
DBMS Fitting: Why should we learn what we already know?
Benjamin Hilprecht1, Tiemo Bang1, Muhammad El-Hindi1, Benjamin Hättasch1,

Aditya Khanna2, Robin Rehrmann3, Uwe Röhm4, Andreas Schmidt5,
Lasse Thostrup1, Tobias Ziegler1, Carsten Binnig1

1 TU Darmstadt, Germany 2 IIT Bombay, India 3 TU Dresden, Germany 4 University of Sydney, Australia 5 KIT, Germany

ABSTRACT
Deep Neural Networks (DNNs) have successfully been used to
replace classical DBMS components such as indexes or query opti-
mizers with learned counterparts. However, commercial vendors
are still hesitating to put DNNs into their DBMS stack since these
models not only lack explainability but also have other significant
downsides such as the requirement for high amounts of training
data resulting from the need to learn all behavior from data.

In this paper, we propose an alternative approach to learn DBMS
components. Instead of relying on DNNs, we propose to leverage
the idea of differentiable programming to fit DBMS components
instead of learning their behavior from scratch. Differentiable pro-
gramming is a recent shift in machine learning away from the
direction taken by DNNs towards simpler models that take advan-
tage of the problem structure. In a case study we analyze and discuss
how to fit a model to estimate the cost of a query plan and present
initial experimental results that show the potential of our approach.

1 INTRODUCTION
Motivation. Deep Neural Networks (DNNs) have not only shown

to solve many complex problems such as image classification or
machine translation, but are applied in many other domains, too.
This is also the case for DBMSs, where DNNs have been successfully
used not only for automatic database tuning [1, 20], but also to
replace existing components with learned counterparts such as
learned cost models [8, 18] as well as learned query optimizers
[15, 16], learned indexes [5, 9], and learned scheduling or query
processing schemes [14, 17].

The power of using DNNs results from the fact that DNNs repre-
sent heavily parameterized models that can approximate arbitrary
functions. However, the black-box nature makes DNNs hard to
explain; i.e., decisions of DNNs cannot really be inspected to un-
derstand how the learned algorithm is accomplishing its goals. For
example, in the case of a learned cost model such as [18] that pre-
dicts the execution costs for a given query plan using black-box
DNNs, a database administrator would not be able understand why
the model produced a certain cost estimate. This is very different
from classical cost models that estimate the costs of a plan by com-
bining different factors such as cost of data accesses as well as
processing costs. While these models are explainable and allow a
database administrator to understand the decisions of the model
they are hard to tune and often provide inaccurate estimates [11].

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2020.
CIDR’20, January 12-15, 2020, Amsterdam, Netherlands
.

Fi
tte

d
D

BM
Ss

DBMS Fitting

DBMS Fitting

Fittable DBMS
(Source Code)

DBMS Fitting

Normal Code

Fittable Code

Hardware

Workload

Fi
tte

d
D

BM
Ss

Fi
tte

d
D

BM
Ss

Component A
Component B

Component C

Hardware

Workload

Hardware

Workload

Figure 1: A FITable DBMS - The idea is that the code base of a
DBMS consists of fittable code that allows a DBMS to adjust
its behavior to hardware and workload characteristics.

Moreover, explainability is not the only reason why commercial
vendors are hesitating to put DNNs into their DBMS stack[4]:

• First, DNNs are data-hungry since they have to learn even
basic system behavior (that might be well known by a DBMS
developer) purely from training data. For example, when
learning a cost model, large training corpora are required
which need significant time and resources to be constructed
since each query in the training corpora needs to be executed
and the execution time needs to be collected. Evenworse, this
is not a one-time effort, since the same procedure needs to be
repeated for every new database that needs to be supported
by the optimizer or if the current database is not static (i.e.,
the schema or data is changing).

• Second, it has been shown that DNNs are susceptible to small
changes in the input; i.e., already a small change for one
input feature can cause the DNN to produce erroneous pre-
dictions with high confidence. This is an effect that has also
been shown by adversarial attacks. For DBMS, this problem
cannot be ignored since it shows the general lack of DNNs to
generalize to unseen input in a stable manner and to provide
a robustness for DBMS components.

• Third, DNNs are expensive to update. In DBMSs, a learned
component might need to be updated if the database or the
workload changes. However, updating a learned component
often requires collecting new training data and an expen-
sive retraining of the DNN. While this might be acceptable
in some cases (e.g., the retraining of a learned cost model
might eventually be acceptable since it can be done offline),
retraining might be too expensive for other components
such as learned indexes that require online updates [9] if the
database is dynamically changing as for OLTP workloads.

