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ABSTRACT
Open-Channel SSDs are storage devices that let hosts take
full control over data placement and I/O scheduling. In
recent years, they have gained acceptance in data centers
(e.g., Alibaba) and for computational storage (e.g., Pliops).
Open-Channel SSDs require a host-based Flash Translation
Layer (FTL) that manages the physical address space they
expose. Open-source FTLs are now available for Open-
Channel SSDs, providing either a generic yet tunable block
device interface (e.g., pblk, SPDK, OX-Block), or application-
specific FTLs developed for a specific data system (e.g.,
LightLSM, OX-ELEOS). In this paper, we share our ex-
perience developing three of those FTLs in the context of
the OX controller. We position Open-Channel SSDs in the
SSD landscape and discuss their relevance for data systems.
In particular, we argue that Open-Channel SSDs cannot be
considered as a uniform class of devices. Our main contri-
bution is a description of the key design decisions we took
in OX related to Open-Channel SSDs. We reflect on lessons
learned and propose hints for the co-design of data systems
and Open-Channel SSDs.

1. INTRODUCTION
Open-Channel SSDs are disks with a minimal firmware

layer [7] that exposes the physical storage space and let a
host manage data placement and I/O scheduling. Baidu
described the use of Open-Channel SSDs in a proprietary
environment in 2014 [13]. LightNVM emerged as the Linux
Open-Channel subsystem in 2015 [6]. More recently, In-
tel incorporated Open-Channel SSDs in the SPDK frame-
work [5], Alibaba announced its efforts to incorporate Open-
Channel SSDs in their cloud infrastructure [1], and Pliops
started advertising their Key-Value system over Open-Channel
SSDs [14]. Yet, the number of manufacturers commercial-
izing Open-Channel SSDs remains low (CNEX Labs, Lite-
On, Shannon) and there is no Open-Channel SSD standard
agreed upon in the storage industry, despite significant ef-
forts.
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Are Open-Channel SSDs getting mainstream or are they
just a transient step in the evolution of SSDs? Are Open-
Channel SSDs relevant for the design of data systems? How?
Can they even be considered as a uniform class of devices?
These are the questions we tackle in this paper.

We have worked with two generations of Open-Channel
SSDs in the context of our work on the OX Controller [11].
OX is a software framework for programming computational
storage controllers. We designed and evaluated OX on the
DFC card, equipped with an ARMv8 storage controller con-
nected to up to 2 Open-Channel SSDs, and accessible from a
host via PCIe or 40GE. In the context of OX, we designed a
generic Flash Translation Layer (FTL) that exposes Open-
Channel SSDs as block devices, and two application-specific
FTLs: OX-ELEOS for log-structured storage in LLAMA [9]
and LightLSM for LSM-tree storage management [12]. In
this paper, we describe the lessons learned designing these
storage engine components. More specifically, our contribu-
tions are the following:

1. We describe the current SSD landscape, which has
evolved much in recent years, and discuss the relevance
of Open-Channel SSDs;

2. We review key design decisions we took in OX with
respect to Open-Channel SSDs.

3. We present lessons learned as well as design hints for
the co-design of data system with an Open-Channel
SSD.

2. OPEN-CHANNEL SSD
In this section, we briefly review the characteristics of SSD

storage space, how it is abstracted at the SSD interface, and
how it is made available on the host.

2.1 Physical Storage Space
All SSDs are composed of a collection of storage chips

wired in parallel to a controller via independent channels.
There are no interferences across channels. Several stor-
age chips are connected to the same channel. There might
be interferences across chips on the same channel (e.g., a
write request on one chip might have to wait until a read
request on another chip completes before it can be issued).
Operations are sequential within a storage chip. SSD man-
ufacturers define the number of channels in an SSD, and the
number of storage chips per channel.

