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ABSTRACT
Exploratory Data Analysis (EDA) is an important yet dif-
ficult task, currently performed by expert users, as it re-
quires deep understanding of the data domain as well as
profound analytical skills. In this work we make the case
for the Hands-Free EDA (HFE) paradigm, in which the ex-
ploratory process is automatically conducted, requiring little
or no human input - as in watching a “video” presenting se-
lected highlights of the dataset.

To that end, we suggest an end-to-end visionary system
architecture, coupled with a prototype implementation. Our
preliminary experimental results demonstrate that HFE is
achievable, and leads the way for improvement and opti-
mization research.

1. INTRODUCTION
Exploratory Data Analysis (EDA) is a core task in the ma-

jority of data-driven processes. It is ubiquitously done by
data scientists and analysts who perform“hands-on” interac-
tion with a dataset, by iteratively applying analysis actions
(e.g. filtering, aggregations, visualizations) and manually
examining the results. This is primarily done to understand
the nature of the data and extract knowledge from it, yet is
also fundamental for particular data scientific tasks such as
data wrangling and cleaning, feature selection and engineer-
ing, as well as for explaining predictive models.

However, EDA is known to be a difficult process, espe-
cially for non-expert users, since it requires profound ana-
lytical skills and familiarity with the data domain. Hence,
multiple lines of previous work are aimed at facilitating the
EDA process [15, 34, 41, 10, 23], suggesting solutions such
as simplified, modern EDA interfaces for non-programmers
(e.g., [23], Tableau1), explore-by-example systems [10, 19],
and dedicated recommender-systems that assist users in for-
mulating queries [15], exploratory operations [34] and in
choosing data visualizations [41, 43] (Refer to Section 5 for a

1https://www.tableau.com
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more elaborate discussion). While these works greatly facil-
itate the exploration process in terms of response times and
ease-of-use, the user remains in the “driver’s seat”, having
to decide which exploratory operation to employ. The latter
means that the entry bar for EDA is still high, and the task,
even with a simplified UI, still requires data-oriented skills
and the undivided attention of the user.

In this work we bring to discussion the Hands-Free EDA
(HFE) paradigm, in which the exploratory process is au-
tomatically built. Think of it as watching an interactive
video that leads the user through the dataset’s highlights,
and is customized according to her preferences and com-
mands. The HFE paradigm may greatly reduce the man-
ual effort devoted to EDA, allowing the users to understand
their datasets and reach insights quickly and effectively.

Example Use Case. Clarice, a business analyst working
for Beta Airlines (a major airline in the US), is assigned to
examine causes for flight delays in Q3, 2019. She loads the
data to the HFE system, selects the columns “Is Delayed”
and “Delay Time” as focal attributes, and asks the HFE
system to explore the dataset. After a while, she receives a
message that her session is ready. She puts the HFE system
on full screen and begins watching as the system performs
exploratory operations. First, the system performs a“group-
by” operation, presenting the total number of delayed Beta
flights for each origin airport. Clarice skims through the
results, realizing that most delays originate from only four
airports. The HFE system continues the exploration by per-
forming a “filter” operation, showing Beta flights where the
origin airport is KGL International Airport (which turns
out to be the one with the highest number of delayed Beta
flights). Next, the system presents a line chart visualization,
plotting the number of delayed flights for each week between
June and August 2019. Clarice notices that there are sub-
stantially more delays on weekends. Clarice then issues a
voice command “Add the average flight delay to the current
display”. After complying, the HFE system continues its au-
tomatic exploration by employing an additional group-by on
“Aircraft Model”. Examining the results screen, Clarice un-
derstands that many delays occur when the aircraft model
is “878”. The automatic session continues, providing Clarice
with additional, informative displays that allow her to un-
derstand the “storyline” within the data, and quickly gain
some preliminary insights regarding what may affect flight
delays.

