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ABSTRACT
Vectorization based on the Single Instruction Multiple Data
(SIMD) parallel paradigm is a core technique to improve
query processing performance especially in state-of-the-art
in-memory column-stores. In mainstream CPUs, vectoriza-
tion is offered by a large number of powerful SIMD exten-
sions growing not only in vector size but also in terms of
complexity of the provided instruction sets. However, pro-
gramming with vector extensions is a non-trivial task and
currently accomplished in a hardware-conscious way. This
implementation process is not only error-prone but also con-
nected with quite some effort for embracing new vector ex-
tensions or porting to other vector extensions. To over-
come that, we present a Template Vector Library (TVL)
as a hardware-oblivious concept in this paper. We will show
that our single source hardware-oblivious implementation
runs efficiently on different SIMD extensions as well as on
a pure vector engine. Moreover, we demonstrate that sev-
eral new optimization opportunities are possible, which are
difficult to realize without a hardware-oblivious approach.

1. INTRODUCTION
To satisfy the requirements of high query throughput and

low query latency, database systems constantly adapt to
novel hardware features, but usually in a hardware-conscious
way [6, 9, 11, 22, 26, 27]. That means, the implementations
of, for example, query operators is very hardware-specific
and any change or development of the underlying hardware
leads to significant implementation and maintenance activ-
ities [12]. To overcome this issue, a very promising and
upcoming research direction will focus on the development
of hardware-oblivious or abstraction concepts. For example,
Heimel et al. [12] already proposed a hardware-oblivious par-
allel library for query operators, so that these operators can
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be mapped to a variety of parallel processing architectures
like many-core CPUs or GPUs. Another recent hardware-
oblivious approach is the data processing interface DPI for
modern networks [2].

In addition to parallel processing over multiple cores,
vector processing according to the Single Instruction
Multiple Data (SIMD) parallel paradigm is also a heavily
used hardware-driven technique to improve the query
performance in particular for in-memory column-store
database systems1 [10, 14, 21, 26, 27]. On mainstream
CPUs, this vectorization is done using SIMD extensions
such as Intel’s SSE (Streaming SIMD extensions) or AVX
(Advanced Vector Extensions). In the last years, we have
seen great advancements for this vectorization feature in
form of wider vector registers and more complex SIMD
instructions sets. Moreover, NEC Corporation recently
released a strong vector engine as a co-processor called
SX-Aurora TSUBASA, which operates on vector registers
multiple times wider than those of recent mainstream
processors [16, 24].

Our Contribution and Outline
To use the evolving variety of vector processing units in
a unified way for a highly vectorized query processing in
in-memory column-stores, we developed a Template Vec-
tor Library (TVL) as a novel hardware-oblivious approach.
The unique properties of TVL are: (i) we provide a well-
defined, standardized, and abstract interface for vectorized
query processing, (ii) query operators have to be vectorized
only once using TVL, (iii) this single set of query operators
can be mapped to all vector processing units from different
SIMD extensions up to vector engines at compile time, and
(iv) based on our hardware-oblivious vectorization concept,
we enable new optimization opportunities. To support our
claims, we make the following contributions in this paper:

• We start with a motivation why we need a hardware-
oblivious vectorization concept and present related
work in Section 2.

• Then, we introduce our developed Template Vector Li-
brary (TVL) as a hardware-oblivious approach by de-
scribing the library interface and the mapping to dif-

1Without loss of generality, we will mainly focus on in-
memory column-stores in this paper. Nevertheless, our con-
cepts should be applicable in other contexts as well.
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Figure 1: Diversity in SIMD hardware landscape.

ferent vector processing units in Section 3.
• Based on TVL, we developed a novel in-memory

column-store MorphStore [10]. Using that system, we
empirically prove that our single hardware-oblivious
implementation can efficiently run on different vector
processing units in Section 4. Moreover, we discuss
possible directions for future research in Section 5.

Finally, the paper concludes with a short summary of our
findings in Section 6.

