
Copyright © 2013 Cloudera Inc. All rights reserved.

Headline Goes Here
Speaker Name or Subhead Goes Here

Impala: A Modern, Open-Source SQL
Engine for Hadoop
Marcel Kornacker | marcel@cloudera.com
CIDR 2015

Copyright © 2013 Cloudera Inc. All rights reserved.

Cloudera Impala — Agenda

• Overview
• Architecture and Implementation
• Evaluation

2

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala: A Modern, Open-Source SQL Engine

3

• Implementation of an MPP SQL query engine for the Hadoop
environment

• Designed for performance: brand-new engine, written in C++
• Maintains Hadoop flexibility by utilizing standard Hadoop

components (HDFS, Hbase, Metastore, Yarn)
• Reads widely used Hadoop file formats (e.g. Parquet, Avro, RC, …)
• Runs on same nodes that run Hadoop processes

• Plays well with traditional BI tools: 
exposes/interacts with industry-standard interfaces (odbc/jdbc,
Kerberos and LDAP, ANSI SQL)

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala from The User’s Perspective

• Create tables as virtual views over data stored in HDFS or Hbase
• Schema metadata stored in Metastore, basis of HCatalog

• Shared and can be accessed by Hive, Pig, etc..
• Connect via ODBC/JDBC; authenticate via Kerberos or LDAP
• ANSI SQL-92 with SQL-2003 analytic window functions, UDFs/UDAs, correlated

subqueries,..
• Data types:

• Integer and floating point type, STRING, CHAR, VARCHAR, TIMESTAMP
• DECIMAL(<precision>, <scale>) up to 38 digits of precision

4

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala: History

•Developed by Cloudera and fully open-source (ASF license)
•Hosted on github (https://github.com/cloudera/impala)

•Released as beta in 10/2012
•1.0 version available in 05/2013
•current version: 2.1

5

Copyright © 2013 Cloudera Inc. All rights reserved.

Roadmap: Impala 2.1+

6

• Nested data structures: Structs, arrays, maps in Parquet, Avro, json, …
• natural extension of SQL: expose nested structures as tables
• no limitation on nesting levels or number of nested fields in single query

• Multithreaded execution past scan operator
• More resource management and admission control
• Support for S3-backed tables
• Additional data types: DATE, TIME, DATETIME
• More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE
• Improved query planning, more elaborate statistics
• Physical tuning

Copyright © 2013 Cloudera Inc. All rights reserved.

Cloudera Impala — Agenda

• Overview
• Architecture and Implementation

• High-level design
• Components
• Query Planning
• Query Execution
• Run-time Code Generation
• Parquet File Format

• Evaluation

7

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Architecture: Distributed System

•Daemon process (impalad) runs on every node with data
•Each node can handle user requests

•Load balancer configuration for multi-user environments
recommended

•Metadata management: catalog service (single node)
•System state repository and distribution: statestore (single node)
•Catalog service and Statestore are stateless

8

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Architecture

9

Impalad

Hadoop
Datanode

Impalad

Hadoop
Datanode

Impalad

Hadoop
Datanode

…

Statestore Catalog
Service

Hive
Metastore

Hadoop
Namenode

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Statestore

• Central system state repository
• name service (membership)
• metadata

• Soft-state
• all data can be reconstructed from the rest of the system
• cluster continues to function when statestore fails, but per-node state

becomes increasingly stale
• Sends periodic heartbeats

• pushes new data
• checks for liveness

10

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Catalog Service

• Metadata:
• databases, tables, views, columns, …
• but also: files, block replica locations, block device ids

• Catalog service:
• metadata distribution hub: sends all metadata to all impalad’s via

statestore
• interface to persistent metadata storage, mediator between Hive’s

MetaStore and impala’s

11

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Execution Daemon (impalad)

• Frontend in Java: parse, analyze and plan SQL queries
• Backend in C++: coordinate and/or execute plan

fragments
• Local cache of metadata
• Web UI with machine info, logs, metrics
• RPC/communication: Thrift

12

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Query Execution at the high-level

• Query execution phases:
• Client request arrives via odbc/jdbc
• Query planner turns request into collection of plan fragments
• Coordinator initiates execution on remote impalad’s

• During execution
• Intermediate results are streamed between executors
• Query results are streamed back to client
• Subject to limitations imposed by blocking operators

• top-n, aggregation, sorting

13

Copyright © 2013 Cloudera Inc. All rights reserved.

