
Migrating a Privacy-Safe Information Extraction System to
a Software 2.0 Design

Ying Sheng
Google

Mountain View, CA, USA
yingsheng@google.com

Nguyen Vo
Google

Mountain View, CA, USA
nguyenvo@google.com

James B. Wendt
Google

Mountain View, CA, USA
jwendt@google.com

Sandeep Tata
Google

Mountain View, CA, USA
tata@google.com

Marc Najork
Google

Mountain View, CA, USA
najork@google.com

ABSTRACT
This paper presents a case study of migrating a privacy-safe
information extraction system in production for Gmail from
a traditional rule-based architecture to a machine-learned
Software 2.0 architecture. The key idea is to use the extrac-
tions from the existing rule-based system as training data to
learn models that in turn replace all the machinery for the
rule-based system. The resulting system a) delivers better
precision and recall, b) is significantly smaller in terms of
lines of code, c) is easier to maintain and improve, and d)
allowed us to leverage machine learning advances to build
a cross-language extraction system even though our original
training data was only in English. We describe challenges
encountered during this migration around generation and
management of training data, evaluation of models, and re-
port on many traditional“Software 1.0”components we built
to address them.

1. INTRODUCTION
Advances in machine learning (ML) over the last decade

have opened up a radically new approach to building soft-
ware systems. Dubbed “Software 2.0” [14], this approach
focuses on training models to learn from data instead of
explicitly writing code for the required behavior. Appli-
cations like language translation, speech recognition, and
image recognition have always made heavy use of ML tech-
niques. However, the current state of the art replaces these
complex systems that use several traditional ML algorithms
with a trained neural network [7]. More interestingly, sys-
tems that have not made heavy use of ML in the past like
database indexes [15] and data cleaning systems [25] are now
being re-designed as learned Software 2.0 systems.

In this paper, we present a case study of migrating a
privacy-safe information extraction system over email serv-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020 , Amsterdam, Netherlands.

ing over a billion users worldwide from a traditional rule-
based architecture to a machine-learned Software 2.0 archi-
tecture. This extraction system [27] is responsible for ex-
tracting structured objects from emails in different verticals
– e.g. bill reminders, shipping confirmations for online pur-
chases, hotel reservations, etc. Each vertical defines a set of
fields to extract. In the case of hotel confirmations, this in-
cludes the check-in and check-out dates as well as the hotel
name and address. These extractions enable experiences like
allowing a smart assistant to answer personal queries such
as “when is my electric bill due?” and “where is my Macy’s
package?”.

A legacy rule-based extraction system using hand-crafted
rules has been in production since 2013. We leveraged ex-
tractions from the existing rule-based system as well as pre-
viously hand-written parsers as the source for training data.
The biggest challenges we encountered during this migra-
tion were in generating and managing training data. Train-
ing data for field-classifiers (described in Section 2.2) re-
quires writing a high-recall candidate generator and a high-
quality labeler. Detecting low quality training data from
low-precision rules and improving data quality over time is
critical. Developing these in the context of a privacy-safe
system where no one can visually inspect the underlying
data is particularly challenging.

We tackled these problems by building several traditional
“Software 1.0” components. We designed two abstractions
called CandidateGenerators and CandidateLabelers that al-
lowed us to generate training data for all fields across differ-
ent verticals. We also built tools to evaluate CandidateGen-
erators and CandidateLabelers on synthetic emails that are
generated using the boilerplate from real templatic emails.
The same tool is used to acquire additional ground truth
data, improve data quality over time, and evaluate the per-
formance of new models

The new architecture has delivered benefits along four di-
mensions. First, the precision and recall of the extractions
have already surpassed the metrics from the heuristics-based
system. Second, the new system has a smaller code footprint
and is easier to maintain – we deleted over 45K lines of code
within a few weeks of the migration. Section 6 describes the
kinds of components from the old system that are now re-
dundant. Third, the new system is easier to maintain – the
rule-based system was brittle and made it difficult to debug
errors and improve precision and recall. It is well known

1

that the hand-crafted rules in an extraction system get too
complicated to maintain and improve beyond a point [22].
The ML system on the other hand has provided steady im-
provements in precision and recall as we gather more train-
ing data. Finally, the new system can take advantage of
recent advances in machine translation to produce extrac-
tions in non-English languages, a task that would not have
been possible with the traditional system.