2. NECESSITY OF AN ABSTRACTION
Hardware vendors continuously improve their individual

hardware systems by providing an increasingly high degree
of parallelism [5]. This results in higher hardware core
counts (MIMD parallelization) and improved vector units
(SIMD parallelization). In MIMD (Multiple Instruction
Multiple Data), multiple processors execute different in-
structions on different data elements in a parallel manner.
This parallelization concept is heavily exploited in database
systems [1, 3, 15, 20, 23] and Heimel et al. [12] already
proposed a hardware-oblivious parallel library to easily map
to different MIMD processing architectures. In contrast to
that, multiple processing elements perform the same oper-
ation on multiple data elements simultaneously for SIMD
parallelization (often called vectorization). This vectoriza-
tion concept is always provided by modern x86-processors
using specific SIMD instruction set extensions.

2.1 SIMD Parallelism Diversity
This SIMD parallel paradigm has received a lot of atten-

tion to increase query performance, especially in the domain
of in-memory column-stores [10, 14, 21, 26, 27]. Without
claim of completeness, current approaches mainly focus on
vectorizing isolated operators, compression, partitioning, or
on completely new processing models [7, 8, 14, 19, 21, 26,
27]. However, the vectorization of the mentioned aspects is
normally done in a hardware-conscious way via hand-written
code using SIMD intrinsics providing an understandable in-
terface for the vector instructions [29]. This code will usually
result in the best performance, but the code will probably
only run on the given architecture and porting to a new
architecture requires a high effort.

The reason is that the SIMD hardware landscape is in-
creasingly diverse as illustrated in Figure 1. For this diver-
sity, three metrics are important: (i) the number of available
vector instructions2, (ii) the vector length, and (iii) the gran-
ularity of the bit-level parallelism, i.e., on which data widths
the vector instructions are executable. Figure 1(a) shows

2We counted the instructions in the hardware vendor intrin-
sic guides.

the metric values for two recent Intel architectures: Xeon
Skylake and MIC Knights Landing. Generally, Intel offers
several SIMD extensions such as SSE (Streaming SIMD Ex-
tensions), AVX (Advanced Vector Extensions), AVX2, or
AVX-512. Both architectures in Figure 1(a) offer SIMD
functionality up to Intel’s latest extension AVX-512, result-
ing in a very high number of vector instructions with three
different vector lengths of 128-, 256-, and 512-bit. The SIMD
processing can be done on 64-, 32-, 16-, and 8-bit data el-
ements on both architectures. As depicted, the number of
vector instructions differs between both Intel architectures,
because not all available SIMD extensions are meant to be
supported by all architectures.

In contrast to that, ARM, for example, pursues a com-
pletely different approach as highlighted in Figure 1(b). In-
stead of providing a high number of vector instructions,
ARM supports much wider vector lengths. While the ARM
NEON extension (available in ARMv7-A and ARMv8-A)
was limited to a vector length of 128-bit, the Scalable Vec-
tor Extension (SVE) (available in ARMv8-A AArch64) aims
at supporting much more vector lengths from 128 to 2,048
bits, in 128-bit increments [28]. In all cases, the SIMD pro-
cessing can be done on 64-, 32-, 16-, and 8-bit data ele-
ments. Moreover, Figure 1(c) shows the metric values for
a recently released pure vector engine from NEC Corpora-
tion [16, 24]. This vector engine operates on vector registers
multiple times wider than those of recent SIMD extensions of
modern x86-processors, whereas the engine supports vector
lengths from 64 to 16,384 bits, in 64-bit increments. More-
over, the number of available vector instructions is lower
than with the SIMD extensions and the instructions can
only be executed on 64- and 32-bit data elements.

2.2 Abstraction Guidelines
With this diversity in mind, we believe that developing

a hardware-oblivious or abstraction concept will become
equally important as achieving optimal performance. From
our point of view, the hardware-oblivious concept should
provide the following core aspects:
Portability and Extensibility: The vectorized code

written in a hardware-oblivious way should be easily
portable between vector processing units with different
SIMD capabilities. In addition, the implementation
effort for the integration of new SIMD functionalities
offered by a specific vector processing unit should
be manageable. Of course, this also means that the
hardware-oblivious approach should be extensible
with new functions that are necessary for the explicit
vectorization of application logic.