Flash chips are multi-dimensional arrays of flash cells, or-
ganized in sectors, pages, blocks and planes. The number of



bits stored in a cell is one for SLC chips, 2 for MLC chips, 3
for TLC chips and 4 for QLC chips. Higher density enables
lower cost at the price of lower performance and lower re-
silience to wear. Sectors are the unit of read, typically 4 KB.
A flash page is the unit of write to the chip. It is composed
of 4 sectors together with out-of-bound space. A block is
typically composed of 512 pages. It must be erased, before
the pages it contains can be written. Pages must be written
sequentially within a block.

Chips can be composed of several planes (2 or 4). Pages
at the same address on two different planes must be written
(or read) together. These writes are executed in parallel.
Planes are thus a way to increase capacity and storage den-
sity, without increasing storage latency.

Each cell is partitioned across so-called paired pages: 1
page per bit stored on the cell, i.e., 1 with SLC, 2 with
MLC, 3 with TLC and 4 with QLC. All paired pages must
be written before one of them can be read. As a result,
the unit of write increases with storage density, e.g., on a
QLC chip with 4 planes, 4 paired pages must be written
together on four planes, as a result the unit of write is 16
pages 16*4 sectors = 16*4*4KB = 256 KB.

2.2 Interface
The Open-Channel Interface specification, defined in the

context of LightNVM [3], is an extension of the NVMe pro-
tocol. It provides an abstraction of the SSD physical address
space. Each SSD is organized as a collection of groups. The
Open-Channel SSD controller guarantees that there is no in-
terferences across groups. Each group is composed of paral-
lel units (PUs) (unit of parallelism). Each PU is a collection
of chunks. In each chunk, logical blocks (unit of write) are
written sequentially. The size of a logical block is defined
by the size of a sector on the SSD. The unit of write is one
or several logical blocks, again depending on the SSD (e.g.,
24 logical blocks on a dual-plane TLC drive, corresponding
to 4 (sectors per page) * 3 (paired pages) * 2 (planes)). A
chunk must be reset before it is written again.

The interface defines administration commands, access to
the device geometry, and vector data commands, supporting
scatter-gather reads and writes of logical blocks (to and from
the host), chunk reset and copy of logical blocks (within the
Open-Channel SSD, without host involvement).

Chunk management (e.g., abstracting planes and paired
pages) as well as bad media management and asynchronous
error reporting are under the responsibility of the Open-
Channel SSD.

2.3 Standardization
The first version of the Open-Channel SSD Interface is

defined by M.Bjørling during his PhD and released in April
2016. The Westlake series of Open-Channel SSDs, from
CNEX Labs implemented this interface, which is now dep-
recated. The second version, described above, was released
in January 2018. It incorporated the feedback of the stor-
age industry, and is implemented in the Granby series from
CNEX Labs. There were efforts, in the context of the De-
nali consortium [4], led by Microsoft and CNEX Labs to
standardize the Open-Channel interface. But these efforts
did not succeed, and today, there is no Open-Channel SSD
standard.

As the Open-Channel SSD Interface was defined as an ex-
tension of NVMe, this would have been the natural body for

its standardization. But, NVMe is not following this route.
Instead, NVMe is preparing a standard on Zoned Names-
paces (ZNS) [2], which incorporates some ideas from Open-
Channel SSDs. ZNS exposes a disk as a collection of zones
that must be written sequentially and reset before rewriting.
It is basically a form of append-only storage abstraction that
shields the host from the complexities of the physical address
space. The host is responsible for creating zones, writing to
and reading from zones, and reclaiming zones (a form of
garbage collection). The SSD is responsible for the place-
ment of zones on physical media, I/O scheduling as well as
wear levelling. ZNS can be implemented as an application-
specific Flash Translation Layer on top of Open-Channel
SSDs. ZNS is compliant with Shingled Magnetic Recording
(SMR) disks and thus provides support for legacy archival
applications, which is a great advantage for QLC SSDs. It
is also a way to integrate different types of storage devices,
with varying density/performance profiles, under a unified
interface. How to best port legacy data systems from a block
device abstraction to ZNS is an open issue.