We propose a visionary system architecture, showing how
HFE, as illustrated in the example above, can be accom-



plished. At the core of our architecture is a Deep Reinforce-
ment Learning (DRL) mechanism, enriched with comple-
mentary components from existing lines of research, e.g., in-
terestingness evaluation, EDA recommender systems, weak
supervision, and representation learning.

In what follows, we present the HFE paradigm and its key
challenges in Section 2. We detail the system architecture
in Section 3, and present our prototype implementation and
early experiments (Section 4). We overview related work
in Section 5, then conclude and give future remarks in Sec-
tion 6.

2. THE HANDS-FREE EDA PROBLEM
We first present the common, human-guided EDA process,

then discuss the HFE paradigm and its key challenges.
The EDA Process. A (human-guided) EDA process be-

gins when a user loads a particular dataset to an analysis
UI. The user explores a dataset D by executing a series of
analysis operations q1, q2, ..qn (e.g. filter, group-by, OLAP
drill-down/rollup, and visualizations, depending on the par-
ticular analysis interface). The operations are executed in
an interactive manner: each operation qi generates a results
display, denoted di. After examining the results display di
the user decides if and which operation to perform next.

Typically, the goal of the EDA process is to obtain a gen-
eral understanding of the content of the examined dataset,
its characteristics, as well as to discover interesting aspects of
it. However, users may have different prior knowledge, and
points of interest. For instance, even on the same dataset
of flights (as presented in the motivational example), an ex-
ploratory session of an analyst interested in flight delays,
may be different than the one made by a different analyst
interested in sales and revenue. Also, as the exploratory ses-
sion progresses, different users often gain different insights,
therefore navigating the continuation of their session to ex-
pose different aspects of the data. In other words, even on
the same dataset, there is no singular “recipe” for a useful
EDA process.

Autonomous, Hands-Free EDA. The ultimate goal of HFE,
is to be able to automatically explore any given dataset, and
gradually build a“storyline” for the particular data and user.
The generated exploratory session not only should reveal
highlighting, interesting aspects of the data, but it should
also do it in a coherent, understandable manner, allowing the
user to quickly gain insights on the examined data. Last,
while autonomously exploring the data, the HFE system
should be, at the same time, adaptive and responsive to the
users’ preferences and commands.

As is often the case with autonomous systems, accom-
plishing HFE requires formulating (and efficiently solving)
a control problem. Namely, given some controller that al-
lows the system to perform actions, the goal is to perform
actions while optimizing an objective function (e.g., in the
“driverless car” settings - navigate from A to B while mini-
mizing transport costs and avoiding collisions). In our case,
given a dataset and a controller that allows the system to
perform exploratory operations, the goal of the HFE system
will be to perform a sequence of exploratory operations that
maximizes an EDA objective notion.

We next overview the key challenges in designing such a
system:
(1) Designing an AI-enabled EDA interface: How to

devise machine-readable encoding for EDA opera-
tions and their result displays? The first challenge is fa-
cilitating EDA for an AI-based autonomous system, namely,
defining (a) what kind of operations it can employ and (b)
what information it receives about its current state. For in-
stance, should we support an expressive, flexible interface
such as free-form SQL, or a more restricted set of primi-
tive operators? Also, EDA operations may have compound
result sets, with values from different types and semantic
fields, as well as additional “layers” such as grouping and
aggregations. How can this information be captured in a
compact, machine readable way? The goal is thus to devise
a numeric vector representation of EDA operations and re-
sult displays that supports effective decision making for the
autonomous system.
(2) Defining the EDA objective function: How to
evaluate EDA sessions? Autonomous systems require a
computable objective function in order to correctly make de-
cisions. However, to our knowledge, there is no such explicit
objective function for EDA operations, let alone entire EDA
sessions.

Ideally, we want the HFE system to generate exploratory
sessions that (i) highlight interesting aspect of the data, (ii)
are coherent, i.e., understandable and easy to follow, and
(iii) contain diverse displays that cover multiple facets of
the data.