The rest of the paper is organized as follows: Section 2
first describes Juicer’s template induction system. It then
provides an overview of the rule-based extraction system fol-
lowed by the learned extraction system. Section 3 describes
the challenges encountered during the migration effort along
with anecdotal examples. Section 4 describes the systems we
built to manage training data, evaluate models, and manage
label quality in the presence of privacy constraints. Section 5
presents related work. Finally, Section 6 summarizes our re-
sults and concludes the paper.

2. BACKGROUND
Juicer [27] is an information extraction system that runs

over business-to-consumer (B2C) emails in Gmail. We have
previously described the design of the system, focusing on
the modeling choices and how we implemented new extrac-
tion tasks for verticals such as bill reminders, offers, and
hotel reservations. We provide a brief summary here be-
fore describing the task of migrating legacy verticals and
the challenges they pose.

The vast majority of B2C emails are machine-generated,
and thus, instantiations of predefined templates. Juicer in-
duces these templates—or at least a best guess—by clus-
tering emails together that share similar structure. This is
done by clustering incoming emails [28] based on a locality
sensitive hash—we use Minhash [5]—of their set of XPaths
that make up each email’s HTML DOM tree. A cluster
that has emails to at least k unique recipients, adhering to
k-anonymity constraints, is considered viable for template
induction.

Once a cluster is formed, Juicer labels each email in the
cluster using a set of pre-trained vertical classifiers. Once
all emails are classified, the template is assigned a single
vertical label based on a majority vote of all the emails in
the cluster. This label then determines the set of vertical-
specific fields to extract. Below, we describe two approaches
to extract field information from these emails.

2.1 Rule-Based Extraction
The legacy rule-based system used a traditional rule-based

architecture [6, 16]. Several rules were developed by engi-
neers over many years for each field in each vertical using
emails donated by internal users for this purpose.

The rules were scoped to trigger on specific subsets of
emails and within certain contexts in an email using regu-
lar expressions. For example, consider extracting the order
number field from a purchase confirmation. Extraction rules
were written using regular expressions to identify key con-
text phrases (such as “order”, “number”, “order no.”, etc.)
that need to be present, and regular expressions to match
the actual order number.

These rules were managed by limiting their scopes. For
example, a scope could be defined so that a particular set
of rules was only applicable for a subset of senders. Scopes
could also be defined for portions of the email where the

0.7

0.1

AVG
field: CHECK_IN_DATE
annotation_type: DATE
{ XP1: 0.8 (kept)
 XP2: 0.4 (kept)
 XP3: 0.1 (removed)}

Xpath w/ annotation
Xpath w/o annotationEmail 1

0.9

0.4

Email 2

XP1

XP2

XP3

XP4

Thr=0.3

Figure 1: Field extraction rule generation. For each
email in a template cluster, XPaths with candidate
annotations (green boxes) are scored by the field
classifier. XPaths with an average score above the
threshold (Thr) are converted to extraction rules.

rule could be applied. For example, certain rules may only
be applied to the content in the subject line. Other effective
scoping strategies included requiring that the target field
be present in a variable region in the email,1 or disallowing
extractions from certain kinds of HTML elements, such as
URLs. Finally, each rule could also require additional vali-
dation conditions. For example, the check-out date should
always be after the check-in date in a hotel reservation.

2.2 Machine-Learned Extraction
In the Software 2.0 approach, the extraction rules are

machine-learned. Each field has a corresponding field clas-
sifier which is applied to a set of candidates in the email to
identify the target field value.

Candidates are defined as all the spans of text with an-
notations of a certain type specific to that field, e.g. the
candidates for hotel check-in date consist of all the date an-
notations in an email while the candidates for hotel address
consist of all the address annotations. We rely on a library of
annotators—employing a variety of techniques, such as reg-
ular expressions, heuristics, and knowledge graph lookup2—
to annotate dates, email addresses, numbers, prices, ad-
dresses, cities, and so on in the emails. This library has
been developed over years for various search and extraction
tasks at Google.

