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ABSTRACT
Machine learning (ML) applications become increasingly
common in many domains. ML systems to execute these
workloads include numerical computing frameworks and li-
braries, ML algorithm libraries, and specialized systems
for deep neural networks and distributed ML. These sys-
tems focus primarily on efficient model training and scoring.
However, the data science process is exploratory, and deals
with underspecified objectives and a wide variety of hetero-
geneous data sources. Therefore, additional tools are em-
ployed for data engineering and debugging, which requires
boundary crossing, unnecessary manual effort, and lacks op-
timization across the lifecycle. In this paper, we introduce
SystemDS, an open source ML system for the end-to-end
data science lifecycle from data integration, cleaning, and
preparation, over local, distributed, and federated ML model
training, to debugging and serving. To this end, we aim to
provide a stack of declarative language abstractions for the
different lifecycle tasks, and users with different expertise.
We describe the overall system architecture, explain major
design decisions (motivated by lessons learned from Apache
SystemML), and discuss key features and research direc-
tions. Finally, we provide preliminary results that show the
potential of end-to-end lifecycle optimization.

1. INTRODUCTION
Machine learning (ML) applications profoundly transform

our lives, and many domains such as health care, finance,
media, transportation, production, and information tech-
nology itself. Increased digitalization, sensor-equipped vehi-
cles and production pipelines, feedback loops in data-driven
products, and data augmentation also provide large, labeled
data collections for training the underlying ML models.

Existing ML Systems: ML systems to execute these
workloads are—due to a variety of ML algorithms and lack
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of standards—still diverse and rapidly evolving. Major sys-
tem categories include numerical computing frameworks like
R, Python NumPy [72], or Julia [5], algorithm libraries like
Scikit-learn [57] or Spark MLlib [48], large-scale linear al-
gebra systems like Apache SystemML [8] or Mahout Sam-
sara [61], and specialized deep neural network (DNN) frame-
works like TensorFlow [1], MXNext [13], or PyTorch [55, 56].
These systems primarily rely on numeric matrices or tensors,
and focus on efficient ML training and scoring.

Exploratory Data-Science Lifecycle: In contrast to
classical ML problems, the typical data science process is
exploratory. Stakeholders pose open-ended problems with
underspecified objectives that allow different analytics, and
can leverage a wide variety of heterogeneous data sources
[58]. Data scientists then investigate hypotheses, integrate
the necessary data, run different analytics, and look for in-
teresting patterns or models [16]. Since the added value is
unknown in advance, little investment is made into system-
atic data acquisition, and preparation. This lack of infras-
tructure results in redundancy of manual efforts and com-
putation, especially in small or medium-sized enterprises,
which often lack curated catalogs of data and artifacts.

Data Preparation Problem: It is widely recognized
that data scientists spend 80-90% of their time finding rel-
evant datasets, and performing data integration, cleaning,
and preparation tasks [70]. For this reason, many industrial-
strength ML applications have dedicated subsystems for
data collection, verification, and feature extraction [3, 62,
64]. Since data integration and cleaning are, however, stub-
bornly difficult tasks to automate [4], existing work primar-
ily focuses on well-defined subproblems or—like Wrangler
[37, 59] and Trifacta [29]—on semi-manual data wrangling
through interactive UIs. Unfortunately, this diversity of tools
and specialized algorithms lacks broad systems support, re-
quires boundary crossing, and lacks optimization across the
lifecycle. These problems motivated various in-database ML
toolkits [14, 22, 31, 46, 54, 66] to enable data preparation and
ML training/scoring in SQL. However, this approach was—
except for success stories like factorized learning [41, 50,
63]—mostly unsuccessful because data scientists perceived
in-database ML and array databases [69] as unnatural and
cumbersome due to the need for data loading, and the ver-
bosity of linear algebra in SQL [66].

A Case for Declarative Data Science: From the view-
point of a data scientist, it seems most natural to specify
data science lifecycle tasks through familiar R or Python



syntax and use stateless systems, which directly process files
or in-memory objects. A key observation is that state-of-
the-art data integration algorithms (e.g., for data extraction,
schema alignment, entity linking, and data fusion) are them-
selves based on machine learning [20]. Similar observations
can be made for data cleaning [30, 60], outlier detection
[12, 32], missing value imputation [11, 71], semantic type
detection [35, 81], data augmentation [17], feature selection
[74], model selection and hyper-parameter tuning (e.g., via
Bayesian Optimization) [24, 39, 51], and model debugging
[15, 25]. We aim to leverage this characteristic by extend-
ing ML systems with high-level abstractions for the entire
data science lifecycle but implement these abstractions with
a domain-specific language (DSL) used for ML training and
scoring. As a “byproduct”, we avoid boundary crossing and
the system can perform optimizations across lifecycle tasks.

