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ABSTRACT

Querying a relational database is difficult because it requires the
user to have a grasp of the relational model, the SQL language, and
the schema at hand. While natural language interfaces (NLIs) and
programming-by-example (PBE) are promising alternatives, they
suffer from various challenges. Natural language queries (NLQs) are
often ambiguous, even for human interpreters, and current PBE ap-
proaches require either low-complexity queries, user schema knowl-
edge, exact example tuples from the user, or a closed-world assump-
tion to be tractable. Consequently, we propose dual-specification
query synthesis which consumes both a NLQ and an optional PBE-
like table sketch query that enables users to express varied levels of
knowledge. We introduce the Duoqest system, which leverages
guided partial query enumeration to efficiently explore the space
of possible queries. We demonstrate in experiments on the promi-
nent Spider benchmark that Duoqest substantially outperforms
state-of-the-art NLI and PBE approaches.

1 INTRODUCTION

Querying a relational database is difficult because it requires the
user to have a grasp of the relational model, the SQL language, and
the schema at hand. Consequently, an ongoing research challenge
is to enable users who lack such knowledge to specify queries.

One popular approach is the natural language interface (NLI),
where users can state queries in their native language. Unfortu-
nately, existing NLIs require significant overhead in adapting to
new domains and databases [4, 7, 11] or are overly reliant on spe-
cific sentence structures [2]. More recent advances leverage deep
learning to circumvent these challenges, but the state-of-the-art
accuracy [12] on established benchmarks falls well short of the
desired outcome, which is that NLIs can only misinterpret users’
questions very rarely, if at all [4]. Moreover, this problem is ex-
acerbated by the fact that natural language queries (NLQs) often
contain inherent ambiguities [1] such as in the following situation:

Example 1.1. Kevin wants to query a relational database con-
taining movie information but has little knowledge of SQL or the
schema. He issues the following NLQ to a NLI.

NLQ: Show names of movies starring actors from before 1995,
and those after 2000, with corresponding actor names, and years,
from earliest to most recent.

Sample Candidate SQL Queries:
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CQ1: Meaning: The names and years of movies released before 1995 or
after 2000 starring male actors, with corresponding actor names,
ordered from oldest to newest movie.
SELECT m.name, a.name, m.year
FROM actor a JOIN starring s ON a.aid = s.aid

JOIN movies m ON s.mid = m.mid
WHERE a.gender = `male' AND

(m.year < 1995 OR m.year > 2000)
ORDER BY m.year ASC

CQ2: Meaning: The names of movies starring actors of any gender born
before 1995 or after 2000 and corresponding actor names and birth
years, ordered from oldest to youngest actor.
SELECT m.name, a.name, a.birth_yr
FROM actor a JOIN starring s ON a.aid = s.aid

JOIN movies m ON s.mid = m.mid
WHERE a.birth_yr < 1995 OR a.birth_yr > 2000
ORDER BY a.birth_yr ASC

CQ3: Meaning: The names and years of movies either (a) released be-
fore 1995 and starring male actors, or (b) released after 2000; with
corresponding actor names, from oldest to newest movie.
SELECT m.name, a.name, m.year
FROM actor a JOIN starring s ON a.aid = s.aid

JOIN movies m ON s.mid = m.mid
WHERE (a.gender = `male' AND m.year < 1995)

OR m.year > 2000
ORDER BY m.year ASC

Even for a human SQL expert, the NLQ in Example 1.1 is chal-
lenging to decipher, as each of the interpretations cannot be ruled
out definitively without explicit clarification from the user. In many
cases, NLIs may not return the desired query in the top-k displayed
results, and users have no recourse other than to attempt to rephrase
the NLQ [4] without additional guidance from the system.

Another alternative to writing raw SQL is programming by exam-
ple (PBE), where users must either provide query output examples
or example pairs of an input database and the output of the de-
sired query. Unlike NLIs, these approaches have the advantage of
a concrete notion of soundness in that returned candidate queries
are guaranteed to satisfy the user-provided specification. However,
as shown in Table 1, PBE systems must precariously juggle four
factors: (1) how much query complexity is permitted, (2) wheter
schema knowledge is required of the user, (3) whether users must
provide full tuples or can provide partial ones, and (4) whether an
open- or closed-world setting is assumed, where the closed-world
setting entails that the system assumes that the user has provided a
complete result set instead of a subset of possible returned tuples.