A field classifier is trained to predict if a candidate cor-
responds to a field in the vertical. Then, during template
induction, after a template has been assigned its vertical,
the appropriate field classifiers are applied to all candidates
in all the emails of the cluster. The field classifier scores are
averaged across the emails per XPath in which the annota-
tion is observed. If the average score is above the prescribed
threshold, an extraction rule is added to the template for
that XPath. Figure 1 depicts this process in detail.

These templates, along with their labels and field extrac-
tion rules, are stored in a key-value store. When a new email
arrives, Juicer computes the Minhash of the email and per-
forms a lookup for the template. If found, any extraction
rules present are executed by traversing to the XPath in the
email and extracting the text corresponding to the annota-
tion in that XPath. If there are multiple rules for a field,

1Once we induce a template, we can identify which portions
of a template are boilerplate text (fixed) vs. portions that
vary across emails (variable).
2https://cloud.google.com/natural-language/docs/
reference/rest/v1/Entity

2

they are executed in descending order of the field classifier
score and the first successful extraction is used.

2.3 Evaluation
Extractions are evaluated by inspecting synthetic emails

generated from the underlying templates and highlighting
the results from either the legacy system or the machine-
learned rules. Since email data is private no one has access
to visually inspect any real data. Instead, emails are syn-
thetically generated from the fixed text of the templates that
pass the k -anonymity constraints [27]. This text is shared
across all the emails in the template and contain no per-
sonal information. The variable portions of the email are
identified by masking strings like ‘XXXX’.

To ensure high-precision extraction, we maintain a whitelist
of high-quality templates such that only emails matching
templates in the whitelist trigger extractions. Any template
which is evaluated to have accurate extractions on the syn-
thetically generated emails are whitelisted for extraction in
production. Since there may be thousands of new templates
for each vertical every week, if a random subset of a large
weekly batch of templates is evaluated with precision above
90%, the entire batch is whitelisted.

3. MIGRATION
The legacy system based on a rule-based architecture with

hand-crafted rules has been in production since 2013. We
focus on two verticals for migration in this paper: event
confirmations (e.g. appointments, ticketed events, etc.), and
purchases (e.g. order confirmations, shipment notifications,
etc.).

Improving heuristic rules is a long development cycle. An
engineer begins by writing extraction logic after observing
donated emails, evaluates the logic on a larger set of do-
nated emails, then repeats the process in an attempt to fix
error cases. Oftentimes, fixing error cases results in break-
ing correct cases. Engineers end up spending significant time
iterating through many develop-evaluate cycles to produce
high precision heuristics. Over time, we developed sophisti-
cated infrastructure to support more expressive rules, which
become an increasing burden to maintain. This is a common
pattern with rule-based extractions systems that has been
observed by several practitioners [22, 29].

Our primary goal in migrating these verticals was to re-
place the existing rule-based extraction system with the much
simpler machine-learned system. In doing so, we wanted to
be able to guarantee continuing incremental improvements
to verticals by gathering additional training data instead
of writing increasingly complicated and difficult-to-maintain
rules.

3.1 Challenges
The very first models that we trained were only able to

replace 6% of the extractions from the heuristic rules. In
order to close this gap and replace the rule-based system
entirely with the new ML-based system, our challenges cen-
tered around managing our training data: building high
coverage candidate generators, maintaining high precision
labelers, and obtaining high quality ground-truth. These
tasks become particularly challenging when dealing with
email, since they must be approached with the additional
constraint of maintaining complete privacy.

3.1.1 Building high coverage candidate generators
There is a huge variation in the types and formats of var-

ious fields. When building a candidate generator for the
purchase order number field, we began by using all of the
text spans annotated as numeric in an email. We discov-
ered through analysis and tools described in Section 4 that
the coverage of this annotator was insufficient to replace the
rule-based extractions, as we were missing order numbers
that contained alphabetical characters. We were able to in-
crease coverage by incorporating alphanumeric annotations.