Contributions: Following this goal of better systems
support for declarative data science pipelines, we introduce
SystemDS1, an open source ML system for the end-to-end
data science lifecycle from data integration, cleaning, and
preparation, over efficient ML model training, to debugging
and serving. Our detailed contributions are:

• Lessons Learned and Vision: We first reflect on lessons
learned from building Apache SystemML (as the pre-
decessor of SystemDS), open problems, and how they
influenced the overall vision of SystemDS in Section 2.

• System Architecture: Following the outlined vision, we
then describe the resulting system architecture and de-
sign decisions regarding language abstractions, compi-
lation and runtime backends, as well as the underlying
data model of heterogeneous tensors in Section 3.

• Key Features and Directions: Subsequently, we dis-
cuss key features like lineage tracing, data preparation
primitives, and federated ML in Section 4.

• Preliminary Results: Finally, we present preliminary
results comparing performance with TensorFlow and
Julia, and showing optimization opportunities—such
as reuse—across lifecycle tasks in Section 5.

2. LESSONS LEARNED AND VISION
Our central goal is to provide high-level abstractions and

dedicated system support for the entire data science life-
cycle, with a special focus on ML pipelines. Existing end-
to-end ML frameworks like TFX [3], KeystoneML [68], or
Alpine Meadow [65] are built on top of ML libraries, which
allows reusing these evolving systems, but consequently view
ML algorithms as black boxes. Cross-library compilation in
Weld [52] focuses primarily on UDFs. In contrast, we be-
lieve that control of the compiler and runtime is of utmost
importance for seamless interoperability and performing op-
timizations such as fine-grained redundancy elimination. For
this reason, we forked SystemDS from Apache SystemML [7,
8, 27] and we are currently rebuilding its foundations.

2.1 Lessons Learned from SystemML
SystemML has been under active development—with fluc-

tuating team size—for about a decade. Here, we share se-
lected lessons learned that influenced the vision, design, and
system architecture of SystemDS:

1The source code and releases (SystemDS 0.1 published 08/2019)
are available at https://github.com/tugraz-isds/systemds.

• L1 Data Independence & Logical Operations: Physical
data independence and high-level linear algebra opera-
tions provided great independence of the evolving tech-
nology stack (e.g., MR→Spark, and GPUs), simplified
development (e.g., library algorithms) and deployment
(e.g., large-scale/embedded), and enabled adaptation
to changing cluster and data characteristics (e.g., lo-
cal/distributed, and dense/sparse/compressed).

• L2 User Categories: SystemML focused on linear al-
gebra programs for algorithm developers and ML re-
searchers who write new or customize existing ML al-
gorithms. However, this area is a niche as most data
scientists work with existing algorithms, but need bet-
ter support for other lifecycle tasks instead.

• L3 Diversity of ML Algorithms & Apps: Today’s ML
systems literature largely focuses on DNNs, mini-batch
SGD, and parameter servers. In practice, however,
there is a wide variety of existing ML algorithms (e.g.,
unsupervised, (semi-)supervised batch 1st/2nd-order,
ensembles, mini-batch DNNs, hybrid batch)—which
require very different parallelization strategies—as well
as complex ML applications that combine ML algo-
rithms, numerical computing, and rules.

• L4 Heterogeneous & Structured Data: SystemML sup-
ports feature transformations on frames (2D-tables
with a schema). However, many applications deal with
heterogeneous data (e.g., multi-modal), various forms
of structure, and a wide variety of data corruptions.
Boundary crossing for integrating, and preparing these
datasets is still a major issue.

