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General knowledge: 
• General truth, objective data, not 

associated with an individual 
• E.g., geographical locations 
• Can be found in a knowledge base 

or an ontology 
 

When missing in the knowledge base, 
we can ask the crowd! 

Individual knowledge: 
• Related to the habits and opinions 

of an individual 
• E.g., travel recommendations 
• We can ask people about it 

Crowd answers can be recoded in a 
knowledge base 



Crowd Mining: Crowdsourcing in an Open World 

Given an ontology of general knowledge  
and a mining task 

• Incrementally explore relevant patterns 

 

 

• Generate (closed and open) questions to the crowd about them 

 

 

• Evaluate the significance of the patterns and discover related ones 

 

 

• Produce a concise output that summarizes the findings 
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{Ball_Game playAt Central_Park} 

How often do you play ball games  
at Central Park? 

Which ball games do you play at Central Park? 
What else do you do at Central Park?  

Pattern score = 0.6  {Baseball playAt Central_Park. 
 Permit   getAt  "www.permits.org"} 



Crowd Mining Framework Design 

We design a general architecture which outlines the components  
of a crowd mining framework and the interaction between them 

Challenges: 
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The type of processed data 
(general versus individual) 
must be taken into account 

Compiling user requests into 
a declarative query language 

Deciding which questions to 
generate to the crowd next 

How to aggregate 
crowd answers?  

Personalization and 
crowd member selection 

Updating and managing 
the knowledge base 

Combining the crowd answers 
with knowledge base data 



Today 

Motivation 

Framework Architecture 

Zoom-in on components 

Examples via the OASSIS system 
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The Architecture 
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Knowledge Repository 

Different types of knowledge: 

• A general knowledge base is input to the system 

 

 

• Knowledge inferred in previous query evaluation  
 
– General knowledge – completes the knowledge base 

May be annotated with trust/error probability 

– Individual knowledge – more volatile 
may be annotated with user properties 
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Knowledge Repository 

Different types of knowledge: 

• A general knowledge base is input to the system 
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Enters the user… 

• The user query should be formulated in a formal language 

E.g., OASSIS-QL is a SPARQL-based query language for crowd mining 
[A. et al. SIGMOD’14]  
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Find popular combinations of  
an activity in a child-friendly attraction  
at NYC and a restaurant nearby  
(plus relevant advice) 
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Natural language interface 



Enters the user… 

• The user query should be formulated in a formal language 

E.g., OASSIS-QL is a SPARQL-based query language for crowd mining 
[A. et al. SIGMOD’14]  
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Find popular combinations of  
an activity in a child-friendly attraction  
at NYC and a restaurant nearby  
(plus relevant advice) 

Natural language interface 

Graphic UI 



Query Engine 

• Efficiently executes the query plan 

– By querying the knowledge base (standard) 

– And generating questions/tasks to the crowd 
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{$y doAt $x} 

Input general 

Inferred 
general 

Inferred 
individual 

$x = Central_Park 
$y = Baseball 

Crowd task: 
isSignificant({Baseball doAt Central_Park}) 
Budget: $0.5 
User preferences: … 

{$x instanceOf Attraction. 
 $y subClassOf Activity} 
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– And generating questions/tasks to the crowd 
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{$y doAt $x} 

Input general 

Inferred 
general 

Inferred 
individual 

$x = Central_Park 
$y = Baseball 

Crowd task: 
isSignificant({Baseball doAt Central_Park}) 
Budget: $0.5 
User preferences: … 

{$x instanceOf Attraction. 
 $y subClassOf Activity} 

Crowd task: 
specify($z, {Baseball doAt Central_Park. 
     [] eatAt $z}) 
Budget: $0.6 



Crowd Task Manager 

• Distributes tasks to crowd members 

• Aggregates and analyzes the answers 

• Dynamically decides what to ask next 
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Answer 
aggregation 
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function 

Overall 
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Aggregation: estimated mean M 
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Overall utility: next question expected 
to reduce error probability by 0.1 

“How often do you play baseball at Central Park?” 

Answer 1: never (score=0) 

Answer 2: once a week (score=1/7) 
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result 

Aggregation, significance and utility choices depend on 
the type of data collected from the crowd. 

For individual data, the aggregated answer should 
account for diverse opinions 

•  e.g., statistical modeling 

For general data the aggregated answer should  
reflect the truth 

•  e.g., weighing by expertise, outlier filtering 



Other crowdsourcing systems 
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Can be put in terms of the architecture for comparing 
and identifying possible extensions 

Majority vote, 
custom function 

# questions is 
fixed or bounded 

NL to query 
translators 

Declarative crowdsourcing 
platforms 

Crowdsourced 
entity resolution 

Task to worker 
assignment 



In Conclusion 
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• Crowd mining allows users to ask queries that mix general and 
individual data needs, 
and use multiple sources to obtain relevant answers 

• Our generic architecture outlines the components required 
for such complex reasoning 

• Other crowdsourcing systems share a part of these 
components, possibly with alternative implementations 

• This analysis highlights challenges for future work 
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Thank you 