Other fields, such as event location, required much more
work. We began by using only address annotations as can-
didates (e.g. “123 E. Monument Pkwy, Mountain View,
CA”), however, many emails may not contain the full address
of their events, but rather just shortened versions, such as
venue names (e.g. “Cinemark 16”). Thus we had to consider
many types of annotations to generate event location candi-
dates, including address patterns or annotations of buildings
or sites from an internal Knowledge Graph [4].

3.1.2 Maintaining high precision labels
Our next challenge was matching candidates with ground

truth for generating labeled training data. Consider, for
example, that the ground truth for an event location field is
“123 East Monument Parkway, Mountain View, California
94043-1234”. But the candidate that is most similar to the
ground truth might only be in a slightly different format
(e.g. “123 E. Monument Pkwy, Mountain View, CA”), only
contain a portion of the full address (e.g. “Yoga Studio”),
have different capitalization, or may even have each address
component annotated separately (number, street, city, etc.).

In such cases, we may need to use multiple methods to
match candidates to the available ground truth. Some sim-
ple field types, like dates, can be converted to a canonical
format prior to comparison. But if information is missing,
such as the year, we may still need to guess it from the
context.

For more complicated fields, we used more advanced match-
ing mechanisms. For instance, for the event location field,
we match candidates to ground truth by their relative offset
positions in the email (when both have such information),
or use string matching and knowledge-based methods [20].
Approximate matching of complex fields is a well-studied
problem with many sophisticated solutions [10].

In our experience, no one-size-fits-all rule applies to every
field. Instead, we must try to strike a balance between high
precision and high recall. If the equality function is too
strict, we may miss many useful positive labels, but if it is
too relaxed, we may create a noisy labeled dataset which the
model cannot learn from.

3.1.3 Obtaining high quality ground-truth
Initial training data comes from sender-provided markup

in the email in addition to extractions from the legacy rule-
based system. As we discovered and whitelisted new tem-
plates for extractions through the ML system, those too con-
tributed to additional training data. For the event and pur-
chase verticals, a majority of extractions used as sources of
ground truth were derived from the legacy rule-based sys-
tem. While these extractions were incredibly useful, there
were many cases in which the data was faulty, most likely
due to bad rules that may have been put into production
at some point in the past, and went undetected by human

3

template <typename CandidateType>
class CandidateGenerator {

// Called once per email by the FieldExtractor.
virtual std::vector<CandidateType> GetCandidates(
const AnnotatedEmail& e) = 0;

};

template <typename CandidateType>
class CandidateLabeler{

// Called once after initialization and before
// calling GetLabelForCandidate().
virtual void Start(const AnnotatedEmail& e) {}

// Called once for each candidate produced by the
// CandidateGenerator linked via the
// FieldExtractor.
virtual Label GetLabelForCandidate(

const CandidateType& candidate) = 0;
};

Figure 2: Interfaces for a CandidateGenerator and
CandidateLabeler.

evaluators at the time. Small volume templates are particu-
larly susceptible to these issues. Identifying templates that
were getting incorrect extractions from the legacy system
and preventing them from contributing noise to the training
data was key to improving the classifiers.

4. MANAGING TRAINING DATA
The underlying emails from which we generate training

data is stored encrypted. Read-access is only available to
specific role accounts running binaries whose code was re-
viewed by an engineer and checked into our source-control
system. All access is audited to guarantee privacy and en-
sure that the only use of the data is to train models without
allowing any engineer to inspect the data.

4.1 Training Data for Field Classifiers
We built two core abstractions to generate training data

for each field: CandidateGenerators and CandidateLabelers,
whose interfaces are defined in Figure 2. The Candidate-
Generator implements the necessary logic to convert an an-
notated email to a collection of candidates to be used in
model training or inference for field rule generation. The
CandidateLabeler implements the logic to label each can-
didate as positive, negative, or unknown for use in model
training. Recall from the discussion in Section 2.2 that can-
didates are derived from existing annotators for basic types
likes dates, numbers, emails, and entity annotators that rely
on the Knowledge Graph [4].