Discussion: A natural question is why SystemML ulti-
mately did not—except for few IBM products and services—
reach adoption in practice. There are a number of overlap-
ping reasons. First of all, the focus on ML researchers who
directly experiment with large data was a niche (L2 ). Or-
ganizations that deal with large, distributed datasets often
have dedicated teams or use existing libraries. Over the last
years, the ML research focus also moved toward mini-batch
DNN workloads, parameter servers, and almost exclusively
Python bindings (L3 ). Together, these developments ren-
dered SystemML’s key differentiator—of automatically com-
piling R-like scripts into hybrid runtime plans of local and
distributed Spark operations—ineffective in spurring adop-
tion. Lacking a pressing need, users gravitated toward more
popular frameworks like Scikit-learn, Spark MLlib, PyTorch,
and TensorFlow. Although SystemML’s R-like (and later
Python-like) syntax was chosen to simplify adoption, it was
still a DSL, with all its challenges like limited documenta-
tion and online resources, as well as difficulties of building
an optimizing compiler, especially for unknown workloads.

2.2 SystemDS Vision and Design
Vision: In contrast to traditional ML training and scor-

ing, there is a dire need for more effective data integration,
cleaning, and preparation as well as model debugging, espe-
cially for large-scale problems. Accordingly, the central goal
of SystemDS is to provide high-level abstractions and sys-
tems support for the wealth of data science lifecycle tasks
(L3 and L4 ) and users with different expertise (L2 ). Our
overall vision comprises three components. First, we aim
to implement a hierarchy of abstractions for data science
tasks based on a DSL for ML training and scoring (Sec-
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Figure 1: A Stack of Declarative Languages.

tion 3.1) because state-of-the-art data integration, prepara-
tion, and cleaning heavily rely on machine learning; because
exploratory data science interleaves data preparation, ML
training, scoring, and debugging in an iterative process; and
because once these tasks are expressed in dense or sparse lin-
ear algebra, we expect very good performance. Second, we
aim to provide a holistic system infrastructure for the differ-
ent lifecycle tasks and algorithm classes that require differ-
ent parallelization strategies. The key to accomplish that are
complementary runtime backends and an optimizing com-
piler (Section 3.2). We take advantage of the now relatively
mature SystemML compiler and extend it for new architec-
tures like federated learning. Furthermore, the hierarchy of
language abstractions inevitably creates fine-grained redun-
dancy, which we aim to eliminate via automatic optimization
at compiler and runtime level. Third, supporting data inte-
gration and preparation in linear algebra programs requires
a more general data model for handling heterogeneous and
structured data. In contrast to existing ML systems, our cen-
tral data model are heterogeneous tensors (Section 3.3), i.e.,
multi-dimensional arrays of different data types, including
JSON strings to represent nested data.

Summary: Together, we believe that a holistic system in-
frastructure for effective and efficient data preparation, ML
training and debugging (e.g., distributed data cleaning un-
der awareness of the entire pipeline)—something that cannot
be composed from existing libraries—addresses a pressing is-
sue. At the same time, there are lots of open challenges that
require novel techniques throughout the system stack.

3. SYSTEM ARCHITECTURE
The outlined vision directly influenced the design and ar-

chitecture of SystemDS. We now provide an overview of lan-
guage abstractions, runtime backends, and the underlying
data model, before describing selected key features.

3.1 Language Abstractions and APIs
Scripting Language: Following the success of declara-

tive ML (L1 ), we leverage SystemML’s DML (Declarative
ML Language) [27], a scripting language with R-like syn-
tax for linear algebra, aggregations, element-wise and sta-
tistical operations, control flow programs, and user-defined
functions. However, we extend this language—as shown in
Figure 1—by a stack of declarative abstractions for different
lifecycle tasks, and users with different expertise (L2 ). We
aim to provide data scientists and domain experts with ab-
stractions for data integration and extraction, cleaning and
preparation, data augmentation, model validation, model se-
lection, hyper-parameter tuning, model debugging, rules and
AutoML with domain-specific extensions (e.g., constraints
and simulation models). To facilitate the development and
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Figure 2: Example Stepwise Linear Regression.

compilation of these abstractions, we introduced a mecha-
nism for registering DML-bodied built-in functions, and we
aim to advance existing size propagation techniques.

Example 1 (Stepwise Linear Regression). To see
how powerful these abstractions are, consider stepwise linear
regression [74], a classical forward feature selection method.
This method iteratively runs what-if scenarios and greedily
selects the next best feature until the Akaike information cri-
terion (AIC) does not improve anymore (see steplm in Fig-
ure 2). Each configuration trains a regression model via lm,
which in turn calls iterative or closed form linear algebra
programs. For an input matrix X (e.g., with ncol(X) = 500
features), the compiler then collapses these abstractions—by
removing unnecessary branches, dead code elimination, and
function inlining—compiles distributed operations if neces-
sary, and can reason about the end-to-end computation.