However, implementing such an objective function is a
challenge. As for interestingness, while a multitude of mea-
sures have been devised to capture the interestingness of
data analysis/mining operations (e.g. [17]), each measure
often captures a different facet of the elusive concept. Par-
ticularly in EDA, as we showed in [31], the notion of interest-
ingness (and correspondingly, the measure used to capture
it) changes dynamically even in the same EDA session. De-
ciding which measure to use, at each point of the session,
is a challenge. As for coherency/understandability of EDA
actions, we are not aware of any previous work dealing with
this issue.
(3) Effective decision making: Handling a vast num-
ber of distinct exploratory operations requires more
than a good planning algorithm. In many existing au-
tonomous system settings the number of actions that the
system can perform at a given moment is rather low (e.g.,
playing the game of Go requires choosing between 100 legal
moves in every turn). However, this is not the case with
autonomous data exploration. Even in our prototype imple-
mentation (See Section 4), which only supports filter, group-
by and aggregate operations, the number of possible unique
operations at each point exceeds 100K, due to the param-
eters’ value domain size (for example, choosing a token to
filter by). This poses a substantial difficulty in employing
existing planning/learning solutions, as well as aggravates
the exploration/exploitation problem.
(4) Providing a personalized exploration experience:
How to adjust the exploratory session according to
users’ preferences? Last, the autonomous system should
be reactive and responsive to the user’s input preferences
and commands. It is thus challenging to formulate a per-
sonalized objective according to user preferences, as well as
to facilitate the envisioned voice commands, after which the
system should readjust its exploration path.

3. SYSTEM ARCHITECTURE
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Figure 1: HFE System Architecture
.

From the multitude of algorithms and techniques for solv-
ing control problems, we decided to base the core of our
system on Deep Reinforcement Learning (DRL). DRL is a
highly promising paradigm that utilizes deep neural network
models in classic (and novel) reinforcement learning algo-
rithms. In recent years, it is being used at the core of many
artificial intelligence-based systems, and shown to surpass
human capabilities in a growing number of complex tasks,
such as playing sophisticated board games, robotics, traffic
light control, and more [27].

In a nutshell, DRL is concerned with a deep neural net-
work agent interacting with an environment. The process
is often modeled as a Markov Decision Process (MDP), in
which the agent transits between states by performing ac-
tions from a predefined action space. At each step, the agent
obtains an observation-vector from the environment, con-
taining numeric information on its current state, then it is
required to choose an action. According to the chosen ac-
tion, the agent is granted a reward from the environment,
then transits to a new state. The goal of the DRL agent is
to learn how to obtain a high cumulative reward (over the
course of its actions).

System Overview. An illustration of our DRL-based HFE
architecture is provided in Figure 1. Its main components
are: (1) The EDA Environment (which includes the boxes
marked in red in Figure 1) is the interface that allows the
DRL agent to employ operations and encodes the results
to a machine-readable vector. (2) The Reward Signal (blue
boxes) is used to evaluate the agent’s operations in terms
of interestingness, coherency, and diversity. (3) The DRL
Agent (yellow boxes) composes EDA operations and incor-
porates an EDA recommender system to reduce the explo-
ration space. Last, (4) Session Customization (pink box) is
obtained by generating a personalized reward signal based
on user preferences and commands.

Sections 3.1-3.4 detail the system architecture components (1)-
(4) listed above.

3.1 AI-Enabled EDA Environment: What does
the agent “see” and what can it “do”?

As mentioned, the first challenge is designing an AI-enabled
EDA interface, namely the EDA environment. The crux of
environment design, from our perspective, is twofold: (1)
How to represent and control what the agent can “do”? (2)

How to properly encode what the agent is “seeing”? i.e.,
how to devise a machine-readable representation of result
displays.
EDA Action Space. Traditional EDA interfaces often
use query languages (SQL, MDX, DSL, etc.), assuming the
query composer is human. However, artificially generating
queries is a known difficult problem, currently in the spot-
light of active research areas such as question answering and
natural language database-interfaces [26]. Such solutions at-
tempt to translate a single NL request into a structured
query, whereas we are interested in allowing an agent to
compose a sequence of EDA operations from scratch.