Enabling Explicit Vectorization: To achieve the best
performance, explicit vectorization of application



logic is still the best way [17, 27]. Even if a given
code can be auto-vectorized implicitly, this poses
new challenges to the overall system as described
in [17]. Thus, a hardware-oblivious concept should
enable an explicit vectorization for the diversity in
SIMD hardware landscape (see Figure 1) with the
following properties. On the one hand, the diversity
characteristics of SIMD functionality, vector length
and the granularity of the bit-level parallelism should
be treated independently of each other. This is
the best way to represent diversity in a meaningful
way. On the other hand, the hardware-oblivious
concept should allow a separation between application
logic implementation and specification of the three
diversity characteristics at compile- or run-time. This
enables the highest degree of flexibility in mapping of
application logic to a specific SIMD hardware.

2.3 Related Work
As already mentioned, a very promising and upcoming re-

search direction will focus on the development of hardware-
oblivious concepts to tackle the ever-increasing diversity or
heterogeneity in hardware. For example, Heimel et al. [12]
presented a hardware-oblivious extension for MonetDB by
using the parallel programming framework OpenCL. As they
have shown, they can map single-source query operators im-
plemented in OpenCL to different parallel processing archi-
tectures like multi-core CPUs or GPUs. Another hardware-
oblivious approach in this direction is Voodoo, which is a
declarative intermediate algebra abstracting the detailed ar-
chitectural properties [25]. The Voodoo compiler also pro-
duces OpenCL code to support multi-core CPUs and GPUs.
Moreover, Voodoo includes a small set of vector operations
like Scatter. However, the main bottleneck of both ap-
proaches is OpenCL from a vectorization performance per-
spective. Behrens et al. [4] have clearly shown that, e.g.,
vectorized hashing based on SIMD intrinsics outperforms
OpenCL-based hashing.

There are already approaches for hardware-oblivious vec-
torization in the form of vector libraries, which avoid addi-
tional layers like OpenCL and reduce the additional over-
head to a minimum, e.g., VC [17] and Sierra [18]. Both ap-
proaches automatically translate a generic vector type to the
largest available vector size and overload standard operators
to work with this vector type. This reduces the translation of
the written code to exactly one vector size and instruction
set, even if the system offers more, and potentially faster,
variants. Additionally, very specialized functions, e.g., a
stream store, which can enhance the performance in some
cases but have no equivalent standard operator, cannot be
used. Hence, VC and Sierra work well in plain mathematical
scenarios, but they do not satisfy our abstraction guidelines
as presented in the previous section.

3. TEMPLATE VECTOR LIBRARY
In this section, we introduce TVL, our developed

hardware-oblivious template vector library approach for
in-memory column-store systems. To the best of our
knowledge, TVL is the first approach in this direction
satisfying our defined abstraction guidelines.

3.1 TVL Overview
Figure 2 illustrates our library architecture according to

Figure 2: Architecture of our Template Vector Li-
brary (TVL).

a separation of concerns concept with the help of template
metaprogramming in C++. That means, our TVL offers
hardware-oblivious, but column-store specific primitives as
generic functions. This explicitly enables database systems
programmers to implement each query operator in a vector-
ized, but hardware-independent fashion, on the one hand.
On the other hand, the TVL is also responsible for map-
ping the provided hardware-oblivious primitives to different
SIMD hardware. For this mapping, our TVL includes a
plug-in concept, where each plug-in has to implement each
provided hardware-oblivious primitive for a specific SIMD
hardware in a hardware-conscious manner.

3.2 Hardware-Oblivious Primitives
To enable a hardware-oblivious approach without sacri-

ficing the performance, our TVL primitives abstract from
SIMD intrinsics in such a way that there is the same inter-
face and the same data types for all SIMD architectures. Our
data types are vector_t referring to a vector, base_t refer-
ring to the type of the elements in a vector, and mask_t refer-
ring to a bitmask. While scalar or plain mathematical com-
putations are always a combination of L/S operations, com-
parisons, arithmetic calculations, and boolean logic, vector-
ized query processing in in-memory column-stores requires
additional functionality, e.g., permutation of vector elements
as discussed in the literature [7, 8, 14, 19, 21, 26, 27]. Based
on this observation, we define 7 different classes of TVL
primitives as illustrated in Figure 2.