APIs and Language Bindings (Fig. 3-1): The user-
defined scripts can then be executed with different APIs as
shown in Figure 3, where gray-shaded boxes indicate ma-
jor new components. This includes command line invocation
(e.g., through java or spark-submit) and the programmatic
APIs (MLContext or JMLC). The MLContext API allows Spark
RDDs and Datasets as script inputs, while JMLC is an API for
embedded, low-latency scoring that allows pre-compiling a
script and repeatedly executing it with different in-memory
inputs. For a seamless integration with typical data science
workflows, we will further add host language bindings for
Python, R, and Java. These bindings expose individual op-
erations, internally collect larger DAGs of operations and
entire programs, and finally compile and execute efficient
runtime plans on user request or output conversion.

3.2 Compiler and Runtime Operations
Compilation Chain (Fig. 3-2): SystemDS inherits Sys-

temML’s compilation chain [7]. Each user script or DML-
bodied function is compiled into a hierarchy of statement
blocks and statements, where control flow statements like
loops or branches delineate these blocks. All statements of a
basic (i.e., last-level) block are compiled into a DAG of high-
level operators (HOPs), which represent logical operations.
After multiple rounds of rewrites, size propagation (of di-
mension and sparsity), and operator ordering, we then com-
pute memory estimates for each operation. Based on these
estimates, we in turn decide for local or distributed oper-
ations, and construct a DAG of low-level—i.e., physical—
operators (LOPs). Finally, we create an executable program
of program blocks and a sequence of runtime instructions—
similar to MAL plans in MonetDB [36]—per block.

Runtime Control Program (Fig. 3-3): The compiled
runtime program is interpreted as a so-called control pro-
gram (CP) in the client or Spark driver process. Besides pro-
gram block and instruction execution, the control program
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also performs dynamic recompilation (recompilation of basic
blocks to mitigate initial unknowns similar to adaptive query
processing [19]), and maintains a multi-level buffer pool that
is responsible for evicting intermediate variables if necessary,
persistent reads and writes from and to distributed file sys-
tems like HDFS or S3, and data exchange between the dif-
ferent runtime backends. Major CP extensions are built-in
support for data provenance and generated I/O primitives
for external formats as discussed in Sections 4.1 and 4.2.

Runtime Operations (Fig. 3-4): With the diversity of
ML algorithms and apps (L3 ) in mind, we further extend
SystemML’s multiple backends. We include local CPU and
GPU instructions, as well as distributed Spark instructions.
In addition, we introduce a new class of federated instruc-
tions as discussed in Section 4.3. These instructions rely
on a common TensorBlock operation library, which extends
SystemDS from numeric matrices to heterogeneous, multi-
dimensional arrays as described in Section 3.3. For local
operations, such a block holds the entire tensor, while dis-
tributed tensors are represented as RDD collections of fixed-
sized blocks. Besides reuse, this approach also ensures con-
sistency across local and distributed operations. Addition-
ally, we support dedicated backends for parallel for loops
[6] (e.g., for hyper-parameter tuning, and cross validation),
and parameter servers (e.g., for mini-batch DNN training).
The changed data representation necessitates major changes
throughout the entire compiler and runtime stack.

3.3 Data Model: Heterogeneous Tensors
Data Model Motivation: Our goal of supporting the

end-to-end data science lifecycle poses two main require-
ments on the underlying data model. First, we need to rep-
resent heterogeneous and structured datasets for data inte-
gration and preparation (L4 ). Second, many lifecycle tasks
and ML algorithms benefit from native support of multi-
dimensional arrays. Therefore, and in contrast to most exist-
ing DNN frameworks and array databases—which support
homogeneous arrays (e.g., tensors of floats or integers)—
our data model is a heterogeneous tensor, that is, a multi-
dimensional array where one dimension has a schema. We
believe this is more natural than 2D datasets because it al-
lows for range indexing that guarantees matching dimen-
sions for subsequent operations (e.g., matrix multiplication).