Therefore, to facilitate autonomous composition as well to
support a variety of EDA operation types (e.g., filter, group,
OLAP/OLTP, visualizations, mining, etc.,) we suggest using
parameterized representation of analysis operations for the
EDA action space, that allow the agent to first choose the
operation type, then the adequate parameters, such as the
a particular aggregation function, kind of plot, filter term,
etc. (similar representation is used in modern EDA systems
such as Tableau’s VisQL.)

Each such operation takes some input parameters (e.g., fil-
ter condition, aggregation function, type of chart, etc.) and
a previous display d (i.e., the results of the previous opera-
tion), and outputs a corresponding new results display. The
advantages of this EDA operations representation are that
(1) actions are atomic and relatively easy to compose (e.g.,
there are no syntax difficulties). (2) queries are formed grad-
ually (e.g., first employ a FILTER operation, then a GROUP by
some column, then aggregate by another, etc.), as opposed
to SQL queries where the entire query is composed“at once”.
The latter allows fine-grained control over the system’s out-
put, since each atomic action obtains its own reward (as
explained below).
EDA Observation-Space. The agent decides which ac-
tion to perform next mostly based on the observation-vector
it obtains from the environment at each state. Intuitively,
the observation should primarily represent the results dis-
play of the last EDA operation performed by the agent.
However, (1) result displays are often compound, containing
both textual and numerical data which may also be grouped,
aggregated, or visualized and (2) other session information
(e.g., the results of previous operations, data tuples covered
thus far) may also be required for the agent to properly de-



cide on the next action.
The main challenges in designing the observation-vector

are thus (i) to devise a uniform, machine-readable repre-
sentation for result displays, and (ii) to identify what infor-
mation is necessary for the agent to maintain stability and
reach learning convergence.

We suggest two possible techniques, one that relies on
extracting descriptive features, and the second on a more
complex representation learning method. (1) Descriptive
Summaries. Given a results display, we can extract a set
of numeric features to form a compact, structural summary.
Example features are the attributes value entropy and num-
ber of distinct values, and grouping information such as the
mean and variance of the groups’ sizes. To include session
information, we suggest adding the encodings of the last n
(configurable) result displays to the observation vector. (2)
Distributed representation learning. Recent works [3, 14]
demonstrate the benefits of using embedding technique for
dataset tokens and tuples (in the spirit of word embedding
techniques such as Word2Vec [30]), compared to manual fea-
ture extraction. The idea is to take a collection of datasets
and employ a shallow neural network that learns a numeric
vector representation for each token, s.t. the resulted vector
convey contextual information (from other dataset tokens
that frequently reside in the same tuple). Then, an entire
dataset (or a subset thereof) can be represented by aggre-
gating the vectors of its tokens (e.g., in NLP this is often
done using weighted average [25]).

While the first approach is easier to implement, it mainly
encodes structural and statistical features. Representation
learning is more complex and requires further research, yet it
holds the promise of also capturing the semantics conveyed
in result displays.

3.2 The EDA Reward Signal: How to evaluate
exploratory operations?

The EDA environment described above allows the DRL
agent to interact with a dataset by employing EDA opera-
tions and obtaining machine-readable observations on their
results. However, to effectively learn to compose meaning-
ful operations, the agent also requires feedback (i.e., a posi-
tive/negative reward) for the operations it chooses.

In the absence of an explicit, known method for evaluat-
ing the quality of exploratory sessions, we propose a reward
signal for EDA actions with three goals in mind: (1) Ac-
tions inducing interesting result sets should be encouraged.
Also, (2) the actions should be coherent, i.e. understandable
to humans and easy to follow. Last, (3) actions in the same
session should yield diverse results describing different parts
of the examined dataset (A fourth consideration is the rel-
evance to the user needs and preferences, an issue that we
defer to Section 3.4). The cumulative reward is defined as
the weighted sum of these individual components.
Interestingness. As mentioned before, many measures are
devised in previous work to capture the interestingness in in-
dividual data analysis or mining operations (such as disper-
sion, peculiarity, diversity, etc. [17]). While one may simply
select a specific interestingness measure for each operation
type, the problem is that different measures capture differ-
ent facets of interestingness (even for the same operation
type [17, 31]). Therefore, operations that are ranked as in-
teresting by one measure, may be ranked as not interesting
by another. To that end, we propose employing an external