Consider the hotel confirmation check-in date field. To
generate training data for this field we implement a generic
DateCandidateGenerator that overrides the GetCandidates

method to emit all of the dates present in the email. To label
these candidates, we implement a HotelCheckinDateLabeler.
Recall that training data for an individual field is derived
from emails that have extractions from hand-written parsers
and heuristics. When an extraction is successful, the email
is annotated with a hotel confirmation object. Our imple-
mentation of the Start method stores the extracted check-in
value in a ground truth member variable. The override of
GetLabelForCandidate simply returns positive if the candi-
date matches the extracted ground truth, negative if it does

not match, or unknown when a ground truth value could not
be parsed to begin with.

These two class types are then bound together using a
FieldExtractor which generates training data for that field:

class HotelCheckinDateGenerator
: FieldExtractor<DateCandidateGenerator,

HotelCheckinDateLabeler> {}

4.1.1 Standard Counters
Given the private nature of emails, it is particularly diffi-

cult to gain insights into the quality of candidate generation
or labeling logic if one cannot actually view the results over
a real email sample. However, by linking a CandidateGener-
ator and a CandidateLabeler into the StandardFieldExtrac-
tor, we can produce a standard set of counters that can help
provide statistical insights for debugging. These counters
help us first understand what the coverage of a Candidate-
Generator is, and furthermore provide ways to understand
how to improve it by examining sample templates, which
we discuss further below in Section 4.2. We highlight some
of the particularly useful counters in Table 1 which track
the number of emails which were ignored for the purposes of
generating training data. For example, if the emails-ignored-
due-to-no-candidates-produced count is a significant propor-
tion of the number of emails with an existing extraction from
the rule-based system, we know that we should first focus
our efforts on increasing candidate coverage. Section 4.2
describes tools we used to improve this coverage.

These counters also help us debug problematic labeling
logic. For example, if the emails-ignored-due-to-only-negative-
candidates makes up a significant fraction of the total emails
we generate candidates from, we know that our candidate
labeling logic is failing to match the ground truth available
in these emails and indicates we need to focus on improving
that labeling logic.

In the initial stages of the migration, each engineer in-
dependently wrote a job that generated training data for
a given field. Engineers made independent choices about
when to include the data from a particular email for train-
ing. Consider the case where none of the candidates in an
email were labeled positive. For some fields, engineers chose
to use the data as negative examples, and in other fields en-
gineers chose to treat that as a sign that the labeler was be-
ing too strict with approximate matching, and discard those
training examples rather than pollute the training data.

This meant that every field extractor, and the methods
by which they generated, labeled, counted, and returned the
candidates had to be understood individually. With only a
few engineers working on dozens of fields, the overhead to
ramp up on an individual field extractor became too costly.

The FieldExtractor removes this overhead by providing
a standard abstraction for all of the above: candidate gen-
eration, candidate labeling, counting, and consistent logic.
Consequently, engineers are able to come up to speed on any
field very quickly. Standardizing the counters across fields
enables an engineer to quickly and easily deduce if the prob-
lems for a particular field lie in the coverage of candidate
generation, or the labeling logic, or in the quality of the
ground truth.

Furthermore, the FieldExtractor makes consistent choices
across fields about whether to include data from an email
if none of the candidates get labeled positive. More on this
design choice below.

4

emails-ignored-due-to-
no-candidates-produced The number of emails for which no candidate annotations are available. This is a good

indication to spend more effort to increase the coverage of the CandidateGenerator.
only-negative-candidates The number of emails ignored due to having only negative labels. If it is expected that

a positive example should exist whenever a ground-truth extraction is present, then this
indicates that the CandiateLabeler’s matching logic needs more attention.

only-unknown-candidates The number of emails ignored due to having only unknown labels. This usually indicates
that the labeler was unable to parse the ground truth, which may indicate that the
ground truth itself is unavailable for this example.

Table 1: A sample of standard counters provided by the FieldExtractor that are particularly helpful when
debugging training data generation for private data.