Local Tensor: Our central data structure abstraction is
a TensorBlock that represents a local tensor or a tile of a
distributed tensor. Here, all single- and multi-threaded op-
erations are implemented in Java for portability, but for
compute-intensive operations we also support JNI calls to
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Figure 4: Example Tensor Representations.

native BLAS libraries or custom C++ kernels. We provide
two implementations of this TensorBlock abstraction:

• BasicTensorBlock (Homogeneous): A basic tensor is
a linearized, multi-dimensional array of a single type
(FP32, FP64, INT32, INT64, Bool, or String including
JSON). We provide dense and sparse blocks and oper-
ations, which we apply based on the present sparsity.

• DataTensorBlock (Heterogeneous): A data tensor has
a schema on the second dimension (see Figure 4(a)),
which generalizes 2D datasets. Internally, it is com-
posed of multiple basic tensors for the given schema.

Distributed Tensors: Our distributed tensor represen-
tation is a Spark RDD [78]—i.e., a distributed collection—of
tensor indexes and fixed-size, independently-encoded blocks
(PairRDD<TensorIndexes,TensorBlock>). Squared 1K×1K
blocks in SystemML offer a good balance between amor-
tized block overheads and moderate block sizes (8 MB for
dense), simplify join processing because blocks are always
aligned, and allow local transformations for operations like
transpose. However, fixed-size blocking for n-dimensional
data—as shown in Figure 4(b)—is challenging. We use a
scheme of exponentially decreasing block sizes (10242, 1283,
324, 165, 86, 87), which similarly bounds the size to few
megabytes and allows for local conversion. For example, on
a 3D-tensor/matrix operation, we split each 10242 matrix
block into 64 × 1282 blocks and perform the join, yielding
again a 3D-tensor with 1283 blocking.

Federated Tensors: For federated operations we provide
a federated tensor that is a metadata object holding ref-
erences to—potentially remote—in-memory or distributed
tensors. Subtensors cover disjoint index ranges of the tensor
(most commonly subsets of rows or columns), and uncovered
areas are zero. This representation is the basis for federated
learning, as discussed in Section 4.3, but also nicely general-
izes operator placement to operations over multiple devices
(e.g., 30% of data on CPU, 70% of data on GPU [28]).

4. KEY FEATURES AND DIRECTIONS
SystemDS shares several design aspects with other sys-

tems. In this section, we discuss some distinguishing features
and research directions. However, we believe that building
the overall system is of utmost importance for real impact
and investigating these features in a realistic environment.

4.1 Lineage and Reuse of Intermediates
Efficient Lineage Tracing: Exploratory data science

has a high degree of redundancy and most frameworks lack
model versioning and reproducibility. Hence, we provide
built-in support for data provenance in terms of lineage
tracing and exploitation. We see lineage as a key enabling



technique for model versioning, reuse of intermediates, in-
cremental maintenance, auto differentiation, more efficient
buffer pool management, and debugging via query process-
ing over lineage traces of different models or runs. In con-
trast to coarse-grained or data-oriented provenance, we fo-
cus on fine-grained lineage tracing of logical operations. We
trace inputs (by name), literals, and all executed operations
(including non-determinism like system-generated seeds) to
maintain lineage DAGs of live variables. Additionally, for
loops with few distinct control flow paths, we determine the
lineage trace per path once, and track the taken path via a
single lineage node for deduplication.

Reuse of Intermediates: Inspired by work on recycling
intermediates in MonetDB [36], we then exploit this lineage
for reusing redundantly computed intermediates, which are
common in model selection workloads. We establish a cache,
where intermediates are identified by their lineage (hash of
the lineage DAG). Before executing an instruction, we up-
date the output lineage and probe the cache for full or partial
reuse. In contrast to existing work on coarse-grained reuse
[23, 44, 68, 73, 77, 80], partial reuse computes an output via a
compensation plan over cached intermediates. For example,
steplm in Example 1 greedily adds features and performs
what-if model training, which allows reusing intermediates
from previous iterations, augmented by missing features.

Status: So far, we have integrated lineage tracing for local
operations, lineage deduplication on while/for/parfor loops,
basic caching and eviction policies, as well as full and par-
tial reuse of intermediates. In the future, we intent to add
rewrites for compiler-assisted reuse, more elaborate partial
reuse, and query processing over collected lineage traces.