interestingness measure predictor, that, given a set of inter-
estingness measures, predicts the most appropriate one to
use at the current point of an ongoing exploratory session
(In [31] we detail an example design and implementation for
such a predictor). The agent then receives an interesting-
ness reward on its chosen operation, according to the score
it obtained from the particular measure selected by the in-
terestingness measure predictor.
Coherency. Encouraging coherent EDA operations is rather
unique in the field of RL and optimal control. For example,
when playing a board game such as chess or Go, the artificial
agent’s objective is solely to win the game, rather than to
perform moves that make sense to human players. Yet, in
the case of EDA, the sequence of operations performed by
the agent must be understandable to the user, and easy to
follow. To that end, we suggest using an external classifier
to evaluate the coherency of each EDA operation. However,
since a relevant training dataset that contains annotated
EDA operations does not exist, we propose employing a
weak-supervision solution, namely, to build a set of heuristic
classification-rules, e.g. “a group-by employed on more than
four attributes is non-coherent” (enough such rules can be
produced by several knowledgeable analysts in a few hours
of work), then lift these rules into an efficient classifier by
using systems such as Snorkel [35]. The coherency reward
component can then be calculated based on the coherency
prediction of the operation selected by the DRL agent.
Diversity. We want to encourage the agent to choose ac-
tions that induce new observations and show different parts
of the data than those examined thus far. This can be done
by further utilizing the numeric vector representation of the
result displays, e.g. by aggregating the Euclidean distances
of the current display vector and the vectors of the previous
displays in the session thus far.

3.3 DRL Agent Design: Effectively learning
how to choose exploratory actions

Typically in DRL, the agent neural network is composed
of an input layer of the size of the observation space, several
fully connected layers, and an output softmax layer of the
size of the action-space. Action probabilities are then calcu-
lated from the network’s output, and the one that obtained
the highest probability is often the selected action of the
agent. However, as opposed to most DRL settings, in our
EDA environment the action-space is parameterized, very
large, and discrete. Hence, two considerable challenges sur-
face from the EDA problem setting: (1) directly employing
off-the-shelf DRL architectures is extremely inefficient since
each distinct possible action is represented as a dedicated
node in the output layer (see, e.g. [13, 27]). (2) Due to the
vast number of distinct EDA operations, the known explo-
ration/exploitation trade-off (i.e., whether the agent should
explore and try“new”operations rather than performing op-
erations that it already knows) becomes a bigger issue, as the
number of possible operations is very large. The latter may
cause the agent’s learning process to converge very slowly, as
well as converging to some local maximum, far from the op-
timal. Our proposed architecture addresses these challenges
as follows.
(1) Agent Network Architecture. To solve the chal-
lenge of the agent’s network design we propose a flexible
solution that can be easily injected to off-the-shelf DRL ar-
chitectures and algorithms (the current state-of-the-art is



rapidly changing). Our solution hooks on the given archi-
tecture (e.g. DQN, Actor-Critic, etc.) with a “pre-output”
layer, containing a node for each action type, and a node
for each of the parameters’ values. Then, by employing a
“multi-softmax” layer, we generate separate probability dis-
tributions, one for action types and one for each parameter’s
values. Finally, the action selection is done according to the
latter probability distributions, by first sampling from the
distribution of the action types, then by sampling the values
for each of its associated parameters.

In our prototype implementation (Section 4) we use this
suggested network architecture (see Figure 2 for an illustra-
tion), and obtain a successful, converging learning process.