Load/Store Class: The Load/Store Class contains dif-
ferent load and store primitives. The most obvious mem-
bers of this class are sequential load and store primitives.
Random memory access is realized by gather and scatter
primitives. A special primitive for selectively storing the
elements of a vector is called compressstore. A compress-
store takes a bitmask (mask_t), a vector (vector_t), and
a pointer as arguments. Then, it stores all elements of the
vector, which have a corresponding set bit in the bitmask,
consecutively into memory without gaps for non-selected el-
ements. Furthermore, data can be aligned or unaligned in
memory, and there are instruction sets, which explicitly sup-
port streaming, also known as non-temporal memory access.
To differentiate between these cases, a template parameter
is used, which can have the values ALIGNED, STREAM, and
UNALIGNED for alternative implementations. To determine
the granularity of any operation, another template param-
eter is used. For instance, if a gather is supposed to read
64-bit integers, the granularity template parameter is set to
64.

Arithmetic Class: The Arithmetic Class provides dif-
ferent unary and binary function primitives. Currently, the
unary function primitives contain the aggregation of all ele-
ments of a vector by summing them up, and the change of



//a) AVX-512
_mm512_mask_compressstoreu_epi64(dataPtr , mask , vec);
//b) SSE
switch (mask){

case 0: return; //store nothing
case 1: _mm_storeu_si128(dataPtr , vec);

return; //store everything , unnecessary second vector element is overwritten
later

case 2: vec = _mm_shuffle_epi8(vec , _mm_set_epi8
(7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8));

// exchange lanes before storing
_mm_storeu_si128(dataPtr , vec);
return;

case 3: _mm_storeu_si128(dataPtr , vec);
return; //store everything

}
//c) NEON
switch (mask){

case 0: return; //store nothing
case 1: vst1q_lane_u64(dataPtr , vec , 0); return; //store 1st lane
case 2: vst1q_lane_u64(dataPtr , vec , 1); return; //store 2nd lane
case 3: vst1q_u64(dataPtr , vec); return; //store everything

}

Figure 3: Different vectorized compressstore specializations.

the sign of a number. The currently provided binary func-
tion primitives are the four basic arithmetical operations,
modulo, and shift operations, where each element of a vector
is shifted by a defined number of bits. The result returned
by arithmetic primitives is always a vector (vector_t), re-
gardless of whether there are one or two input vectors. The
granularity of bit-level parallelism of the operations is again
provided by a template parameter.

Comparison Class: This class provides element-wise
comparisons between vectors, e.g. for equality or greater/
less than. The input parameters are the same as for the
binary arithmetic primitives, but the output is a bitmask
(mask_t) instead of a vector. This is especially useful, when
the result of a comparison is stored. Instead of storing the
bitmask, the corresponding values can be stored by using
the compressstore of the Load/Store Class.

Bitwise Logic Class: In this class, boolean algebra is
treated. Currently, a bitwise AND and a bitwise OR are
provided. Compared to the interface of the binary arith-
metic primitives, the template parameter, which indicates
the granularity, is not necessary, because the operations are
always performed bitwise.

Create Class: Sometimes, the elements of a vector are
not loaded from memory, but computed at runtime, or
loaded from immediate values or constants. These cases are
treated by the Create Class. This class poses the challenge,
that setting the elements of a vector to different values
is an operation whose interface depends on the number
of elements of a vector, i.e. depending on the number of
elements per vector, the number of input parameters varies.
This is incompatible with the concept of code which is
portable to different vector lengths. For this reason, we
provide two additional primitives in this class: set1 and
set_sequence. The first one sets all elements of a vector
to the same value. The second one fills a vector with a
sequence of numbers, where the first number (base_t) and
the distance between the following numbers are provided as
parameters. This is especially useful for the initial creation
of record indexes.

Extract Class: Whenever it is necessary to get a sin-

template<...>
void
compressstore(

typename base_t * dataPtr ,
typename vector_t vec ,
typename mask_t mask

);

Figure 4: Compressstore template declaration in
C++.

gle element out of a vector, the extract primitive is used.
This is the only member of the Extract Class. The same
effect can be achieved by using a compressstore (Load/S-
tore Class) with a single bit set in the bitmask, but extract
avoids the roundtrip to the main memory, if a corresponding
instruction is available on the targeted architecture.

Manipulate Class: The last class is the Manipulate
Class, which takes care of vector manipulations on the ele-
ment-level, i.e. permutations of the vector elements. Cur-
rently, a single primitive is provided, the rotate primitive.
The rotate primitive rotates the elements in a vector by one
element. If there are only two elements in a vector, e.g. two
double values in a 128-bit register, this results in swapping
these two elements.