4.2 Data Integration and Cleaning
Semi-automated Data Preparation: Fully-automated

data integration, cleaning and preparation is rather unre-
alistic given its complexity. We aim to provide abstrac-
tions (e.g., data extraction, semantic type inference, schema
alignment, entity linking, outlier and anomaly detection,
missing value imputation, data augmentation, and feature
transformations) that help a user compose data preparation
pipelines. Providing support for efficient and accurate data
preparation faces, however, many algorithmic and systems
challenges. We start by adding respective built-in functions,
where we aim for vectorized implementations to simplify in-
ference and optimization as well as search space pruning
via sparsity exploitation. For example, masking allows data
slicing and missing value imputation (in chained-equation
models [71]) via sequences of full matrix operations, which
significantly simplifies the compilation into multi-threaded
or distributed runtime plans. Overall, a key design choice is
to retain the appearance of a stateless system by consuming
pre-trained models and rules as tensors themselves.

Efficient Data Ingestion: Given these abstractions, effi-
cient ingestion faces two more challenges. First, the number
of external data formats is virtually unlimited and some-
times requires even custom parsers for nested data. Inspired
by work on query processing over CSV, JSON, and binary
data [38], we aim to automatically generate code for effi-
cient readers and writers from high-level descriptions of data
formats. In this context, we further aim to avoid unneces-
sary parsing [53], and unnecessary shuffling [42] by taking
the entire preparation pipeline into account. Second, semi-
automated data preparation is still an exploratory process.

Similar, to query processing over raw data [2], we aim to
exploit the lineage-based reuse of intermediates and build
dedicated access methods for linear algebra over raw data in
multi-tenant data science workflows and federated ML.

Status: We already added built-in functions for schema
detection, outlier detection, missing value imputation, data
augmentation, model debugging, as well as additional input
formats and feature transforms. In the future, we will in-
corporate state-of-the-art algorithms, improve accuracy for
structured datasets, and focus on efficient data ingestion.

4.3 Federated ML
Motivation: Early work on federated learning [10, 47]

shows great promise, but focuses on mini-batch ML algo-
rithms over private data from mobile devices. We believe
federated ML is broadly applicable in the enterprise as well,
a view shared by recent work on enterprise model fusion
[75]. First, it could create a spectrum of data ownership and
sharing (private data, shared gradients/aggregates, shared
data) enabling new markets and business models. Second,
it could enable ML in geo-distributed or restricted environ-
ments, where data consolidation is infeasible.

Federated ML Architecture: Our basic design con-
sists of multiple control programs, each having local data. A
master control program holds the federated tensors (see Sec-
tion 3.3) including connections to the remote workers wait-
ing for commands. SystemDS then allows both, cross-data-
center federation [76] (where each control program runs in a
Spark cluster) as well as federation of individual endpoints.
We aim to support linear algebra operations (and thus, all
abstractions from Figure 1), as well as distributed parameter
servers over federated tensors. Special federated instructions
process these federated tensors by pushing as much com-
putation to the remote sites as possible, while complying
with exchange constraints and leveraging means of cryptog-
raphy2. We will further extend our existing parameter server
to respect the boundaries of federated tensors as well.

Example 2 (Federated MV Multiplication). For
example, consider matrix-vector (MV) and vector-matrix
(VM) multiplications on a federated matrix, where each site
holds a partition of rows. For an MV multiplication, the
master broadcasts the vector to the workers, lets them com-
pute a local MV, collects the result vectors, and constructs
the output vector via rbind. For a VM multiplication, the
master sends only relevant vector slices to the workers, lets
them compute a local VM, collects the result vectors, and
computes the output vector by adding the individual results.

Status: So far, we have a basic integration of federated
tensors and selected federated operations. In the future, we
will focus on broad operation coverage, data preparation and
cleaning of raw input data, efficient data exchange and ma-
terialization, as well as exchange constraints.

4.4 Compiler and Runtime Improvements
The stack of declarative abstractions from Figure 1 re-

quires major extensions of the compiler and runtime. We
are interested in the following related research directions:

• ML & Rules: Complex ML apps often combine ML
models and rules in meta models, which require dedi-
cated compilation and verification techniques.

2For example, homomorphic encryption [26] allows multiply and
add (and thus, matrix multiply) directly over encrypted data.