Nevertheless, other, more complex approaches may be ex-
plored in order to further improve the decision making pro-
cess of the agent, such as: (1) Using a hierarchical network
model [24], where one neural network learns to select an
operation type, then a series of other networks are trained,
one for each type of operation, to select adequate param-
eters. (2) Using representation learning for encoding EDA
operations and parameters (as recently suggested in [29] for
SQL operators), then utilizing a continuous action space.
Both these directions require future research.
(2) Reducing the exploration space using an EDA
recommender system. As mentioned above, the vast ac-
tion space creates a large exploration space hence worsening
the exploration/exploitation problem. To this end, previ-
ous work suggested incorporating external demonstrations
and guidance when solving difficult exploration problems in
DRL [38, 18]. Luckily, in the field of EDA, dedicated recom-
mender systems (e.g., such as the one we proposed in [34,
32]) have been shown to effectively utilize a small collection
of previous sessions (i.e., “demonstrations”) in order to gen-
erate next-step recommendations. Such recommendations
can be used to guide the DRL agent, and narrow its vast ex-
ploration space to a subspace that contains more promising
EDA operations.

3.4 User Customization & Interactivity
An additional important feature in the HFE paradigm is

the ability of the system to adjust itself according to user
preferences as well as to receive and understand user com-
mands in interaction time. We briefly discuss what is needed
for this component and point to existing works that can be
incorporated in its implementation.
User Preferences. The idea is to incorporate a new, per-
sonalized reward component (See the pink part in Figure 1),
that will be formulated according to the user’s preferences,
such as focal attributes and data subsets, prior beliefs and
hypotheses, etc. Implementing such a reward signal can be
done using e.g., dedicated measures for subjective interest-
ingness. Such measures consider prior information about
the user and provide a personalized interestingness assess-
ment, such as surprisingness and actionability, generated
w.r.t. the data at hand and the user’s prior beliefs. Also,
it is possible to use harvest users’ interestingness feedback
and use learning-based solutions as suggested in [10] (using
active learning), and [28] (using a learning-to-rank method).
Interactivity by Voice Commands. As the EDA session
progresses, the user may want to give further specifications
to the system or to redirect the exploration path elsewhere,
e.g. “Go back to the previous display”, or “Add the sum of
transactions to the current display”. Such voice commands
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Figure 2: Network Architecture of the Prototype Agent

can be used to refine the EDA session and generate manual
EDA operations, still “hands-free”. After issuing such com-
mands, the DRL agent readjusts its exploration path, as it
decides on the next action based on the last observation that
now also includes the external directions.

The implementation of this component can build on ideas
from natural language interfaces for data access [26] and
the conversational paradigm for data science, as introduced
in [20].

4. PROOF OF CONCEPT IMPLEMENTA-
TION

In light of the HFE architecture discussed in Section 3, we
have built ATENA, a limited, proof-of-concept implementa-
tion (envisioned in [33] and demonstrated in [2]). ATENA
employs a small set of EDA operations (filter, group-by and
aggregation) to autonomously explore a given dataset. We
next sketch the implementation details, and review some
early experimental results, showing that ATENA’s DRL agent
converges to a high reward, and is able to conduct meaning-
ful EDA sessions on small-medium datasets. Nevertheless,
this is only a step on the way to fully achieve the HFE vision.
In Section 6 we discuss the remaining components necessary
to accomplish full fledged HFE.
Datasets. We use a dataset schema of network traffic logs
containing 12 attributes, and 4 completely different data
instances containing between 8K to 200K tuples. These
datasets are publicly available2, and were used in the exper-
imental study of [34]. We particularly chose these datasets
since they are accompanied by a collection of human EDA
sessions. This allows us to evaluate and compare our auto-
generated EDA sessions with the ones made by the human
users, as described below.
EDA Environment. The ATENA environment allows the
following operations:
FILTER(attr, op, term) - used to select data tuples that match
a criteria. It takes a column header, a comparison operator
(e.g. =,≥, contains) and a numeric/textual term, and re-
sults in a new display representing the corresponding data
subset.
GROUP(g attr, agg func, agg attr) - groups and aggregates
the data. It takes a column to be grouped by, an aggregation
function (e.g. SUM, MAX, COUNT, AVG) and another
column to employ the aggregation function on.
BACK() - allows the agent to backtrack to a previous display
in order to take an alternative exploration path.