2.4 Host-Based Software Frameworks
By definition, Open-Channel SSDs require the host to

manage data placement and I/O scheduling. The host thus
needs software support for (i) a driver accessing the Open-
Channel SSD interface and (ii) an SSD management layer
in charge of provisioning, data placement and I/O schedul-
ing. It is for this purpose, that LightNVM was introduced
as the Linux framework for Open-Channel SSDs [6]. It has
evolved to accommodate the evolution of the Open-Channel
SSD interface, and to provide support for legacy applica-
tions, with the introduction of pblk, a Flash Translation
Layer in kernel space, fully supporting the block device ab-
straction. liblightnvm is a user-space library that exposes
the Open-Channel interface directly to user-space.

The SSD management layer that is necessary with Open-
Channel SSDs is typically a Flash Translation Layer, in
charge of mapping logical and physical address spaces. We
distinguish between (a) generic FTLs, that expose a block
device abstraction and (b) application-specific FTLs, that
map a logical address space specifically defined for an ap-
plication, or a data system, to the physical address space
exposed by liblightnvm.

Intel recently incorporated Open-Channel SSDs in the
SPDK framework [5]. SPDK now provides a generic FTL
in user-space, on top of Open-Channel SSDs. SPDK FTL
and pblk are both open-source implementations of generic
FTLs. This represents a significant evolution for the storage
industry, as FTLs used to be protected as company secrets.

Are Open-Channel SSDs limited to legacy applications
supported through pblk or SPDK? Are they a transient
evolution stop from block device to ZNS drives? Can the
complexity of application-specific SSD management ever be
justified? These existential questions must be addressed to
evaluate whether and how Open-Channel SSDs are relevant
to data systems. So, let us review the SSD landscape.

3. THE SSD LANDSCAPE
Open-Channel SSDs are just one of the many evolutions

of the SSD landscape in recent years. Other notable evo-
lutions include the evolution of NAND technology (QLC,
3D NAND, Z-NAND), the emergence of persistent mem-
ory (3D-Xpoint), the definition of Zoned Namespaces as a
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Figure 1: SSD models organized by FTL placement and abstraction. Additional dimensions are indicated in
parenthesis next to the SSD model name. Lighter colors indicate models that aren’t fully available today.

NVMe standard, the availability of computational storage
devices (SmartSSD from Samsung, devices from ScaleFlux
or NGD Systems) and special-purpose SSDs (KV-SSD from
Samsung [10]).

The discussion in this section does not include any consid-
eration on the market mechanisms that impact the success
of a solution. We focus on the technical aspects of the SSD
landscape. We focus on the SSD hardware and on the sys-
tem services that make it available to data systems.

3.1 Design Space
We identify the following dimensions as a means to char-

acterize the SSD landscape:
Storage chip: The storage chip is the core component

of the SSD hardware. It can be designed for low-latency
(e.g., Z-NAND SLC or 3D-Xpoint) or high capacity (QLC).
Intermediate NAND technologies, MLC and TLC, make it
possible to trade latency for density and thus introduce var-
ious options in terms of $/GB and IOPS/GB.

FTL placement: FTL is a necessary component of the
system services defined on top of SSD hardware. It can be
placed on the storage controller or on the host. FTL place-
ment impacts where resources are being consumed. FTL
placement on a storage controller is necessary in the context
of computational storage, where the goal is to offload the
tasks from the host CPU to the storage device and mini-
mize data movement.

FTL integration: FTL can be part of an SSD firmware,
it can be part of the operating system kernel, or it can be
defined in user-space. An FTL in firmware gets access to all
the resources of the controller efficiently. An FTL in kernel
space gets direct access to all OS resources efficiently. An
FTL in user-space is flexible; it is not constrained by the
licensing model of the Linux kernel.

FTL transparency: An FTL can be a black box for the
data systems that relies on its services or a white box.

FTL abstraction: As we have seen in the previous sec-
tion, an FTL can expose a block device abstraction, a ZNS
device or it can be application-specific. While a block device
abstraction supports file systems and legacy applications,
both ZNS and application-specific FTLs require a redesign of
the data systems that access them. With ZNS, this redesign
consists of adopting an append-only storage discipline for
storage management. With application-specific FTLs, this

redesign makes it possible to streamline the data path at
the cost of the increased complexity of managing the physi-
cal address space of the underlying Open-Channel SSD.