• Size Propagation: Propagating dimensions [7] and
sparsity [67]—or at least lower and upper bounds—
through control flow of the entire lifecycle is challeng-
ing but essential for cost-based optimization.

• Operator Fusion & Code Generation: Fusion is a
widely recognized optimization, but the potential for
sparsity exploitation [9] is barely leveraged yet.

• Lossless and Lossy Compression: Recent work on loss-
less compression for linear algebra [21, 45] and quan-
tization for DNN workloads need a systematic investi-
gation regarding data tensors and federated ML.

• Cloud and Auto Scaling: The stateless design and size
inference also enable automatic resource optimization
[34] in cloud environments, which is still an obstacle.

5. PRELIMINARY EXPERIMENTS
Our experiments study the baseline performance of Sys-

temDS and optimization opportunities across lifecycle tasks.

5.1 Experimental Setting
We ran all experiments on a single node with two In-

tel Xeon E5-2620 CPUs @ 2.10-2.50 GHz (24 virtual cores),
128 GB DDR3 RAM, and CentOS Linux 7.4. SystemDS 0.1+
(as of 12/2019, v0.1 released 08/2019, forked from Sys-
temML 1.2 in 09/2018) uses OpenJDK 1.8.0 with 80 GB
max and initial JVM heap sizes. The baselines are Tensor-
Flow 1.13.2 (07/2019), TensorFlow 2.0.0 (10/2019), and Ju-
lia 1.1.1 (05/2019). The workloads are (1) a hyper-parameter
optimization script (HPO) that reads a CSV file, trains k re-
gression models with different regularization λ (see lmDS in
Figure 2), and stores the resulting models as a CSV file, and
(2) a cross-validation script (CV) that reads a CSV file, runs
k-fold cross-validation for lmDS, and stores all k models as a
CSV file. We generate synthetic dense and sparse data, use
optimized TF and Julia scripts, and report the end-to-end
runtime including I/O as the mean of 3 repetitions.

5.2 Baseline Comparison
For evaluating the baseline performance of SystemDS, we

use a 100K × 1K matrix X (800 MB in-memory, 1.79 GB
CSV file) and train k ∈ (1, 10, 20, 30, 40, 50, 60, 70) models.
The main computation of lmDS is X>X and X>y, which
requires 100.2 GFLOP per model but is independent of λ.
Figures 5(a) and 5(b) compare TensorFlow 1.3 with NumPy
array (TF) and tensor (TF-G) outputs—where the latter
constructs a single graph and thus, can eliminate common
subexpressions—Julia, SystemDS (SysDS) and SystemDS
with native Intel MKL BLAS library (SysDS-B). There
are four main observations. First, multi-threaded I/O in
SysDS yields better performance than TF or Julia for a
single model because string-to-double parsing is compute-
intensive. Second, our multi-threaded, cache-conscious Java
matrix multiplications show good performance but are 2.1x
slower than Julia’s native operations because Java does not
compile packed SIMD instructions. With native BLAS for
dense matrix-matrix multiplication, SysDS-B then slightly
outperforms Julia. For TF, we had to manually rewrite
tf.matmul(tf.matrix_transpose(X), X) into a fused API
call to avoid excessive transpose costs. Third, Figure 5(b)
shows that SysDS largely outperforms Julia and TF on
sparse data (with sparsity=nnz/#cells=0.1). TF has large
transpose overhead as its sparse-dense matrix multiply lacks
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Figure 5: SystemDS Baseline Comparisons.

a fused call, while TF-G executes this transpose only once.
Fourth, and most importantly, none of these systems is able
to eliminate the redundant matrix multiplications.

5.3 Reuse of Intermediates
Figure 5(c) shows the SystemDS results—for HPO over

a 100K × 1K dense input matrix X—with enabled lineage-
based reuse as described in Section 4.1. For one model, there
is no redundancy. As the number of models increases, how-
ever, we see substantial improvements by reusing X>X and
X>y. Despite the I/O of 10.9s and several operations that
are not subject to reuse, we get a 4.6x end-to-end speedup for
70 models. Figure 5(d) shows the impact of input data sizes
by varying the number of rows in X (with sparsity=0.1).
The larger the input, the higher the improvements because
the remaining operations access only intermediates, whose
size is independent of the number of rows.