As for the observation space, we used the descriptive sum-
mary observation vectors. Each display vector contains the
following features: (1) three descriptive features for each
attribute: its values’ entropy, number of distinct values,
and the number of null values, (2) one feature per attribute
stating whether it is currently grouped/aggregated, and (3)

2https://github.com/TAU-DB/REACT-IDA-
Recommendation-benchmark



three global features storing the number of groups and the
groups’ size mean and variance. To provide context infor-
mation, the observation vector is formed by concatenating
the last 3 display vectors.
Reward Implementation. The reward signal implemen-
tation contains three components (as described in Section 3.2):
interestingness, coherency, and diversity).

For simplicity, our restricted implementation does not in-
clude yet the measure prediction component (as described
in Section 3.2), and uses, instead, a single measure per oper-
ation type: the Compaction-Gain [5] method is used to rank
group-by actions (which favors group-by results in which a
small number of groups covers a large number of tuples). To
rank filter actions we use a relative, deviation-based measure
(following [41]) that favors result sets that demonstrate sig-
nificantly different trends compared to the entire dataset.
The coherency reward relies on an implementation of the
coherency classifier, using Snorkel [35] to create a labeled
dataset from hand-crafted rules, and the diversity reward is
implemented by calculating of the distances of the last ob-
servation vector and all the previous ones, as described in
Section 3.2.
Agent Architecture. We used a current state-of-the art
architecture: Advantage Actor Critic [27] with the Proximal
Policy Optimization algorithm [36]. We modified the actor
network by adding the “pre-output” layer as described in
Section 3.3.

However, as the parameter term of the filter action can
take any token that currently appear in the dataset, this
still results in a very large output layer. To tackle this issue
we used a simple, effective solution that maps the individual
tokens to a single yet continuous parameter. The mapping is
done according to the frequency of appearances of each token
in the current display. Finally, instantiating this parameter
is done merely with two entries in our “pre-output” layer:
a mean and a variance of a Gaussian (See Figure 2). A
numeric value is then sampled according to this Gaussian,
and translated back to an actual dataset token by taking the
one having the closest frequency of appearance to the value
outputted by the actor-network.
Learning Convergence. Our DRL agent successfully ob-
tains a high reward in the EDA environment. The learning
curves (depicted in Figure 3), show that each reward com-
ponent (and their weighted sum) steadily converges after
about 0.5 million steps.
Early experimental results. To gauge the usability and
quality of the EDA sessions generated with our prototype
system, we conducted a small scale user study (10 student
volunteers with some experience in EDA). Each participant
was presented with two exploratory sessions on two differ-
ent datasets, s.t. one was generated by ATENA, and the
other generated by a human analyst. Without knowing
their origin (i.e., ATENA/human) we asked the participants
to watch each session via a user friendly interface. After
watching each session, we asked the participants to provide
a high-level description of the content of the dataset explored
in the session, as well as to rank the quality of the session
from several perspectives on a scale from 1 to 7. Aggregat-
ing the results for the human and auto-generated sessions,
our findings are:
(1) 7/10 participants thought that the auto-generated ses-
sions are highly informative (score≥6), whereas only 4/10
ranked the human analysts’ sessions as such.

Figure 3: Learning Convergence of the prototype DRL agent

(2) 8/10 participants found the auto-generated sessions easy
to follow (score ≥6), compared to 4/10 for the human an-
alysts.
(3) 6/10 participants believed that the auto generated
sessions were made by an expert analyst, knowledge-
able in the data domain, whereas, surprisingly, none of
the participants believed so regarding the human analysts’
sessions. This is because the auto-generated sessions were
easier to follow (due to the coherency reward), whereas the
human analysts’ sessions were conducted for personal use,
rather than to serve as a demonstration.