4.1.2 Consistent Training Data Generation
A high quality field classifier requires sufficient training

data to distinguish between the positive and negative candi-
dates for a field. Recall that we use existing extractions from
the legacy rule-based system and other parsers hand-crafted
using donated emails as our training data. Since the ex-
tracted fields are normalized slightly differently in different
verticals we have to rely on an approximate match to assign
labels. The FieldExtractor is designed to discard potentially
noisy examples and thereby produce a higher quality train-
ing data set than might be implied by our confidence in the
approximate labeler.

Consider the case where we have an existing extraction
and all the candidates are assigned a negative label. This
might happen for one of two reasons. The approximate la-
beler may be too strict (for example, not equating “Am-
phitheatre Pkwy”and“Amphitheatre Parkway”), or the cor-
rect candidate may not have been identified by the Candi-
dateGenerator and the labeler, as expected, labeled all the
other candidates as negative. It is difficult to know the un-
derlying reason without actually inspecting a sample email.
The FieldExtractor is designed to discard the training data
from such emails for any field, and make this choice con-
sistently across all fields. This allows engineers to focus on
field-specific matching logic and rely on the infrastructure
for providing high-quality training data. Empirically, we
have observed that the classifiers trained on data where we
excluded low-quality examples perform better in terms of
precision on a holdout set.

Separating the candidate generation logic from the label-
ing logic allows fields that share the same underlying types to
reuse CandidateGenerators. For example, the hotel check-
in, hotel check-out, and bill due-date fields can all share the
same underlying DateCandidateGenerator. This reduces the
complexity of the codebase by removing duplicate imple-
mentations.

4.2 Tools for Evaluation
The counters described above can identify templates that

heuristics successfully extracted from, but the ML system
is unable to tackle either because the CandidateGenera-
tor’s coverage is insufficient (no-candidate-produced in Ta-
ble 1) or the CandidateLabeler is too rigid (only-negative-
candidates in Table 1). We extended the visual inspection
tool described in Section 2.3 to highlight all the candidates
as well as the extractions from the legacy rule-based system.
This tool allowed us to discover during the migration of the
purchase vertical that the CandidateGenerator for the order
number field needed to use annotations from an alphanu-

meric annotator in addition to the number annotator. We
were also able to identify cases where the extraction from the
legacy rule-based system was incorrect and remove them.

4.3 Managing Ground Truth Data
The same synthetic email generation system is also used

for obtaining and managing new high quality ground truth
data. Once a template is classified as belonging to a partic-
ular vertical, and the required field extraction rules are gen-
erated for that template, we synthetically generate emails
for that template and request human assessments for the
vertical label and field extractions. These assessments are
rather cheap, since they only require a yes/no answer to
questions such as, “Is this a hotel confirmation?”, “Is the
correct check-in date extracted?”, etc.

The answers to the vertical label question are stored per
template, and used to label training data during periodic
re-training of the vertical models. These labels are particu-
larly important in two cases. First, when the human labels
differ from the ground truth annotations, thereby correcting
faulty heuristic-based or parser-based extractions and im-
proving the quality of our training data overall. And second,
when newly discovered templates are assessed, they provide
additional training data. Note that negative assessments are
equally, if not more, important since these are cases which
the current classifier got wrong, and are thus valuable ex-
amples that can be used to adjust the decision boundary in
the next retraining.

By assessing template vertical classification and period-
ically retraining, we can continuously improve our models
over time without significant engineering effort.

5. RELATED WORK
This work draws on decades of research on information

extraction from the data management, data mining, and
machine learning communities. We focus on literature that
tackles extracting to a given schema rather than Open IE [3]
which tackles extracting relations in free text into triples for
a knowledge base.

There is a rich body of work dealing with the idea of
wrapper induction [2, 8, 11, 17]. HTML-formatted data is
assumed to be produced by populating a template with val-
ues from a database, and given several examples, the chal-
lenge is to recover the underlying objects in the database.
Most of the algorithms were designed for the web (as op-
posed to email) and required annotations for each site, and
were brittle to changes in the layout of the page.

Rule-based extraction systems [16] have worked well in
the context of writing high-precision extractors for narrow

5

types, in particular, for generating the kinds of candidate
annotations for known entity types that systems like DI-
ADEM [9] and Juicer rely on as part of a larger scalable
solution. However, it is well known that explicit rules get
very complicated rather quickly [29].