5.4 TensorFlow 2 Comparison
HPO: We further compare SystemDS with the recently

released TensorFlow 2.0 (compiled from sources), which in-
troduced eager execution (TF) and lazy evaluation via Au-
toGraph [49] (TF-G). Due to dependency conflicts, we ran
these experiments in a VM with 80 GB RAM, 4 virtual cores,
Ubuntu 18.04, and 70 GB max and initial JVM heap sizes.
Figure 6 shows the results for HPO, where TF-G is now able
to reuse intermediates as well, while still causing substan-
tial overhead for sparse data. Both TF and TF-G ran into
segmentation faults for Figure 6(b), 3.3M though.

CV: Figure 7 compares SystemDS 0.1+ and TensorFlow
2.0 on the CV use case (k-fold cross validation, with leave-
one-out). On dense data, TF/TF-G perform slightly bet-
ter than SysDS-B, while on sparse data, TF/TF-G show
again substantial overhead (log scale). Most importantly,
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only SysDS with reuse eliminates the fine-grained redun-
dancy, which would be difficult in the AutoGraph model.
Full reuse relies on rewriting X=rbind(remove(foldsX,i)),
y=rbind(remove(foldsY,i)), and the matrix multiplica-
tions X>X and X>y during dynamic recompilation into
multiplications of the individual folds (which are subject to
reuse) and element-wise addition of these intermediates.

6. RELATED WORK
SystemDS has a broad focus and thus, there is lots of

related work for individual aspects. Therefore, we focus on
systems for data science lifecycle tasks and array processing.

ML Systems for Data Science: Several recent systems
also aim to support the data science lifecycle in a scalable
manner. First, Northstar [40]—a collection of tools for in-
teractive data science—includes Alpine Meadow [65] for au-
tomatic feature pre-processing and AutoML based on exist-
ing ML libraries (e.g., Scikit-learn) and custom operators.
Second, TensorFlow Extended (TFX) [3] provides compo-
nents for data ingestion, validation, transformation, as well
as model training, validation and serving. These components
have different backends (e.g., transform in Apache Beam,
train in TensorFlow) and are composed via orchestration
tools like Apache Airflow or Kubeflow. Third, MLflow [79]
provides means of model management (e.g., tracking exper-
iments), project packaging, and model deployment. Alpine
Meadow, TFX, and MLflow rely on existing ML libraries,
while Weld [52] focuses on a minimalistic but invasive, UDF-
based IR for optimizing across different libraries. In contrast,
SystemDS builds on a common DSL, provides its own com-
piler and runtime and thus, can exploit fine-grained opti-
mization opportunities. Fourth, systems like AIDA [66] and
Lara [43] aim at joint relational and linear algebra in data-
science-centric specification languages that are mapped to
a common IR and then executed via existing SQL engines,
data-parallel frameworks, or numerical computing libraries.
The design of SystemDS differentiates by support for ten-
sors, distributed and federated linear algebra, and broad
support for the end-to-end data science lifecyle.

Array Processing: Array databases (e.g., SciDB [69])
and array libraries (e.g., NumPy [72], DL4J/NDArray) fo-
cus primarily on scientific computing and respective formats.
While array databases require loading and schema design for
efficient distributed operations, data scientist seem to favor
stateless systems and functional R or Python libraries and
DSLs. Scalability limitations are addressed by new Python
libraries like dask [18] and xarray [33] for distributed, multi-
dimensional array processing. Although these libraries do
not optimize for ML workloads, they are increasingly used
by scikit-learn to provide distributed ML algorithms. In con-
trast, SystemDS aims to provide abstractions for a variety
of data science lifecycle tasks and users, as well as efficient
linear algebra and optimization across the lifecycle.

7. CONCLUSIONS
To summarize, we described the vision and system archi-

tecture of SystemDS, an open-source ML system for end-
to-end data science pipelines. Compared to SystemML, the
major differences are (1) support for data science lifecycle
tasks (e.g., data preparation, training, and debugging) and
users with different expertise (ML researchers, data scien-
tist, and domain experts), (2) support for local, distributed,
and federated ML, and (3) the data model of heterogeneous
data tensors. We also outlined selected research directions,
and promising preliminary results. SystemDS is early work-
in-progress, but throughout the next years (or decades), we
will continuously improve it, leverage it in real-world ap-
plications, and use it for grounding our research in a real
system. We encourage the DB and ML systems community
to use SystemDS as a baseline or testbed for extensions.
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