Contributions. In this paper, we propose a different route for
learned DBMSs to tackle the aforementioned issues of black-box
based approaches. Instead of relying on DNNs to replace classical

CIDR’20, January 12-15, 2020, Amsterdam, Netherlands B. Hilprecht et al.

DBMS components, we propose to leverage the idea of differen-
tiable programming1 to implement FITable DBMSs. In a nutshell,
differentiable programming is a recent shift in machine learning,
away from the direction taken by DNNs that increasingly use heav-
ily parameterized models and towards simpler white-box models
that take more advantage of the problem structure [19]. Recently,
differential programming has been used successfully to fit models
in domains such as computer vision [12] to encode knowledge on
how basic image processing primitives (e.g., edge detectors) work or
to learn a physics engine [3] where differentiable functions encode
the basic laws of physics that are then fitted.

The main idea of FITable DBMSs goes in the same direction
where DBMS components (or parts) are implemented using differ-
entiable functions as shown in Figure 1: Similar to normal code,
differentiable functions implement logic inside a DBMS that already
encodes the basic behavior of a component, but unlike normal code
these functions in addition contain learnable parameters that allow
to fit their behavior to a concrete workload and hardware. For ex-
ample, query optimizers need to be able to estimate the physical
cost (i.e., the total execution time) of query plans. Here, fittable
functions could be used to describe the basic shape of cost func-
tions for operators that could then be fitted to the behavior of the
underlying hardware. While cost functions are a natural candidate
for fitting, we believe that other components inside a DBMS such
as data structures or execution strategies can benefit from fitting
as we will discuss later.

FITable DBMSs are thus different from current approaches for
learned DBMS components that purely rely on DNNs [10], since
the behavior of a fittable component does not need to be learned
from scratch. As a result, fittable functions not only need much
less training data compared to training a DNN (which captures
the same behavior) but also provide other benefits regarding the
explainability and generalization as we show later in this paper.
Another direction that is related to FITable DBMSs is the idea
of synthesizing data structures [6] from known building blocks
such as lists, dense arrays, zone maps, etc. to optimally support a
given workload and hardware. Similar to fitting DBMS components,
synthesizing data structures also generates explainable DBMS code.
However, a major difference to fitting is that while synthesizing
only targets the design of data structures, fitting is applicable to a
broader set of DBMS components.

Outline. The remainder of the paper is organized as follows. In
Section 2, we present our vision towards so called FITable DBMSs.
Afterwards, in Section 3 we show by a concrete use case how the
idea of fittable DBMS components could be used for cost estimation
and present initial experimental results that show the benefits of
our approach. Finally, we conclude in Section 4.

2 VISION: A FITABLE DBMS
2.1 Basic Idea of Fitting
The vision of a FITable DBMSs is that DBMS components (or parts
of them) are implemented as differentiable functions that allow us to
adapt the behavior of the component to optimally support a con-
crete workload and hardware. For instance, a simplified cost model

1https://www.facebook.com/yann.lecun/posts/10155003011462143

 a_out∙s+b_out if s ≥ cache-size

a_in∙s+b_in if s < cache-size
c(s) =

Fittable Function

Fitting
(Gradient-

Based)

Pe
r-t

up
le

 C
os

t c

 1.2∙s-35.5 if s ≥ 30MB

0.0∙s+0.5 if s < 30MB
c(s) =

Fitted Function

Training
Data

Table-Size s Table-Size s

Pe
r-t

up
le

 C
os

t c

Figure 2: Fitting a simple cost model for a scan operator to
predict the per-tuple access cost - The example shows how
the piecewise linear function can be fitted based on train-
ing data by learning the slope and intercept of each segment.
For fitting we can use a gradient-based optimizationmethod
such as gradient descent.

to estimate the execution time of a scan operator in a main-memory
DBMS can be modelled as a differentiable function cost_scan_op
as shown in Listing 1. The main idea of this function is that the
costs for reading a tuple depend on the table size which can be
represented by a piece-wise linear function using two segments for
tables that fit into the cache and for those which spill out of the
cache.