• Request arrives via odbc/jdbc

Impala Query Execution

14

Copyright © 2013 Cloudera Inc. All rights reserved.

• Planner turns request into collection of plan fragments

• Coordinator initiates execution on remote impalad nodes

Impala Query Execution

15

Copyright © 2013 Cloudera Inc. All rights reserved.

• Intermediate results are streamed between impalad’s

• Query results are streamed back to client

Impala Query Execution

16

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Overview

• 2-phase planning process:
• single-node plan: left-deep tree of plan operators
• partitioning of operator tree into plan fragments for parallel

execution
• Parallelization of operators across nodes:

• all query operators are fully distributed
• Cost-based join order optimization
• Cost-based join distribution optimization

17

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Single-Node Plan

18

SELECT t1.custid,
 SUM(t2.revenue) AS revenue
FROM LargeHdfsTable t1
JOIN LargeHdfsTable t2 ON (t1.id1 = t2.id)
JOIN SmallHbaseTable t3 ON (t1.id2 = t3.id)
WHERE t3.category = 'Online'
GROUP BY t1.custid
ORDER BY revenue DESC LIMIT 10 HashJoin

Scan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Agg

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans

• Goals:
• maximize scan locality, minimize data movement
• full distribution of all query operators (where semantically correct)

• Parallel joins:
• broadcast join: join is collocated with left input; right-hand side table is

broadcast to each node executing join  
-> preferred for small right-hand side input

• partitioned join: both tables are hash-partitioned on join columns  
-> preferred for large joins

• cost-based decision based on column stats/estimated cost of data
transfers

19

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans

• Parallel aggregation:
• pre-aggregation where data is first materialized
• merge aggregation partitioned by grouping columns

• Parallel top-N:
• initial top-N operation where data is first materialized
• final top-N in single-node plan fragment

20

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans — Example

•Scans are local: each scan receives its own fragment
•1st join: large x large -> partitioned join
•2nd scan: large x small -> broadcast join
•Pre-aggregation in fragment that materializes join result
•Merge aggregation after repartitioning on grouping column
•Initial top-N in fragment that does merge aggregation
•Final top-N in coordinator fragment

21

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans

22

HashJoinScan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Pre-Agg

MergeAgg

TopN

Broadcast

Merge

hash t2.idhash t1.id1

hash
t1.custid

at HDFS DN

at HBase RS

at coordinator

HashJoin

Scan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Agg

Single-Node
Plan

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Execution Engine

•Written in C++ for minimal cycle and memory overhead

•Leverages decades of parallel DB research

•Partitioned parallelism

•Pipelined relational operators

•Batch-at-a-time runtime

•Focussed on speed and efficiency

•Intrinsics/machine code for text parsing, hashing, etc.

•Runtime code generation with LLVM

23

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Runtime Code Generation

• Uses llvm to jit-compile the runtime-intensive parts of a
query

• Effect the same as custom-coding a query:
• Remove branches, unroll loops
• Propagate constants, offsets, pointers, etc.
• Inline function calls

• Optimized execution for modern CPUs (instruction
pipelines)

24

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Runtime Code Generation — Example

25

interpreted codegen’d

IntVal my_func(const IntVal& v1, const IntVal& v2) {!
 return IntVal(v1.val * 7 / v2.val);!
}!

SELECT my_func(col1 + 10, col2) FROM ...

my_func

col2+

10col1

function
pointer

function
pointer

function pointer
function
pointer

(col1 + 10) * 7 / col2

function
pointer

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Runtime Code Generation — Performance

26

10 node cluster (12 disks / 48GB RAM / 8 cores per node)!
~40 GB / ~60M row Avro dataset

> 4x speedup
> 6x speedup

> 16x speedup!