FTL access: FTL can be accessed from the host or from
the storage controller (with computational storage).

Figure 1 illustrates how a range of SSDs are positioned
with respect to FTL abstraction and FTL placement. In-
terestingly, traditional SSDs and SmartSSD (the computa-
tional storage platform recently announced by Samsung) are
in the same quadrant using those two dimensions. ZNS
drives were demonstrated by Western Digital and Radian
Memory Technologies at the Flash Memory Summit in Au-
gust 2019 and won a Best of Show Award for Most Innova-
tive Flash Technology category. It should be straightforward
to define a LightNVM target that exposes the ZNS interface
through a host-based FTL on top of Open-Channel SSDs,
but this has not - to the best of our knowledge - been re-
leased or even announced. The RocksDB NVM engine was
originally developed by J.Gonzalez at CNEX Labs for MLC
drives and has recently been ported to TLC drives by Niclas
Hedam in the context of our work on LightLSM (see next
section). KV-SSD is a key-value store SSD commercialized
by Samsung [10]. It is equipped with a KV FTL imple-
mented on top of a block device abstraction. Pliops supports
a KV FTL over a CNEX Labs Open-Channel SSD [14].

3.2 Open-Channel SSDs
Let us review how Open-Channel SSDs relate to the di-

mensions identified above:
Storage chip: The Open-Channel SSD interface does

not make any assumption about the underlying storage chip.
However, the characteristics of the storage chip has a deep
impact on the design of an FTL over an Open-Channel SSD.
This is one of the points we illustrate in the next section.
The consequence is that an FTL is not designed for a generic
class of Open-Channel SSD, but for a given Open-Channel
SSD, with a specified storage chip.

FTL placement: LightLSM was designed for host-based
Open-Channel SSD management. But the emergence of
computational storage platforms with FPGA or ARM-based
CPUs running Linux makes it possible to access Open-Channel
SSDs on a storage controller. This way, the FTL can be
placed on the host or on the storage controller (as long as
there exists a software framework such as OX, see next sec-



tion).
FTL integration: With Open-Channel SSDs, the FTL

can be located in kernel-space (pblk) or in user-space (on
top of liblightnvm).

FTL transparency: With Open-Channel SSDs, the FTL
can be a white box or a black box (with a proprietary license
in user space).

FTL abstraction: Open-Channel SSDs do not dictate
the type of abstraction provided by the FTL through which
they are accessed. However, Open-Channel SSDs are the
only type of SSDs that make it possible to streamline the
data path in the context of an application-specific FTL.

While Open-Channel SSDs appear in all the quadrants
in Figure 1, the optimizations they enable (streamlining of
the data path, control over interferences, adaptation to stor-
age chip characteristics) is best leveraged in the context of
application-specific FTLs, placed on the storage controller.
This way the cost of the increased complexity of dealing
with the SSD physical address space can be offset with the
benefits of offloading the host CPU and minimizing data
movement.

4. OX DESIGN

4.1 OX Framework
OX is a framework for programming storage devices equipped

with computational capabilities., i.e., a programmable stor-
age controller. OX was implemented and evaluated with
the DFC card, i.e., an ARMv8 storage controller on top of
various storage media, including Open-Channel SSDs. OX
is composed of three layers. The bottom layer focuses on
media management, it is responsible for abstracting various
forms of underlying storage media under a common repre-
sentation of the physical address space. The middle layer is
responsible for the translation of logical addresses to phys-
ical addresses. It is an FTL layer. The upper layer is the
host interface that supports the commands and notifications
that the host applications uses to store and retrieve data
with OX.