These classes and primitives are specific for an efficient
vectorized query processing in in-memory column stores. An
example TVL primitive from the L/S Class, which is used in
selective database operators, is the compressstore function
template as depicted in Figure 4. This specific function takes
a pointer (dataPtr) to a memory location, a vector (vec),
and a bitmask (mask) as input parameters. Then, the task
is to store the vector register (vec) in such a way that the
vector elements with a corresponding set bit in the bitmask
are stored consecutively to memory. How this function is
realized is not the subject of this template declaration.

3.3 Hardware-Conscious Specialization
From a template metaprogramming perspective, our TVL

primitives are generic interfaces to implement in a vectorized
way, but for the execution, we require a hardware-conscious



//let outPtr , mask , and vec be local variables
//a) Using AVX-512 intrinsics directly , no TVL
_mm512_mask_compressstoreu_epi64(outPtr , mask , vec);
//b) Naive implementation using TVL
tvl::compressstore < avx512<v512<int64_t>> , tvl::UNALIGNED , 64>(outPtr , vec , mask);
//c) Fully portable implementation using TVL
using processingStyle = avx512<v512<int64_t>>;
tvl::compressstore <processingStyle , tvl::UNALIGNED , processingStyle::base_t_size_bit>

(outPtr , vec , mask);

Figure 5: Example usage of the TVL.

function template specialization for the underlying SIMD
hardware. This function template specialization has to be
implemented, whereby the implementation depends on the
available functionality of the SIMD hardware. However, this
is independent from the query operators and must be done
only once by a domain expert for a specific SIMD hardware.

In the best case, we can directly map a TVL primitive to a
SIMD intrinsic. However, if the necessary SIMD intrinsic is
not available, we are able to implement a work-around in a
hardware-conscious way. To illustrate this specialization,
Figure 3 shows the implementation of the compressstore
primitive for three different SIMD instruction sets assum-
ing a 64-bit base data type.3 To the best of our knowledge,
Intel’s AVX-512 is the only instruction set, which contains
an intrinsic doing exactly what a compressstore is meant to
do, and we map directly to this intrinsic. For architectures
without AVX-512, a work-around has to be implemented.
In this work-around, we have to treat all possible values of
the bitmask manually. If no bit in the bitmask is set, the
function returns without storing anything. If all bits are set,
the whole register is stored. If only a subset of bits is set,
there are different ways to store the corresponding vector
elements. In NEON, there is an intrinsic to store selected
vector elements. In SSE, we could either use an intrinsic to
extract values into a scalar register and then write them to
memory, or shuffle the according elements to the beginning
of the register before writing it to memory. We decided for
the latter because of a higher compatibility with different
base data types.

To eliminate the overhead of a function call when us-
ing primitives, we inlined all primitives with inline __at-

tribute__((always_inline)). This ensures that the over-
head over using intrinsics is negligible as we show in Sec-
tion 4.

A nice side effect of our overall concept is that we are
also able to map to a scalar specialization. In this case, the
vector length can be 8-, 16-, 32-, or 64-bit and we map our
TVL primitives to the corresponding scalar instructions.

3.4 Interplay
In order to connect our hardware-oblivious primitives

with the different hardware-conscious specializations during
query compile-time, we decided to use three template
parameters and call a combination of these parameters a
processing style. The template parameters are derived from
the description of the SIMD variety in Section 2: (1) the
vector extension (e.g., SSE, AVX, NEON, or scalar), (2)
the vector size in bit, and (3) the base data type with bit
granularity (e.g., int8, int64, float). This enables us to
define the exact mapping in a very fine-grained and flexible

3Note that, for the sake of simplicity, the function headers
are not shown.

way. That means, each primitive within a query operator
can be called with its own processing style. An example
of how exactly the processing styles are used, is shown
in Figure 5. In a), the intrinsics provided by AVX-512
are used directly. This code will only work on 512-bit
registers on Intel architectures providing this instruction.
Snippet b) uses the TVL in a very näıve way. The primitive
compressstore is called with a processing style, that maps
to AVX-512. The second template parameter indicates
that the data does not need to be aligned. To make the
code fully portable to other SIMD architectures, derived
constants, such as base_t_size_bit, can be used, which
are also provided by our TVL as shown in snippet c) in
Figure 5.