5. RELATED WORK
Outside the scope of automating EDA, the database com-

munity has been making a considerable effort in facilitating
the EDA process, along several important facets: First, sim-
plified EDA interfaces (e.g., [23], Tableau, Pandas, Splunk)
allow non-programmers to effectively explore datasets with-
out knowing scripting languages or SQL. Second, numerous
solutions (e.g., [6, 21]) were devised to improve the interac-
tivity of EDA, by reducing the running times of exploratory
operations, and displaying preliminary sketches of their re-
sults. Last, several more systems simplify the query formu-
lation for non-expert users: Works e.g. [22, 16] suggest sys-
tems for SQL query auto-completion, and query-by-example
systems (e.g. as in [8, 37]), allow non-technical users to
specify their information needs by selecting a set of example
tuples.

Closer to our work, another line of research has been
dedicated particularly to automate the exploratory process,
whether partially or fully. These works can be roughly di-
vided into three categories:
1. EDA Recommender Systems. This special type of
recommender system is dedicated to EDA, providing users
with suggestions for specific, high-utility exploratory opera-
tions, or interesting views of the dataset. Within EDA rec-
ommender systems, we can differentiate between two major
types of systems: (1) data-driven (also known as discovery-
driven) systems, which use heuristic notions of interesting-
ness and employ them, e.g., to find data subsets convey-
ing interesting patterns ([11]), data visualizations [41], and
data summaries [39]. (2) Log-based systems [15, 1, 44, 12]
leverage a log of former exploratory operations, performed
by the same or different users, in order to generate more
personalized EDA recommendations. Last, hybrid methods
such as [32, 34] allow effectively utilizing both the log and
the dataset currently being explored.

Our envisioned HFE framework, as mentioned in Sec-
tion 5, benefits from incorporating such systems: First, a
data-driven, “interestingness” component is included in the
HFE framework’s reward signal (See Section 3.2). Second,



we rely on EDA recommender systems such as [34] to assist
the construction of the automated session (as explained in
Section 3.3) by reducing the exploration space to a subspace
that contains more promising EDA operations.
2. Modeling users’ interests, Explore-by-Example.
As interestingness is often subjective [7] and dynamically
changing, even in the same exploratory session [40], previ-
ous work attempted at modeling users’ interestingness pref-
erences. For example, [10, 19] suggest “explore-by-example”
systems by taking an active learning approach, i.e., they har-
vest feedback on presented tuples (“interesting” or “not in-
teresting”) and use it to construct a model for an individual
user’s interest and gradually improve its accuracy as more
feedback is collected. Another example is [28], in which the
authors use a learning-to-rank model to assess the quality
of data visualizations.

As mentioned above (see Section 3.4), we rely on such sys-
tems in order to construct a personalized reward component,
and improve the interactivity of the system.
3. Automated Exploration. The idea of of fully au-
tomating EDA has been proposed in visionary short-papers
e.g., [4, 42], however these works do not sketch a system
architecture or present a prototype implementation. In [9],
the authors describe a system for auto-generating data visu-
alizations based on a supervised learning model of sequence-
to-sequence recurrent neural network. In comparison, our
envisioned system primarily relies on unsupervised, deep re-
inforcement learning, as high-quality labeled data may not
always be available.

6. CONCLUSION
In this work we make the case for autonomous, hands-

free EDA. With the exponential growth in data collected
worldwide, and the corresponding demand for data oriented
insights, we believe that a successful implementation of the
HFE paradigm may greatly reduce the human effort devoted
to EDA, hereby decreasing the need for highly-skilled data
analysts.

Looking further ahead, while our PoC implementation
demonstrates the potential of auto-generating meaningful
and informative EDA sessions, the road to full-fledged HFE
is still long. First, our prototype only partially covers the
HFE architecture, using rather simple implementation for
each component. Therefore, many of our architecture com-
ponents can benefit from future research, most notably, the
session customization and personalized reward. Also, estab-
lishing effective methods to reduce session generation time
is a necessary future work, as well as devising more sophis-
ticated methods for representing a larger number of EDA
operations and their results.
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