Figure 2: Architecture of a modular FTL within the
OX Controller

With OX, we target data systems over computational stor-
age. Our hypothesis is that the storage engine of such a
data system must incorporate an FTL. We thus designed
a modular FTL that can be reused and customized across
data systems. Figure 2 shows the core components of the
modular OX FTL architecture. Controller I/Os represented

by solid lines, are executed synchronously and generated by
several components: (i) garbage collection may read and
write to media, (ii) recovery log may be persisted according
to atomic requirements, (iii) mapping and block metadata
may be persisted during checkpoint process, (iv) mapping
information may be read and persisted by caching mecha-
nisms, and (v) bad block information may be updated at
any time. User I/Os, represented by dashed lines are exe-
cuted asynchronously. Interested readers are referred to [11]
for a complete presentation of OX.

4.2 OX-Based FTLs
We designed and implemented one generic (OX-Block)

and two application-specific FTLs (OX-ELEOS and LightLSM).
The goal of OX-ELEOS is to reduce the load on the host
CPU in a data system based on the LLAMA storage en-
gine [9]. The goal of LightLSM is to minimize data move-
ment and avoid congestions due to compaction in RocksDB [12].
In the reminder of this section, we review key design deci-
sions we took with respect to Open-Channel SSDs when
designing those FTLs.

OX-Block exposes Open-Channel SSDs as block devices.
We assume 4 KB as the minimum read granularity in the
underlying Open-Channel SSD and OX-Block exposes a log-
ical address space composed of 4KB blocks. Thus, OX-Block
maintains a 4KB-granularity page-level mapping table.

OX-ELEOS exposes Open-Channel SSDs as log-structured
storage, with writes at the granularity of Log-Structured
Storage (LSS) I/O buffers, typically 8MB, and reads at the
granularity of a single page. With fixed sized pages of 4KB,
mapping in OX-ELEOS is similar to mapping in OX-Block.
However, with variable-sized pages of an arbitrary number of
bytes, mapping becomes more challenging. Describing our
solution is beyond the scope of this paper. Our point here
is that application-specific FTLs might require mapping at
a granularity which is smaller than the unit of read on an
Open-Channel SSD.

LightLSM exposes Open-Channel SSDs as a RocksDB
environment supporting SSTable flush and block reads. In
RocksDB, a block is the unit of transfer for reads and writes.
The size of an SSTable is a multiple of the RocksDB block
size. On a dual-plane TLC drive, the size of a RocksDB
block must be a multiple of 96KB, i.e., the minimum unit
of write on a single chunk. By forcing the units of read and
write to be similar, RocksDB thus causes the unit of read
to be many times larger than possible with the underlying
Open-Channel SSD. Note again that the ratio between unit
of read (typically 4KB) and the unit of write varies depend-
ing on the drive characteristics.

4.3 OX Mechanisms
The OX FTL layer relies on the media manager and its

abstraction of Open-Channel SSDs. In this section, we re-
view the core OX mechanisms and how they interact with
Open-Channel SSDs.

Transactional Support Each operation defined at the
FTL API is a transaction [8]: the FTL must ensure atomic-
ity and durability. The problem is that the vectorized opera-
tions supported by Open-Channel SSDs are not atomic. The
only atomic operation within an SSD is read/write of a flash
page. In all our designs, we use write-ahead logging (WAL)
and checkpoints to ensure atomicity and durability of FTL
writes. The description of our WAL, checkpointing and re-



covery designs are beyond the scope of this paper. However,
we illustrate the impact of checkpointing on recovery time
with OX-Block. We simulate a fatal failure by killing OX
during an experiment. All metadata in volatile memory is
lost, some updates since last checkpoint might not be per-
sisted, and the Open-Channel SSD is left inconsistent. Such
a failure forces OX to rely on recovery to reconstruct meta-
data and mapping information and bring the Open-Channel
SSD back to a consistent state. Before the failure, OX-Block
manages random writes of up to 1 MB in size; each of these
writes is a transaction. To cause the failure, we kill OX
with sudo kill -9 <process>. We vary the point in time at
which the failure occurs. We consider six different points in
time T1-6. After the failure, we restart OX so that recov-
ery takes place. Figure 3 shows the experiment for disabled
checkpoint as well as checkpoints every Ci 10, and Ci 30
seconds.

Figure 3: Impact of checkpoint intervals on recovery
time.