Finally, Figure 6 illustrates how a query operator imple-
mented using TVL can look like and how it can be called.
In particular, we show a simple aggregation operator, which
assumes that the number of data elements is a multiple of
the number of elements per vector.

4. EVALUATION
Our TVL is a core component of MorphStore, a proper

in-memory column-store with a novel highly vectorized
compression-aware query processing concept [10]. The
source code of MorphStore including the TVL is available
on GitHub.4 Since the contribution of this paper is on
hardware-oblivious vectorization using TVL, our evaluation
mainly focuses on vectorized query processing of uncom-
pressed 64-bit data in MorphStore. For this evaluation, we
implemented template specializations for scalar processing
and different SIMD extensions such as Intel SSE, AVX2,
and AVX-512, a NEC vector engine, and ARM NEON.

4.1 Microbenchmarks
For an initial evaluation of the TVL, we run some mi-

crobenchmarks on different hardware. All microbenchmarks
consist of isolated query operators. We use the same code
base on every system for every supported instruction set.
Only the processing style is changed, which affects one line
of code.

Runtime Overhead Consideration

In a first series of experiments, we compared the runtimes
of hand-written query operator code using SIMD intrin-
sics with runtimes of TVL-enabled query operators. To
keep the results comparable, both variants use the function-
alities offered by Intel AVX2. For all these microbench-
marks, the complete processed data fit at least into the
L3-cache of the Xeon Gold 5120 (Skylake, max. core fre-
quency: 3.2 GHz) and the benchmarks ran single-threaded.

4https://github.com/MorphStore/Engine



// Aggregation operator definition.
template<class ps> // processing style
base_t agg(const base_t * in , size_t elCount) {

// For simplicity , we assume that elCount is a multiple of the number of data elements
// per vector register.
const size_t vecCount = elCount / ps::vector_element_count;

// Initialize running sum to zero.
vector_t resVec = tvl::set1<ps , ps::vector_base_t_granularity> (0);

// Add all input data elements to running sum.
for(size_t i = 0; i < vecCount; ++i) {

vector_t dataVec = tvl::load<ps , tvl::ALIGNED , ps::vector_size_bit>(in);
resVec = tvl::add<ps , ps::vector_base_t_granularity>(resVec , dataVec);
in += ps::vector_element_count;

}

// Calculate final sum using horizontal summation of the vector elements.
return tvl::hadd<ps , ps::vector_base_t_granularity>(resVec);

}

// Calling the operator.
using ps = tvl::avx2<tvl::vec256<uint64_t>>; // for example
size_t count = 1024;
uint64_t * array = generate_data(count);
uint64_t sum = agg<ps>(array , elemCount);

Figure 6: A simple summation operator using the TVL.

Figure 7: Runtime overhead for column scan. The
dataset consisted of about 18.5 MB of integers.

All micro-benchmarks were executed 900 times to minimize
the impact of time measurement. Figure 7 exemplary shows
the different average runtimes for a column scan with differ-
ent range predicate selectivities. We used these selectivities
to vary the runtime behavior. The selectivities are plotted
on the x-axis while the y-axis shows the complete runtime
of the operator in milliseconds (lower is better). On the
one hand, the variant using TVL performs slightly better
than the variant using SIMD intrinsics for selectitivies of
5% and 95%, respectively. On the other hand, for selectivi-
ties of 25% and 50%, the operator variants behave inversely,
resulting in an average runtime overhead for our TVL ap-
proach of around 1.02% for this operator. For the other
query operators, we observed a similar overhead resulting in
a neglectable overhead. Hence, we conclude that our TVL
offers high flexibility at virtually no performance cost.

Comparison with Sierra

In a second series of experiments, we compared the runtime
performance of the TVL to another vector library, namely
Sierra [18]. Since the functionality of Sierra is limited, we
did not implement any selective operator. Instead, we im-
plemented an aggregation, which is trivially vectorizable.

