo 10 TB/day

LinkedIn 10 TB/day

Data must be analyzed as a whole

 Need to analyze <u>all</u> this data to extract insight

- Production workloads today:
 - Mix of SQL, MapReduce, machine learning, …

Analytics on geo-distributed data: Centralized approach inadequate

Current solution: copy all data to central DC, run analytics there

1. Consumes a lot of bandwidth

- Cross-DC bandwidth is expensive, very scarce
- "Total Internet capacity" only ≈ 100 Tbps
- 2. Incompatible with sovereignty
 - Many countries considering making copying citizens' data outside illegal
 - Speculation: *derived* info will still be OK

Alternative: Geo-distributed analytics

we build system supporting **geo-distributed** analytics execution

- Leave data partitioned across DCs
- Push compute down (distribute workflow execution)

Geo-distributed analytics

Centralized execution: 10 TB/day

Distributed execution: 0.03 TB/day

Geo-distributed analytics

Centralized execution: 10 TB/day

Distributed execution: 0.03 TB/day

Geo-distributed analytics

Building a system for Geo-distributed analytics

- Possible challenges to address:
 - Bandwidth
 - Fault tolerance
 - Sovereignty
 - Latency
 - Consistency
- Starting point: system we build targets the batch applications considered earlier

PROBLEM DEFINITION

Computational model

- DAGs of arbitrary tasks over geo-distributed data
- Tasks can be white box or black box

Unique characteristics (what make this problem novel)

- 1. Arbitrary DAG of computational tasks
- 2. No control over data partitioning
 - Partitioning dictated by external factors, e.g. end-user latency
- Cross-DC bandwidth is only scarce resource
 CPU, storage within DCs is relatively cheap
- 4. Unusual constraints:
 - heterogeneous bandwidth cost/availability
 - sovereignty
- 5. Bulk of load is stable, recurring workload
 - Consistent with production logs

Problem statement

- Support arbitrary DAG workflows on geo-distributed data
 - Minimize bandwidth cost
 - Handle fault-tolerance, sovereignty
- Configure system to optimize given
 ~stable recurring workload (set of DAGs)

KEY TAKE-AWAY 1:

Geo-distributed analytics is a fun and industrially relevant new instance of classic DB problems

OUR APPROACH

Architecture

Data transfer optimization: Trading CPU/storage for bandwidth

- Runtime optimization that works irresp of computation
- CPU, storage within DCs is cheap
- Bandwidth crossing DCs is expensive
- This is one way we trade CPU/storage for bandwidth reduction

Data transfer optimization: Caching

- We use aggressive caching: Cache <u>all intermediate output</u>
- If computation recurs:
 - recompute results
 - send diff(new results, old results)
- Actually worsens CPU, storage use
- But saves cross-DC bandwidth
 - all we care about

Data transfer optimization: Caching

- Caching naturally helps if one DAG arrives repeatedly (intra-DAG)
- But interestingly: also helps inter-DAG
 - When multiple DAGs share common sub-operations
 - (Because we cache all intermediate output)
- E.g. TPC-CH
 - 5.99x for a part of the workload

Data transfer optimization: Caching \approx View maintenance

- Caching is a low-level, mechanical form of (materialized) view maintenance
- +Works for arbitrary computation
- Compared to relational view maintenance
 - Is less efficient (CPU, storage)
 - Misses some opportunities

KEY TAKE-AWAY 2:

The extreme ratio of bandwidth to CPU/storage allows for novel optimizations

WORKLOAD OPTIMIZER

Robust evolutionary approach

- Start by supporting existing "centralized" plan
- Continuous adaptation (loop):
 - Come up with a set of alternative hypotheses
 - Measure their costs using *pseudo-distributed* execution
 - Novel mechanism with zero bandwidth-cost overhead
 - Compute new best plan
 - Execution strategy
 - Data replication strategy
 - Deploy new best plan

Robust evolutionary approach

- Start by supporting existing "centralized" plan
- Continuous adaptation (loop):
 - Come up with a set of alternative hypotheses
 - Measure their costs using *pseudo-distributed execution*
 - Novel mechanism with zero bandwidth-cost overhead
 - Compute new best plan
 - Execution strategy
 - Data replication strategy
 - Deploy new best plan

Robust evolutionary approach

- Start by supporting existing "centralized" plan
- Continuous adaptation (loop):
 - Come up with a set of alternative hypotheses
 - Measure their costs using *pseudo-distributed* execution
 - Novel mechanism with zero bandwidth-cost overhead
 - Compute new best plan
 - Execution strategy
 - Data replication strategy
 - Deploy new best plan

today (for rest see paper)