Sequence tagging and slot-filling tasks in the NLP commu-
nity are closely related to the kind of information extraction
problem we tackle. Recurrent neural architectures [12] pro-
duce close to state-of-the-art performance on these tasks.
High quality extraction systems have recently been built
leveraging such advances from machine learning. Snorkel
[22] argued that acquiring training data is the key technical
challenge. The authors have advocated for data program-
ming [23] as a solution strategy along with leveraging tech-
niques like multi-task models and weak supervision [24] to
maximize value from training data. Ceres [18] shows that
distant supervision can be effectively applied for relation ex-
traction tasks on the web.

There is a large body of recent work studying privacy-
preserving ML training using differential privacy [13]. Stud-
ies have shown shortcomings of using k -anonymity for pub-
lishing datasets [19, 21]. This paper focuses on the chal-
lenges of managing training data in the presence of privacy
constraints. The training data is not made available for any
purpose other than to train the models described. In fact,
the data is stored encrypted, and read-access is granted only
to role accounts running the training binary built from re-
viewed and checked-in code. The training procedure, while
not the focus of this paper, can be made differentially private
using existing techniques [1].

Our work reinforces the argument that a critical ingredient
of a Software 2.0 approach for the real-world is managing
training data. In contrast to solving a de-novo extraction
problem, we focus on replacing a complex heuristics-based
production extraction system with a completely machine-
learned system that is easy to understand and improve. We
argue that a key component for any such effort is a system
to manage training data – including acquiring, debugging,
versioning, and transforming it.

6. SUMMARY AND CONCLUSIONS
The migration of the Event and Purchase verticals from

the heuristic rule-based extraction system to a Software 2.0
system has resulted in several benefits. Discovering and fix-
ing incorrect legacy extractions resulted in increasing pre-
cision by 8 to 9 points. Second, the migration has allowed
us to delete the heuristic rules and the code that executed
them. This included various scoping rules, whitelists, black-
lists, dictionaries of key phrases, etc. This shrank the extrac-
tion system codebase by over 45KLoC representing a very
big long-term maintenance win. Third, the system makes
it possible to deliver steady improvements in coverage and
recall by gathering more training data and improving the
models. Within a few weeks, the ML models discovered ad-
ditional templates and rules resulting in an increase in the
volume of extractions — 3.3% for purchases and 32.6% for
events. The improvements for both verticals are summarized
in Table 2. In contrast, the coverage of the heuristic-based
extraction system had been flat for several months since it
was too brittle to improve without introducing erroneous ex-
tractions. Fourth, and perhaps most importantly, this mi-
gration has allowed us to tackle cross-language extractions.
Even though our original training data was only in English,

Event Purchase
Heuristics ML Heuristics ML

Precision 90.0 95.3 90.0 97.5
Extraction volume 100.0 132.6 100.0 107.1

Table 2: Precision and extraction volume improve-
ments after migration.

we are able to leverage state-of-the-art cross-language word
embeddings [26] to learn field and vertical models that work
across multiple languages. To our knowledge, this would
have been impossible with traditional rule-based techniques.

Systems to continue to improve training data quality and
acquiring more training data through techniques like active
learning are areas of future investigation.

Acknowledgements
We would like to acknowledge the help and support of all
the engineers who contributed to this project including Gang
Feng, Jing Xie, Qi Zhao, and Zhengying Chen.

7. REFERENCES
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318, 2016.

[2] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In Proceedings of the SIGMOD
International Conference on Management of Data,
pages 337–348, 2003.

[3] M. Banko, M. J. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open information
extraction from the web. In International Joint
Conferences on Artificial Intelligence, pages
2670–2676, 2007.

[4] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In
Proceedings of the SIGMOD International Conference
on Management of Data, pages 1247–1250, 2008.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks and ISDN Systems, 29(8-13):1157–1166,
1997.

[6] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based
information extraction is dead! Long live rule-based
information extraction systems! In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, pages 827–832, 2013.