To not measure the efficiency of an auto-vectorizer, but of
Sierra’s SIMD mode and the TVL primitives respectively, we
turned off auto-vectorization. To compile the implementa-

Figure 8: Runtime comparison of an aggregation be-
tween Sierra (blue and gray) and the TVL (orange).
The dataset contained 107 integers.

tion for Sierra, we used the sierra fork of clang (version 3.3).
For the TVL, we used the regular clang compiler (version 7).
All experiments were run single-threaded on an Intel Xeon
Gold 6130 CPU (max. core frequency: 3.7 GHz). Fig. 8
shows the runtimes for SSE, AVX, and scalar processing. In
addition to the median of 10 runs, the range of the runtimes
is shown. In Sierra, there are two different versions of scalar
processing. The first one, SSE-Scalar, is compiled for SSE,
but with a vector length of 1, i.e. every vector contains only
one element but the compiler is allowed to use SSE func-
tionality. The second one, AVX-Scalar, also has a vector
length of 1, but is compiled for AVX. For the TVL, we used
scalar, SSE, and AVX2 processing styles with the native vec-
tor lengths of the corresponding instruction set, e.g. 128-bit
registers for SSE. The graph shows that in this use-case,
the size of registers does not scale proportionally with the
performance. This is because the workload mainly consists
of memory read access, which is bandwidth limited. The
ranges of the runtimes for Sierra and the TVL are overlap-
ping in all cases except for AVX2. However, Sierra performs
slightly better than the TVL. We suppose that this is be-
cause of the highly SIMD-optimized Sierra compiler. A six
times lower cache-reference number and 30% more instruc-
tions per CPU cycle, with slightly slower CPU cycles, for the



Figure 9: Runtime overhead for a FILTER and a
FILTER with a subsequent AGGREGATION on
NEC SX-Aurora TSUBASA.

Sierra implementation supports this assumption. Consider-
ing, that Sierra puts tight limits on the usable functionality
of any vector extension, especially when it comes to selective
operations, it is not applicable for a database system despite
the small performance gain compared to the TVL.

TVL on a Vector Engine

As another part of our evaluation, we investigated the appli-
cability of TVL on the novel hardware accelerator card SX-
Aurora TSUBASA. On the one hand, this vector processor,
manufactured by NEC Corp., offers a very high sustained
memory throughput of up to 1TB/s. This is made possible
by an HBM packaging technology, which has been designed
specifically for this accelerator [16]. On the other hand, SX-
Aurora TSUBASA provides comparably large vector regis-
ters containing up to 256 double words (16, 484 Bit). While
the vector card is shipped with a tailored compiler provid-
ing auto-vectorization but no intrinsics support, our experi-
ments were conducted using an LLVM-VE backend [13] (ver-
sion 1.7). Since intrinsics are provided by the backend, we
could expand the TVL to support SX-Aurora TSUBASA
quite easily using the already discussed separation of con-
cerns.

To measure the potential overhead of the TVL we imple-
mented a FILTER operator which filters out all elements
from a given dataset which are less than or equal to a con-
stant number. The result is materialized as a bitvector,
where every set bit represents an element from the initial
dataset which satisfies the given predicate. In addition,
we implemented an AGGREGATE operator, which takes
a dataset as well as a bitvector as input and calculates the
average of all elements from the given dataset, while only
considering elements with their corresponding bit set within
the bitvector. The operators were implemented twice, once
using the intrinsics defined by LLVM-VE and once using
the extended TVL primitives. The experiments where ex-
ecuted by a single thread on a single maschine, consisting
of an Intel(R) Xeon(R) Gold 6126 CPU and a SX-Aurora
TSUBASA 10C with a frequency of 1.4 Ghz, 24 GB HBM2
providing a maximum memory bandwith of 750.0 GB. On
the host system a CentOS Linux release 7.7.1908 was used.
The vector engine is operated using veos 2.1.0. To build
the experiments LLVM-VE (1.7.0) was used with the plat-
form flag -target ve-linux and optimization flags -O3 -fno-
vectorize -fno-slp-vectorize, whereby the latter two disable
auto-vectorization. The experiments were executed com-
pletely on the vector card utilizing veos. To measure the

performance of the operators, the user clock cycles on the
vector engine were retrieved using inline assembly.