The blue line represents recovery time when checkpointing
is disabled. Dots show the timing of a failure (i.e., T1-T6 ).
Without checkpointing, recovery time increases linearly with
the amount of log records written to disk; it is close to 100
seconds at T6. When checkpoints are introduced, recovery
time decreases dramatically for longer experiments. We also
see that recovery time oscillates up and down and remains
constant. This is important for performance predictability.
It was expected as the checkpoint process truncates the log
at regular intervals. The difference between checkpoint fre-
quencies of Ci 10 and Ci 30 sec is not significant.

Garbage Collection For garbage collection, OX-Block
marks a group for collection. Then, background threads
recycle victim chunks within that group. This guarantees
locality of interferences from garbage collection. Put differ-
ently, a significant percentage of application reads and writes
are not affected by garbage collection interferences. On an
SSD with 16 channels, this percentage is 93,7%. On an SSD
with 8 channels, this percentage is 87,5%. In LightLSM,
garbage collection is a side-effect of compaction. Interfer-
ences between compaction and flush operations depend on
how SSTables are mapped onto the Open-Channel SSD (see
Figure 4). We set the size of SSTables to 768 MB. This
corresponds to the number of parallel units (32) multiplied
by the size of a chunk (24 MB). The rationale for this data
placement position is that we do not want to consider several
SSTables per chunk. As SSTables are the unit of space recla-
mation in RocksDB, our mapping guarantees that garbage

collection does not result in read and write operations of
invalid pages within chunks. Each SSTable deletion only
causes chunk erases. With a horizontal mapping, each SSTable
is mapped onto all available PUs. As a result, any com-
paction operation interferes with SSTable flush or block read.
With a vertical mapping, each SSTable is mapped onto a
single group. This way, compaction might occur without
interferences from SSTable flushes.

Write Pointer The Open-Channel interface requires that
logical blocks are written sequentially within a chunk. As a
result, LightLSM maintains a write pointer per chunk. We
consider a single dispatch thread for submitting I/Os to the
Open-Channel SSD so that there are no concurrent accesses
to the write pointers.

Figure 5 shows RocksDB throughput in operations per
second when running three db bench workloads1: fill-sequential,
read-sequential and read-random. The results are obtained
with RocksDBv5.4.6 without any compression or caching en-
abled to put more stress on SSD accesses. We use 16 byte
keys and 1KB values. We run fill-sequential first. In all sce-
narios, there are 3 levels of SSTables on disk (L0, L1, L2)
at the end of this run. Read-sequential and read-random
run over the database populated by fill-sequential. We also
vary the number of threads submitting put/get requests in
db bench. Each db bench thread submits the same work-
load. For fill-sequential, each thread writes 3GB sequen-
tially.

The graph shows that write throughput is much higher
than read throughput. This is expected as the Open-Channel
SSD implements a write-back policy where writes complete
as soon as they hit the storage controller cache. On the other
hand, the media must be accessed for a read I/O to com-
plete. We obtain highest write performance with 2 db bench
threads with horizontal placement. In fact, with horizontal
placement write performance is already very good when we
consider a single db bench thread. Indeed, the SSTable is
striped across all PUs. However, performance degrades by
60% when considering 4 or 8 db bench threads. In con-
trast, the performance of fill-sequential for vertical place-
ment scales gracefully with the number of threads. So, with
one thread we observe 4x more throughput with horizontal
placement compared to vertical, while with eight threads
vertical yiels 2x more throughput than horizontal. This is
unexpected.

The throughput of read-sequential is much higher than the
throughput of read-random. This is also expected, as each
random read might traverse several SSTables, depending on
the performance of bloom filters. Data placement has a
marginal impact on read performance. Horizontal placement
consistently dominates vertical placement.