The ideal PBE system would produce complex queries with ag-
gregates and nesting while enabling users to provide partial tuples
in an open-world setting without schema knowledge. However,



Query Complexity
1

User Knowledge

System π /▷◁ σ γ Nest Schema Tuples World

NLIs [2, 7, 11, 12] ✓ ✓ ✓ ✓ N/A N/A
PBE Systems
QBE [14] ✓ ✓ ✓ ✓ Need Partial Open
MWeaver [6] ✓ Full Open
FastTopK [5] ✓ Partial Open
TALOS [9] ✓ ✓ ✓ Full Closed
QFE [3] ✓ ✓ Need Full Closed
Scythe [10] ✓ ✓ ✓ ✓ Need Full Closed
REGAL+ [8] ✓ ✓ ✓ Full Closed
Duoqest ✓ ✓ ✓ ✓ Partial Open

Table 1: Duoqest versus existing NLI/PBE systems.

Types string string number

Tuples

1. Forrest Gump Tom Hanks
2. Gravity Sandra Bullock [2010, 2017]

Sorted? ✗

Limit? ∞

Table 2: Example table sketch query (TSQ).

previous systems could not handle the massive search space of this
scenario and each constrained at least one of the above factors.

Our Approach — We observe that PBE and NLQ specifications
can be leveraged in a synergistic manner, as PBE specifications
contain hard constraints that can substantially prune the search
space, while NLQs provide hints on the structure of the desired SQL
query, including selection predicates and the presence of clauses.
Therefore, we argue for dual-specification query synthesis which
consumes both a NLQ and an optional PBE-like specification called
a table sketch query (TSQ) as input.

Example 1.2. Kevin issues the NLQ in Example 1.1, and the NLI
returns several candidate queries. CQ3 is his desired query, but it
is the 15th ranked query returned by the NLI and not immediately
visible in the interface. Instead of manually sifting through all the
candidate queries, he chooses to refine the query with a TSQ.

He thinks of movies he knows well. Specifically, he knows that
Tom Hanks starred in Forrest Gump before 1995, and that Sandra
Bullock starred in Gravity sometime between 2010 and 2017.

He encodes this information in the TSQ shown in Table 2. The
top section contains the data types for each column, the middle
section contains his knowledge in the form of example tuples, and
the bottom section indicates that his desired query’s output will
neither be sorted nor limited to top-k tuples.

Using the NLQ alongwith the TSQ, the system can eliminate CQ1
because it does not produce the second tuple (with Sandra Bullock,
a female, starring in the movie), as well as CQ2, because Sandra
Bullock was not born between 2010 and 2017. CQ3 is therefore
correctly returned to Kevin.

1π : projection, ▷◁: join, σ : selection, γ : grouping/aggregation

The TSQ requires no schema knowledge from the user, allows
users to specify partial tuples, and permits an open-world setting.
When used alone, the TSQ is still likely to face the problem of a
intractably large search space. However, when used together with
an NLQ, the information from the natural language can guide the
process to enable the synthesis of more expressive queries such as
those including aggregates and nesting.

While the TSQ is optional, a dual specification is also preferred
over the NLQ alone because it enables users a reliable, alternative
means to refine queries iteratively (by adding additional tuples
and other information to the TSQ) if their initial NLQ fails to return
their desired query. In addition, the TSQ enables pruning of the
search space of partial queries and permits a soundness guarantee
that all returned results must satisfy the TSQ.

System Desiderata — There are several goals and challenges
in developing a dual-specification system.

First, it is not obvious how to integrate single-specification ap-
proaches. Naïve approaches include computing the intersection of
candidate output sets from two single-specification systems, or
chaining two systems such that the output of one becomes the
input of the other. These approaches, however, miss out on the
opportunity for early pruning offered by two specifications.

Second, it is important to facilitate varying degrees of user domain
knowledge. While it is reasonable to expect that users are able to
provide a NLQ for their desired query in every case, the amount
of user knowledge that can be specified in a TSQ may vary widely
depending on the task and the user’s familiarity with the domain.
The challenge then is to enable users to specify varying amounts
of knowledge, and to maximize the impact of whatever knowledge
is given for more accurate query synthesis.

Finally, we aim to have our system run fast with low memory
needs. This will enable us to maximize the likelihood of finding the
user’s desired query within a limited time and memory budget.

Contributions —We offer the following contributions:
(1) We propose dual-specification query synthesis to enable users

with varied domain knowledge to construct expressive SQL
queries with a NLQ and TSQ.

(2) We efficiently explore the space of possible queries with
guided partial query enumeration and implement this in a
prototype system, Duoqest.