All operators were measured with different data sizes as
well as data distributions, which lead to different selectivities
for the FILTER. Figure 9 shows the results for a data size
of a single FILTER operator on 4GB of data and a FILTER
on a 4GB buffer followed by an AGGREGATE on another
4GB buffer, resulting in a combined data size of 8GB. The
maximum measured overheads were −0.017% for a selec-
tivity of 70% and 0.012% for a selectivity of 50%. Apart
from that, the overhead of the TVL is usually within the
range of −0.005% to 0.005% and is, thus, negligible. Hence,
we conclude that the TVL can also be extended to support
specialized hardware at no significant performance costs.

4.2 Star Schema Benchmark (SSB)
For a more sophisticated evaluation to show the appli-

cability and portability of our approach, we ran the SSB
using one code facilitating the TVL with different process-
ing styles to use different SIMD extensions. Our systems
were: a) an Intel Xeon Gold 5120 (Skylake, max. core fre-
quency: 3.2 GHz), b) an Intel Xeon Phi 7250 (max. core
frequency: 1.6 GHz), and c) an Odroid-C2, a single-board
computer equipped with 4 ARM Cortex-A53 cores (max.
core frequency: 1.5 GHz). While the Intel machines sup-
port SSE, AVX2 and AVX-512, the ARM core only supports
the NEON instruction set. For a better comprehensibility,
we used register sizes according to the instruction set, e.g.,
AVX2 uses only 256-bit registers, not 128-bit registers, and
the queries are executed by a single thread. Figure 10 shows
the individual query runtimes for all systems and instruction
sets for a scale factor of 1. At larger scale factors, the data
would not fit into the Odroid’s 2 GB of RAM. The results on
the Intel machines show that the performance benefits from
wider registers. Note that this improvement can be accom-
plished by changing only the single line of code which defines
the processing style. However, on the Odroid, vectorization
does reduce the runtime, but not as much as expected. One
reason for this is the high amount of work-arounds resulting
from the low number of available vector instructions.

Overall, our evaluation empirically proves that our sin-
gle hardware-oblivious operators with TVL can efficiently
run on different vector SIMD extensions, including different
hardware vendors, and that the query performance can be
increased with the vector width.

5. ONGOING RESEARCH DIRECTIONS
Our ongoing research activities are manifold. On the one

hand, we are currently completing our integration of the in-
structions of the vector engine SX-Aurora into our TVL.
This will also give us the opportunity to use a common code
base to investigate the interplay of the vector engine with
its Intel Skylake host processor for an efficient query pro-
cessing. That means, we want to leverage the wide vector
registers as well as the high memory throughput of the vec-
tor engine while compensating the shortage of processing
logic (see Section 2) with the Intel Skylake.

On the other hand, the different available instruction sets
on one hardware system, for example on Intel with SSE,
AVX2, and AVX-512 or on ARM with a configurable vec-
tor length in SVE, provide a huge optimization potential.
That means, we want to optimize the overall performance
on a very fine-grained level. To illustrate that, Figure 11
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Figure 10: Star Schema Benchmark results on different systems using different Processing Styles.
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Figure 11: Runtime of two subsequent operators of
SSB query 3.3 on two different Intel systems for dif-
ferent instruction sets and register sizes.

shows two subsequent operators of SSB query 3.3. As we
can see, the same instruction set behaves differently on dif-
ferent systems, such that for example, AVX-512 is not always
the best choice on Intel systems. Moreover, the prioritiza-
tion of queries gets another dimension. For instance, cores
executing low-priority queries can be executed using scalar
code or SSE, while high-priority queries are executed with
AVX-512. This allows for less frequency down-scaling on the
whole system, because AVX2 and AVX-512 scale down the
core frequency if multiple cores are used.

Generally, our TVL concept enables new research direc-
tions on a fine-grained level which are hardly realizable with-
out a hardware-oblivious concept.

6. CONCLUSION
In this paper, we introduced a Template Vector Library

(TVL) as a hardware-oblivious SIMD parallelism concept
for in-memory column-stores. The TVL can represent the
vector extension, the vector width, and the granularity of
the bit-level parallelism, as the most important dimensions
of the variety of the SIMD parallelism paradigm, effectively.
As we have shown, we are able to map a single set of opera-
tors to different SIMD architectures without sacrificing the
performance compared to hardware-conscious implementa-
tions. Moreover, TVL is already a core component of a new
in-memory column-store called MorphStore [10].
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