Optimizing execution: Subproblem definition

- Given:
 - Core workload: a set of recurrent DAGs
 - Sovereignty, fault-tolerance requirements

- Need to decide best choice of:
 - Strategy for each task (e.g. hash join vs semi join)
 - Which task goes to which DC

Optimizing execution: Difficulties

- 1. Optimizing even one task in isolation is very hard
- 2. Should jointly optimize all tasks in each DAG
- 3. Should jointly optimize all DAGs in workload
 - Caching
- 4. Sovereignty, fault-tolerance

Optimizing execution: Difficulties

1. Optimizing even one task in isolation is very hard

Optimizing execution: Difficulties

- 1. Optimizing even one task in isolation is very hard
- 2. Should jointly optimize all tasks in each DAG
- 3. Should jointly optimize all DAGs in workload
 - Recall: caching helps when DAGs share sub-operations
- 4. Sovereignty, fault-tolerance

Optimizing execution: Greedy heuristic

- Process all DAGs in parallel, separately. In each DAG:
 - Go over tasks in topological order
 - For each task, greedily pick lowest-cost available strategy

When does the greedy heuristic work?

Contractive DAGs: picks optimal strategy

 make up 98% of DAGs in our experiments

When does the greedy heuristic work?

- Contractive DAGs: picks optimal strategy [98%]
- DAGs that expand then contract: may not [2%]

Optimizing execution: Beyond the heuristic

- Have a precise ILP formulation for special cases
 - SQL-only DAGs
 - MapReduce-only DAGs
 - (Handles fault-tolerance and sovereignity as constraints)
- Alternate heuristics

• General problem remains open

KEY TAKE-AWAY 3:

The optimization space is massive, yet simple heuristics seem to yield good results

EVALUATION

Prototype: WANalytics

- Implemented Hadoop-stack prototype

 MapReduce, Hive, OpenNLP, Mahout, …
- Experiments up to 10s of TBs scale
 - Real Microsoft production workload
 - Three standard synthetic benchmarks: BigBench, TPC-CH, Berkeley Big-Data
 - Mix of relational and non-relational

Results: BigBench

Results: TPC-CH

Results: Microsoft production workload

Size of OLTP updates since last OLAP run

Results: Berkeley Big-Data

KEY TAKE-AWAY 4:

The opportunity here is substantial: more than two orders of magnitude in many workloads

OPEN PROBLEMS

Open Problems

- Evolve optimizer beyond greedy
- Even more general computational models

 e.g. iteration
- Latency
- Consistency
- Sovereignty / privacy

Open Problems

- Evolve optimizer beyond greedy
- Even more general computational models

 e.g. iteration
- Latency
- Consistency
- Sovereignty / privacy

Sovereignty: Partial support

- Our system respects "data-at-rest" regulations (e.g., German data should not be stored outside of Germany)
- But we allow arbitrary queries on the data
- Limitation: we don't differentiate between
 - Acceptable queries, e.g.
 "what's the total revenue from each city"
 - Problematic queries, e.g.
 SELECT * FROM Germany

Sovereignty: Partial support

- Solution: either
 - Legally vet the core workload of queries/views
 - Use differential privacy mechanism
- Open problem

KEY TAKE-AWAY 5:

This is just the first step, lots of related work, lots of fun work ahead

Related Work

- Distributed and parallel databases
- Single-DC frameworks (Hadoop/Spark/...)
- Data warehouses
- Scientific workflow systems
- Sensor networks
- Stream-processing systems
- •

Unique characteristics (what make this problem novel)

- 1. Arbitrary DAG of computational tasks
- 2. No control over data partitioning
 - Partitioning dictated by external factors, e.g. end-user latency
- Cross-DC bandwidth is only scarce resource
 CPU, storage within DCs is relatively cheap
- 4. Unusual constraints:
 - heterogeneous bandwidth cost/availability
 - sovereignty
- 5. Bulk of load is stable, recurring workload
 - Consistent with production logs

Summary

- Centralized analytics is becoming untenable
- Proposal: geo-distributed analytics execution
- WANalytics, our system, introduces
 - Pseudo-distributed measurement
 - Joint multi-query + redundancy optimization
 - Caching
- On real and synthetic workloads: up to 360x less bandwidth than centralized
- Many challenges remain