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management: Admission Control

• Workload management in a distributed environment
• Enforce global limits on # of concurrently executing

queries and/or memory consumption
• Admin configures pools with limits and assigns users to

pools
• Decentralized: avoids single-node bottlenecks for low-

latency, high-throughput scheduling
• Does not require Yarn/Llama
• Works in CDH4/CDH5

27

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management: Admission Control

• Configure one or more resource pools
• max # of concurrent queries, max memory, max queue size
• same configuration as Yarn resource queues
• easily configured via Cloudera Manager

• Each Impala node capable of making admission decisions: 
no single point of failure, no scaling bottleneck

• Incoming queries are executed, queued, or rejected
• queue if too many queries running concurrently or not enough memory
• reject if queue is full

28

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management: YARN

• YARN is a centralized, cluster-wide resource
management system that allows frameworks to share
resources without resource partitioning between
frameworks

• Impala can do resource reservation via YARN for
individual queries

• However, YARN is targeted at batch environments: 
results in extra cost for both latency and throughput

29

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management in Impala

• Admission control and YARN-based resource management cater to
different workloads

• Use admission control for:
• low-latency/high-throughput workloads
• mostly Impala or resource partitioning is feasible

• Use LLAMA/YARN for:
• mixed workloads (Impala, MR, Spark, …) and resource partitioning is impractical
• latency and throughput SLAs are relatively relaxed

• Future roadmap: low-latency/high-throughput mixed workloads without
resource partitioning

30

Copyright © 2013 Cloudera Inc. All rights reserved.

HDFS: A Storage System for Analytic Workloads

• High-efficiency data scans at or near hardware speed, both
from disk and memory

• Short-circuit reads: bypass DataNode protocol when reading
from local disk 
-> read at 100+MB/s per disk

• HDFS caching: access explicitly cached data w/o copy or
checksumming  
-> access memory-resident data at memory bus speed  
-> enable in-memory processing  

31

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: Columnar Storage for Hadoop

• State-of-the-art, open-source columnar file format
• Available for (most) Hadoop processing frameworks:  

Impala, Hive, Pig, MapReduce, Cascading, …
• Offers both high compression and high scan efficiency
• Co-developed by Twitter and Cloudera

• with contributors from Criteo, Stripe, Berkeley AMPlab, LinkedIn
• Now an Apache incubator project

• Used in production at Twitter and Criteo
• The recommended format for Impala

32

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: The Details

• Columnar storage: column-major instead of the traditional row-
major layout; used by all high-end analytic DBMSs

• Optimized storage of nested data structures: patterned after
Dremel’s ColumnIO format

• Extensible set of column encodings:
• run-length and dictionary encodings in 1.2
• delta and optimized string encodings in current version 2.0

• Embedded statistics: version 2.0 stores inlined column statistics for
further optimization of scan efficiency

• e.g. min/max indexes

33

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: Storage Efficiency

34

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: Scan Efficiency

35

Copyright © 2013 Cloudera Inc. All rights reserved.

Cloudera Impala — Agenda

• Overview
• Architecture and Implementation
• Evaluation

36

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance

• Benchmark: TPC-DS
• Subset of queries (21 queries)
• 15TB scale factor data set
• On 21-node cluster

• 2 processors, 12 cores, Intel Xeon CPU E5-2630L 0 at 2.00GHz
• 12 disk drives at 932GB each (one for the OS, the rest for HDFS)
• 64GB memory

• Comparison of: Impala 1.4, SparkSql 1.1, Presto 0.74, Hive 0.13
(with Tez)

37

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance: Single-User
•single-user
execution

•group queries
by how much
data they
access:
• interactive
•reporting
•deep analytic

38

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance: Multi-User
•10 concurrent
queries

•from the
interactive
bucket

39

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance: Multi-User
•

40

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala vs. Commercial Competitor

41

“DeWitt Clause” prohibits using DBMS vendor
name

Thank You

42