Figure 6 shows throughput as a function of time for var-
ious numbers of db bench threads for fill-sequential. The
graph shows that throughput remains high with horizon-
tal placement when using 1 or 2 db bench threads. While
the time it takes to complete the benchmark increases sig-
nificantly when using 4 or 8 threads. Overall, RocksDB
throughput fluctuates frequently. Our hyptothesis is that
we observe throttling due to RocksDB rate limiter. Tuning
RocksDB’s rate limiter with LightLSM is a topic for future
work. With vertical placement, the graph shows a peak
of throughput for a single thread even though the average

1db bench is RockDB’s main benchmarking tool. See https:
//github.com/facebook/rocksdb/wiki/Benchmarking-tools
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throughput is the lowest for this case. As the number of
threads increases, the throughput peaks are lower and over-
all more stable. Since the average throughput for vertical
placement is higher with larger number of clients, the time
it takes to complete the fill-sequential workload is shorter
for the cases with larger number of clients.

Read and Write Paths All FTL APIs contain a form
of read and write commands. The read and write paths
through the FTL are different. Writes must involve caching
(if write-back is supported), provisioning of the physical
space, insertion in the mapping table and log management.
However, reads only require a lookup in the mapping ta-
ble. This is important to guarantee that the FTL intro-
duces a minimal overhead with respect to the underlying
Open-Channel SSD. Data copies are necessary on the write
path, as writes are buffered in order to support write-back
semantics and to deal with the constraints imposed on flash
(e.g., large unit of write), or queued when waiting for access
to a storage chip. Figure 7 show CPU utilization on the
DFC platform when writing to OX-ELEOS from a varying
number of threads on the host application. The storage con-
troller is saturated with 2 host threads, because it cannot
keep up with the data copies within OX: from the network
stack to the FTL, and from the FTL to the Open-Channel
SSD.

4.4 Lessons Learnt

Let us reiterate and emphasize the main lessons learned:
As was already clear from the SSD landscape analysis in
Section 3, application-specific FTLs are most relevant when
placed on the storage controller in the context of compu-
tational storage. As a result, the metrics used to evaluate
an application-specific FTL should be (i) how do they help
reducing host CPU load? (ii) how do they impact the move-
ment of data to and from the host, and (iii) can they guar-
antee predictable performance and minimal overhead given
the characteristics of the underlying Open-Channel SSD?

The characteristics of an Open-Channel SSD have a sig-
nificant impact on the FTL design. These characteristics
include the nature of the storage chip that impacts the unit
of write and the number of channels. The number of chips
per channel impact the nature of parallelism within the SSD,
which impacts mapping and GC design decisions. When de-
signing an FTL, Open-Channel SSDs cannot be considered
as a uniform class of devices. An FTL is designed for a given
type of Open-Channel SSD. As a consequence, we should
not consider the design of a data system on Open-Channel
SSDs but the co-design of data system, storage controller
and Open-Channel SSD.

The management of paired pages and planes is under the
responsibility of the Open-Channel SSD. With SLC, such
a management is trivial. With QLC, or even TLC, this
management is complex, error-prone and might introduce
weird constraints on the sequences of reads and writes that
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Figure 6: RocksDB throughput (operations/sec) as
a function of time with db bench fill-sequential for
horizontal and vertical placement.

can or cannot be issued by the FTL. In fact, it is ques-
tionable whether paired pages and planes on QLC (or TLC)
can effectively be managed without actually controlling data
placement and I/O scheduling. Note that this is what ZNS
actually enforces. Also, Open-Channel SSDs are best suited
to support the streamlining of the data path that is required
for ultra-low latency SSDs. As a result, we consider that the
Open-Channel interface is a good match for the upcoming
generation of ultra-low latency SSDs (e.g., equipped with Z-
NAND), while ZNS is a good match for higher capacity SSDs
(e.g., equipped with TLC or QLC NAND).

Designing an application-specific FTL is a complex en-
deavor. Reusing a modular FTL framework helps as it pro-
vides default solutions and helpful references in the design
space, but it does not take away the complexity of deal-
ing with small and variable-size data, large transactions or
high-throughput and low latency data systems. Whether
this extra complexity is justified by significant gains in terms
of CPU offload, data movement avoidance and performance
predictability is still an open issue.

