Ié University at Buffalo The State University of New York

Just-in-Time
Data Structures

Oliver Kennedy & Lukasz Ziarek
SUNY Buffalo

What is best in life?

What is best in life?

(for organizing your data)

Storing & Organizing Data

API: Insert & Range Scan

Storing & Organizing Data

API: Insert & Range Scan

BTree Heap

Which should you use?

You guessed wrong.

(Unless you asked me what the workload was)

Write Cost

Workloads

Read Cost

Workloads

Sorted Array
&

Write Cost

Read Cost

Each data structure makes a fixed set of tradeoffs

Workloads

Sorted Array
&

Write Cost

Read Cost

Which structure is best can even change at runtime

Workloads

§ Sorted Array

Just-in-time
Datastructures

Write Cost

Y%, BTree

Read Cost

Which structure is best can even change at runtime

Traditional Data Structures

Physical Layout & Logic

E

Manipulation Logic Access Logic

Just-in-Time Data Structures

Physical Layout & Logic

+

Abstraction Layer

E

Manipulation Logic Access Logic

Abstractions

Abstractions

Black Box

Abstractions

My Data

|

Black Box

(A set of integer records)

INsertions

Let’'s say | want to add a 37?

My Data

|

Black Box

INsertions

Let’'s say | want to add a 37?

My Data >m

Black Box

INsertions

Let’'s say | want to add a 37?

My Data >m

Black Box

This is correct, but probably not efficient

INsertions

A

2 4 5

Insertion creates a temporary representation...

INsertions

A

INsertions

... that we can
eventually rewrite into
a form that is correct
and efficient

(once we know what
‘efficient’ means)

Bullding Blocks

BN 4 5> EoEe A

Array (Unsorted) Concatenate

S5 4 O A

Array (Sorted) BTree Node

Blree Insertions

Let's try something more complex: A Blree

A

Blree Insertions

A rewrite pushes the inserted object down into the tree

Blree Insertions

A rewrite pushes the inserted object down into the tree

Blree Insertions

The rewrites are local.
The rest of the data structure doesn’t matter!

Synergy

[LET FORM PROACTIVE |
SYNERGY RESTRUCTURING

Hybrid Insertions

Hybrid Insertions

Blree
- Rewrite

Hybrid Insertions

Blree SArray
Rewrite Rewrite

Synergy

Blree Blree Leaf
Rewrite Rewrlite

Synergy

Blree Blree Leaf
Rewrite Rewrlite

Which rewrite gets used depends on workload-specific policies.

EXperiments

Cracker Index
AP

* RangeScan(low, high)

VS * |nsert(Array)
Adaptive Merge Tree Gimmick
* |nsertis Free.
VS RangeScan uses work

done to answer the query
JITDs to also organize the data.

EXperiments

Less organization
per-read

Cracker Index “

VS

More organization
per-read

Adaptive Merge Tree -

VS

JITDs

Time (s)

Time (s)

10

0.1

001 M-

0.001
0.0001

le-05 1

Cracker Index

Reads

100 M records

(1.6 GB)

R, o ©

> e oo
‘Ar ' ‘* * ‘
> "1

... .:..oo.. .o:od ' . r. .

0 @ pog o° °
T RN AR o % o T .
D D ¢ b
22

~ e
’ S o p 5 o
A WA SO T e

10,000 reads for

0

2000 4000 * 8000 10000
“ 2-3 K records
| each

~ 10M additional
> records written

T after 5000 reads

2000 4000 % OO 8000 10000

Iteration

Cracker Index

10

Reads
1
_ 0.1 :
o 3
E 0.01
= 0.001 PN et B
0.0001 |t N- (,zh
A i A | Slow
le-05 1t — '
0 2000 4000 6000 8000 10000 * Convergence
33s

(not shown) gAdaptive Merge Iree

Super-High
Initial Costs

Bimodal

0 2000 4000 6000 sooo 1000 LIstribution

Iteration

Policy 1: Swap (Crack for 2k reads after write, then merge)

Reads

Time (S)

0 2000 4000 6000 3000 10000

Iteration

Policy 1: Swap (Crack for 2k reads after write, then merge)

Reads

~~
0]

—~ .
Q '
5 .

-

3000 10000

0 20 4000 (’..f\i "

Iteratjefi

Switchover fro Cack to Merge

Policy 1: Swap (Crack for 2k reads after write, then merge)

Reads

0 2000 4000/ 6000 8000 10000

/Tteration

Synergy from Crakin (lower upfront cost)

Policy 2: Transition (Gradient from Crack to Merge at 1k)

Time (S)

0 2000 4000 6000 3000 10000

Iteration

Policy 2: Transition (Gradient from Crack to Merge at 1k)

3000 10000

0) _ 4000) V

Gradient Period (% chnce of Crack or Merge)

Policy 2: Transition (Gradient from Crack to Merge at 1k)

Reads

Iter 6n

Tri-modal distribution:CraCking and Merging

on a per-operation basis

4000 6 Ny

10000

Separate logic and structure/semantics
 Composable Building Blocks

* Local Rewrite Rules

Result: Flexible, hybrid data structures.

Result: Graceful transitions between different behaviors.

https://github.com/okennedy/jitd

Questions?

https://github.com/okennedy/jitd

Bonus Slides

Throughput (ops/s)

Overall Throughput

Cracking =——f— Swap =)—
Merge —©— Transition ——é—

0 2000 4000 6000 8000 10000

Iteration

Overall Throughput

Cracking =——f— Swap =)
Merge —©— Transition —é—

Throughput (ops/s)

0 2000 4000 6000 8000 10000

Iteration

JITDs allow fine-grained control over DS behavior