[7] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar,
P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao,
E. Gonina, et al. State-of-the-art speech recognition
with sequence-to-sequence models. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 4774–4778, 2018.

[8] N. Dalvi, R. Kumar, and M. Soliman. Automatic
wrappers for large scale web extraction. Proceedings of
the VLDB Endowment, 4(4):219–230, 2011.

[9] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi,
C. Schallhart, and C. Wang. Diadem: Thousands of

6

websites to a single database. Proceedings of the
VLDB Endowment, 7(14):1845–1856, 2014.

[10] W. H. Gomaa and A. A. Fahmy. A survey of text
similarity approaches. International Journal of
Computer Applications, 68(13):13–18, 2013.

[11] P. Gulhane, A. Madaan, R. Mehta, J. Ramamirtham,
R. Rastogi, S. Satpal, S. H. Sengamedu, A. Tengli,
and C. Tiwari. Web-scale information extraction with
Vertex. In IEEE International Conference on Data
Engineering, pages 1209–1220, 2011.

[12] Z. Huang, W. Xu, and K. Yu. Bidirectional
LSTM-CRF models for sequence tagging.
arXiv:1508.01991, 2015.

[13] Z. Ji, Z. C. Lipton, and C. Elkan. Differential privacy
and machine learning: a survey and review.
arXiv:1412.7584, 2014.

[14] A. Karpathy. Software 2.0. https://medium.com/
@karpathy/software-2-0-a64152b37c35, 2017.

[15] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
Proceedings of the SIGMOD International Conference
on Management of Data, pages 489–504, 2018.

[16] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. SystemT: A system for
declarative information extraction. ACM SIGMOD
Record, 37(4):7–13, 2009.

[17] N. Kushmerick, D. S. Weld, and R. Doorenbos.
Wrapper induction for information extraction. In
International Joint Conference on Artificial
Intelligence, pages 729–737, 1997.

[18] C. Lockard, X. L. Dong, A. Einolghozati, and
P. Shiralkar. Ceres: Distantly supervised relation
extraction from the semi-structured web. Proceedings
of the VLDB Endowment, 11(10):1084–1096, 2018.

[19] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Transactions on Knowledge
Discovery from Data, 1(1), 2007. Article 3.

[20] R. Mihalcea, C. Corley, and C. Strapparava.
Corpus-based and knowledge-based measures of text

semantic similarity. In Proceedings of the National
Conference on Artificial Intelligence - Volume 1, pages
775–780, 2006.

[21] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In
Proceedings of the 2008 IEEE Symposium on Security
and Privacy, pages 111–125, 2008.

[22] A. J. Ratner, S. H. Bach, H. R. Ehrenberg, and C. Ré.
Snorkel: Fast training set generation for information
extraction. In Proceedings of the SIGMOD
International Conference on Management of Data,
pages 1683–1686, 2017.

[23] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and
C. Ré. Data programming: Creating large training
sets, quickly. In Neural Information Processing
Systems, pages 3567–3575, 2016.

[24] A. J. Ratner, B. Hancock, and C. Ré. The role of
massively multi-task and weak supervision in software
2.0. In Proceedings of the 9th Biennial Conference on
Innovative Data Systems Research, 2019.

[25] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré.
Holoclean: Holistic data repairs with probabilistic
inference. Proceedings of the VLDB Endowment,
10(11):1190–1201, 2017.

[26] S. Ruder. A survey of cross-lingual embedding models.
arXiv:1706.04902, 2017.

[27] Y. Sheng, S. Tata, J. B. Wendt, J. Xie, Q. Zhao, and
M. Najork. Anatomy of a privacy-safe large-scale
information extraction system over email. In
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 734–743, 2018.

[28] M. Whittaker, N. Edmonds, S. Tata, J. B. Wendt, and
M. Najork. Online template induction for
machine-generated emails. Proceedings of the VLDB
Endowment, 12(11):1235–1248, 2019.

[29] S. Zhang, L. He, E. Dragut, and S. Vucetic. How to
invest my time: Lessons from human-in-the-loop
entity extraction. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 2305–2313, 2019.

7