In the context of computational storage, the FTL embed-
ded on the storage controller should introduce a minimum
overhead. As a result, data copies should be (a) avoided, and
(b) as efficient as possible if absolutely necessary. Avoiding
data copies requires support from the operating system (e.g.,
AF XDP zero-copy sockets) or hardware acceleration (e.g.,
hardware ROCE). The efficiency of data copies depend on
the RAM modules accessed by the storage controller.

5. CO-DESIGN HINTS

Figure 7: Impact of Data Copies on storage con-
troller utilization

From those lessons learned, we derive a few design hints
for the design of data systems equipped with application-
specific FTLs over Open-Channel SSDs.

Beware of the interface fallacy. When considering an
application-specific FTL, designing the storage interface is
essential even if it might seem trivial. For instance, RocksDB
assumes that units of reads and writes are similar. Should
LightLSM support or challenge this assumption? More gen-
erally, what is the most appropriate storage interface for
supporting a key-value store? NVMe is standardizing a
KV interface, inspired by KV-SSD. How does it compare to
LightLSM that supports flush and probe. This is an open
issue.

Beware of the atomicity fallacy. Given a storage device, it
is easy to make incorrect assumptions about the granularity
of atomic writes. On block devices, the unit of write is a
block. Writing a single block will succeed or fail. However,
writing multiple blocks (e.g., when persisting huge memory
pages) might result in partial failures that must be handled
by the data system (e.g., InnoDB double buffering). This
problem is even more acute for Open-Channel SSDs, where
the unit of write changes from one model to the other. When
defining an application-specific storage interface, it is pos-
sible to provide transactional guarantees, either explicitly
through commands defining transactional boundaries, or im-
plicitly (e.g., atomic SSTable flush in LightLSM). A storage
interface providing transactional guarantees is a sharp de-
parture from the traditional POSIX I/O abstraction. This
has significant implications for data system design. For ex-
ample, RocksDB is built around the assumption that the
storage manager does not compensate for the limitations of
the POSIX I/O API. It is the MANIFEST that is used as
a transactional log for recovery purpose. With LightLSM,
RocksDB does not need MANIFEST.

Embrace hardware dependencies. Hardware characteris-
tics have a far reaching impact on FTL design. We should
avoid the illusion that an FTL is designed for Open-Channel
SSDs, as if there was a uniform class of devices. Adopting
a co-design approach makes it possible to either (a) pick an
Open-Channel SSD and design for it (without claiming gen-
erality) or (b) pick an Open-Channel SSD that matches the
requirement of a given application-specific FTL.

Require a performance contract, not a warranty. In a co-
design approach, involving software, firmware and hardware
teams, possibly from different companies, it is of the essence



to agree on performance contracts (in addition to clear inter-
faces) across components. When designing an application-
specific FTL, it is essential to either (a) precisely character-
ize the performance of the chosen underlying Open-Channel
SSD or (b) evaluate which Open-Channel SSD actually com-
plies with the performance requirements. Without a perfor-
mance contract, assumptions are made on both sides of the
co-design process. The risk that these assumptions are in-
correct or inconsistent adds to the complexity of designing
for an Open-Channel SSD. Historically, storage devices have
come with warranties defined by the manufacturer, typically
in terms of life time. Such warranties are offered under the
assumption that data is stored on a single storage device.
Such an assumption is rarely valid in a storage hierarchy
that combines persistent memory and SSDs, or for data sys-
tems that manage replication. For such data systems, it is
much preferable that a storage device fails early rather than
spending energy and time compensating for bit errors. Per-
formance contracts taking wear into account would address
this issue. Defining such performance contracts is a topic
for future work.

6. CONCLUSION
In this paper, we surveyed Open-Channel SSDs and iden-

tified their relevance for data systems. Based on the lessons
we learned, we consider that Open-Channel SSDs are not
a uniform class of devices. The Open-Channel interface
is most relevant for ultra-low latency SSDs accessed by an
application-specific FTL placed on the storage controller of
a computational storage device. Such solutions require a
co-design process that is complex to manage. We identified
open issues such as the evaluation of computational stor-
age solutions for key-value stores, the design of application-
specific FTLs for a range of data systems, and the porting
of legacy data systems on ZNS drives.
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