(3) We present selected experiments on the prominent Spider
benchmark in which Duoqest produced the user’s desired
query within 60 seconds 83.7% of the time, improving on
state-of-the-art NLI and PBE approaches which attained
56.7% and 34.0%, respectively.

2 OVERVIEW

2.1 Preliminaries

We first explain some preliminary concepts. All concepts and defi-
nitions provided are in the context of a fixed existing database.

We begin by defining the table sketch query (TSQ), which enables
users to specify constraints on their desired query at varied levels
of knowledge in a similar fashion to existing PBE approaches [5, 6]:

Definition 2.1. A table sketch query T = (α , χ ,τ ,k) has:
(1) an optional list of type annotations α = (α1, . . . ,αn );

2
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Figure 1: Guided partial query enumeration.

(2) an optional list of example tuples χ = (χ1, . . . , χn );
(3) a boolean sorting flag τ ∈ {⊤,⊥} indicating whether the

query should have ordered results; and
(4) an limit integer k ≥ 0 indicating whether the query should

be limited to the top-k rows2.

A tuple in the result set of a query, χq ∈ R(q), satisfies χi if each
cell χq [j] ∈ χq matches the corresponding cell of the same index
χi [j] ∈ χi . As shown in Example 1.2, each example tuple χi ∈ χ
may contain exact cells, which match cells in χq of the same value;
empty cells, which match cells in χq of any value, and range cells,
which match cells in χq that have values within the specified range.

Definition 2.2. A query q satisfies a TSQ T = (α , χ ,τ ,k) if all
of the following conditions are met:

(1) if α , �, the projected columns of q must have data types
matching the annotations;

(2) if χ , �, for each example tuple in χ , there exists a distinct
tuple in the result set of q that satisfies it;

(3) if τ = ⊤, q must include a sorting operator and produce
the satisfying tuples in (2) in the same order as the example
tuples in the TSQ;

(4) if k > 0, q must return at most k tuples.

2.2 Problem Definition

We now formally define our dual-specification problem:

Problem. Find the user’s desired query q̂, given:
(1) a natural language query N describing q̂;
(2) an optional table sketch query T such that T(q̂) = ⊤.

2.3 Interaction

The user begins by issuing a NLQ to the system, along with an
optional TSQ. The system returns a ranked list of candidate queries.
If none of candidate queries is the user’s desired query, the user has
two options: theymay either rephrase their NLQ or refine their query
by adding more information to the TSQ. This process continues
iteratively until the user obtains their desired query.

3 APPROACH

3.1 Guided Partial Query Enumeration

The search space of possible SQL queries in our setting is enormous,
with a long chain of inference decisions to be made about the pres-
ence of clauses, number of database elements in each clause, con-
stants in expressions, join paths, etc. Given the number of options
2k = 0 indicates no limit.

possible for each inference decision, enumerating and verifying
every possible complete SQL query against the TSQ independently
can consume a large amount of time and memory.

We propose guided partial query enumeration (GPQE) as a solu-
tion to this challenge, which has two major features. First, GPQE
performs guided enumeration by using the NLQ to guide the candi-
date SQL enumeration process, where candidates more semantically
relevant to the NLQ are enumerated first. Second, GPQE leverages
partial queries (PQs)—i.e. SQL queries with holes/placeholders for
various elements—as opposed to complete queries. Several existing
NLIs [11, 12] can easily be modified to enumerate candidate PQs
in intermediate stages before the queries are complete. These PQs
can be tested against the TSQ to prune large branches of invalid
queries early without enumerating all complete queries in each
branch. This enables the search to cover a wider proportion of the
expansive space of possible queries in a given amount of time.

Figure 1 provides an overview of GPQE. The Synthesizer module
guides enumeration by emitting PQs most relevant to the NLQ first.
The Verifier module receives the TSQ and each PQ and determines
whether the PQ satisfies the TSQ and sends one of three feedback
signals to the Synthesizer: ⊤, meaning that any completion of the
PQ will satisfy the TSQ; ⊥, meaning that no completion of the PQ
will satisfy the TSQ; or ?, meaning that no conclusion can yet be
drawn. The Synthesizer continues enumerating more fleshed out
versions of the PQ as long as the feedback is not ⊥. The Verifier
returns any queries evaluated as ⊤.

3.2 Implementation

We implemented GPQE in a prototype system, Duoqest. The
Synthesizer in Duoqest uses a pre-trained neural network model
from an existing NLI [12]. Given the modular construction of Duo-
qest, this Synthesizer can easily be replaced with another model
or NLI so long as the NLI is able to synthesize syntactically correct
PQs in order of most to least confidence.

The Verifier in Duoqest performs rule-based pruning which
extends the techniques in [10] to an open-world setting enabling
partial tuples and requiring no schema knowledge. Specifically, [10]
proposed an over-approximation property for a partial query q̃ in
which any completion q of q̃ is guaranteed to have a result set that
is a subset of the result set of q̃. We developed novel pruning rules
for our setting that preserve the over-approximation property.

Duoqest supports select-project-join-aggregate (SPJA) queries
with ORDER BY and LIMIT clauses, set operations (union, intersect,
except), and nested subqueries in selection clauses. To our knowl-
edge, it is the first system to support this level of query complexity
without requiring schema knowledge or a closed-world setting.

3.3 Alternative Approaches

Two naïve approaches to designing a dual-specification system are
(1) intersecting the output of two single-specification systems and
(2) chaining two systems so the output of one becomes the input
of the next. The intersection approach is inefficient because each
system will have to redundantly examine the search space without
communicating with the other system. The chaining approach is
more promising, where candidate queries generated by a NLI can

3
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Figure 2: Experiments on Spider. In (b) and (c), a higher curve

indicates superior performance.

be passed to a PBE system for verification, eliminating the redun-
dancy in the intersection approach. However, it is still inefficient
in comparison to GPQE, which enables us to verify and eliminate
many potential SQL queries as opposed to one at a time.

4 ONGOING EXPERIMENTS

We evaluated Duoqest on Spider [13], which is comprised of
10,181 NLQ-SQL pairs on 200 databases split into training, develop-
ment, and test sets. We used the training set to train the Synthesizer
model and ran our experiments on each of the development and
test sets. We removed tasks for which the SQL produced an empty
result set or was outside our task scope of unnested select-project-
join-aggregate (SPJA) queries with grouping, sorting, and limit
operators, and synthesized TSQs for each of the remaining tasks.
Each of the synthesized TSQs contained type annotations, two ex-
ample tuples for tasks with ORDER BY clauses and one example
tuple otherwise, and τ and k values derived from the SQL. The final
development and test sets had 589 and 1,247 tasks, respectively.

We compared four systems:
(1) Duoqest, using both the NLQ and synthesized TSQ;
(2) NLI, a state-of-the-art NLI [12] using only the NLQ;
(3) PBE, using only the TSQ with breadth-first search enumera-

tion; and
(4) Chain, which implements the chaining approach in Sec-

tion 3.3 and uses both the NLQ and TSQ.
For each task, the SQL label was designated as the user’s desired

query q̂, and we enforced a timeout of 60 seconds. Results are
displayed in Figure 2 for the development and test sets; we discuss
only the development set as results are similar for both sets.

In Figure 2a, Duoqest attained 83.7% top-10 accuracy on

the development set while NLI, the best-performing single-

specification system, only achieved 56.7%. While Chain would
produce an identical result to Duoqest in a scenario with unlim-
ited time, it achieved a lower accuracy of 75.4% due to the 60-second
time limit, demonstrating the promise of GPQE to increase the effi-
ciency of the dual-specification approach. PBE performed poorly
at 34.0% because the search space of possible SQL syntax was too
large for unguided enumeration within the given time limit.

Similar results are conveyed by Figure 2b and 2c, which display
the distribution of when each system generated the user’s desired

query, regardless of ranking, over time. Duoqest’s GPQE imple-
mentation clearly outperforms Chain from an efficiency perspective.
In addition, while the final top-10 accuracy of Chain is significantly
higher than that of NLI in Figure 2a, Chain performs slightly worse
than NLI in Figure 2b and 2c because NLI is able to explore more
candidate queries without the verification overhead of adding an
additional specification.

5 CONCLUSION AND FUTUREWORK

In this paper, we proposed dual-specification query synthesis, which
consumes both a NLQ and an optional PBE-like table sketch query
enabling users to express varied levels of knowledge. We tackled
this problem with guided partial query enumeration (GPQE), and
implemented GPQE inDuoqest. We demonstrated in experiments
on the Spider benchmark that Duoqest produced the user’s de-
sired query within 60 seconds 83.7% of the time, improving on
state-of-the-art NLI and PBE approaches which attained 56.7% and
34.0%, respectively. For future work, we will improve the perfor-
mance of Duoqest, expand our experiments, and perform a user
study to evaluate the viability of our interaction model.
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