Listing 1: Fittable Function for Simple Cost Model
table -size = size in Byte / no-tuples = number of tuple in table
def cost_scan_op(params , table_size , no_tuples):

piecewise linear model
if table_size < params['cache -size']:

slope = params['a_in']
intercept = params['b_in']
cost_per_tuple = slope * table_size + intercept

else:
slope = params['a_out ']
intercept = params['b_out ']
cost_per_tuple = slope * table_size + intercept

return no_tuples * cost_per_tuple

The main benefit of fittable code is that it not only leverages
the domain knowledge of the developer (e.g., that the tuple-access
cost can be modelled as a piece-wise linear function in our ex-
ample) but more importantly that the concrete behavior can be
fitted automatically to the actual behavior. The fittable part of the
code is captured by parameters that can be learned from concrete
behavior. In our example, the learnable parameters are the slope
(i.e., params[’a_in’] and params[’a_out’]) and intercept (i.e.,
params[’b_in’] and params[’b_out’]) of both segments.

For fitting the cost model, the actual costs of running the scan
operator on different table sizes need to be collected. Since functions
are differentiable, normal gradient-based optimization can be used
to fit the parameters (i.e., minimize the error of the cost function)
as shown in Figure 2. Once the parameters are fitted they can be
used at runtime of a DBMS, just like fully specified source code.

The power of differentiable programming stems from the fact
that the database developer does not have to come up with the
gradients herself. Instead, frameworks such as Autograd2 support

2https://github.com/HIPS/autogradr

https://www.facebook.com/yann.lecun/posts/10155003011462143

DBMS Fitting: Why should we learn what we already know? CIDR’20, January 12-15, 2020, Amsterdam, Netherlands

automatic differentiation [19] of ordinary code, which may contain
all the usual control structures, including loops, if statements, re-
cursion, and closures. In our example, the code for the cost function
in Listing 1 is implemented using a normal if-else control flow that
can be differentiated automatically.

Overall, fittable code in contrast to black-box DNN models thus
provides many advantages: First, fittable code is more data-efficient,
i.e. we require much less training data since the differentiable func-
tion already defines the basic shape of a function that needs to
be learned. Furthermore, fitting a differentiable function does not
always need to rely on gradient-based methods that typically re-
quire multiple passes over the training data. Instead, it can often
be implemented by computationally much simpler approaches that
only require a single pass [5]. Second, fittable functions typically
generalize better and are less susceptible to small changes in the
input, since they already define a reasonable behavior based on
their shape. Finally, fitted code is explainable and debuggable. If the
behavior is unexpected, the developer can debug the DBMS code
(as usual) since the general code structure reflecting the domain
knowledge is still interpretable and remains unchanged.

2.2 The Bigger Picture
There are many different directions the research community can
investigate how fitting can be used to adapt DBMS components to a
given hardware and workload. In the following, we discuss several
DBMS components that are candidates for fitting but also propose
directions regarding the general learning setup.

Analytical Models. In general, ideal candidates for fitting are
DBMS components where (parametrizable) analytical models al-
ready exist. For example, transaction scheduling relies on models
for conflict probability. While recent papers aim to learn the conflict
probability using end-to-end ML models [17] there already exist
analytical models [2] that define the conflict probability based on
number of concurrent transactions, the database size, etc. However,
these models typically rely on parameters that reflect the latency
of lock requests as well as reads/writes. Fitting could be used to
learn these parameters from the actual behavior of running these
operations on a concrete hardware. Other ideas for which analytical
models exist that can be fitted are software-prefetching or caching
strategies that all rely on similar parameters to predict access costs.

Data Structures and Algorithms. While all the before-mentioned
applications target the fitting of functions that model different
notions of analytical models used in DBMSs for query optimization
and scheduling (e.g., execution cost operations, conflict probability),
we believe that fitting can be used also for other data structures and
algorithms of a DBMS. For example, indexes such as B-trees can be
seen as a function that predict the position of a key in a sorted array.
While existing papers [9] use black-box DNNs to approximate this
mapping function, in [5] we already showed that the idea of fittable
white-box functions can be used to learn the mapping. Similar ideas
for fitting that learn the data distribution can be used for learning
algorithms of database operators such as sorting which is again in
contrast to [10] which proposes to use black-box DNNs also for
learning algorithms.

End-to-end Learning. Another interesting route that needs to be
explored is how more complex models can be fitted end-to-end

build-pipe

build-pipe

probe-p
ipe

R S
sc

an
-op

s

sc
an

-op
t

T

build
ht-

op
(HT s)

build
ht-

op
(HT T)

filt
er-

op R
prob

eh
t-o

p(HT s)
prob

eh
t-o

p(HT T) Total Cost: cbuild-pipe(S) + cbuild-pipe(T) + cprobe-pipe(R)
Fitted cost model cbuild-pipe:

Cost
Estimation

Figure 3: Basic idea of our fittable cost model - The total
cost of a query plan is estimated based on fitted cost models
for each pipeline type. In this example, the build-pipeline
type is used in two instantiations over tables S andT and the
probe-pipeline type is used in one instantiation over table R,
which probes into the hash tables HTS and HTT , created by
the other two pipelines. The cost models for each pipeline
type are based on general features of a pipeline, such as the
size of the input table, tuple-width, selectivity of operators
etc.

when using white-box fittable functions. End-to-end learning is
typically seen as a major advantage of black-box DNNs which can
combine several layers (e.g., fully-connected vs. convolutional) to
capture complex behaviors. Differentiable programming makes
the composition of complex models and end-to-end training also
applicable for white-box models. The main idea is that similar
to DNNS, white-box functions can also be combined into more
complex models and auto-differentiation can then be applied to fit
the composed models directly. For example, we will show later in
this paper how a cost model to estimate the query execution cost of
a complete plan is composed of cost models for individual operators
that can be fitted end-to-end based on the monitored execution
time of complete query plans.

Grey-box Learning. Finally, while fittable (i.e. white-box) func-
tions provide many advantages over black-box DNNs, we still think
that there is a need to combine both. The combination enables a
DBMS to learn parts of components where the behavior can not
easily be modeled as a fittable function or where the behavior is
not known in advance. For example, it is hard to define fittable
functions for cost models of operations that are allowed to call
user-defined functions, since the complexity of the user-defined
code can vary significantly. In this case, a normal DNN can be used
to estimate the cost of the user-defined operation and still be com-
bined with the fitted parts of the optimizer. Since fittable functions
as well as DNNs are both differentiable, the composed model is still
differentiable (due to the chain rule) and can be trained end-to-end.

3 CASE STUDY: A FITTABLE COST MODEL
In this section, we discuss the potentials of fitting by presenting
a case study with a fittable cost model. In the following, we first
discuss pitfalls of today’s approaches for cost models, before we
discuss how fitting can be applied to cost models to mitigate these
issues. Afterwards, we show initial experimental results of our fitted
cost model.

CIDR’20, January 12-15, 2020, Amsterdam, Netherlands B. Hilprecht et al.

3.1 The Need for better Cost Models
Models that predict the execution cost of SQL queries are essential
components of DBMSs. Query optimizers are the most well-known
component that rely on cost models to choose between different
alternative query plans based on cost estimations. However, this is
not the only component in a DBMS that relies on cost models. More
recently, papers have suggested to use cost models for self-driving
databases [13] that automate physical design choices.

Traditionally, cost models are handcrafted in a DBMS and thus
rely on detailed knowledge about the complexity of the underlying
algorithm and data structures. However, these models are typically
non-trivial to tune and often provide inaccurate estimates even
when using automatic calibration tools [11]. And this is not the
only obstacle of existing cost models. Other issues are that these
models are also hard to extend since a new model needs to be
handcrafted for every new operator implementation. Moreover,
today’s models do not cover complex operations that allow users
to call user-defined functions.

Recent approaches thus suggest to learn cost models by using
DNNs instead of handcrafting them [18]. While these approaches
can estimate the execution costs more accurately even for complex
operations, they suffer from the general problems of using DNNs
not only regarding high training cost but also explainability and
robustness of DNNs plus missing update capabilities, as discussed
before.

3.2 Fitting a Cost Model
In the following, we present a fittable cost model that combines
(1) the ability of differentiable programming to encode knowledge
about the general shape of cost functions for individual operators
with (2) the capabilities to capture important effects of the under-
lying hardware by learning important parameters of the model by
fitting. Figure 3 shows the basic idea of our fittable cost model.

The model is targeted towards DBMSs that execute SQL queries
in a pipelined manner, which is the case for most commercial
DBMSs that either implement a classical iterator model (for individ-
ual tuples or blocks of tuples) or DBMSs that rely on pipeline-based
code generation for query execution, such as Hyper. In order to
estimate the execution time of complete query plans, the model
estimates the costs of each pipeline and then aggregates the cost to
compute the total cost of that query plan. The core components of
our model are thus fitted cost models that we use to estimate the
costs of individual pipelines.

An important aspect is that a fitted cost model can be used to
estimate the execution costs for a wide variety of different instantia-
tions of the same type of pipeline; i.e., we learn the general behavior
of a pipeline type that can be applied to different tables, rather than
learning a cost model for each particular instantiation of a pipeline
over a given table. For example, the cost model shown in Figure 3
(right-hand-side) can be used to estimate the costs for both build-
pipelines that are executed over two different tables S and T by
providing the features of the pipeline as input to the model. In order
to enable that the same cost model can be used for different instan-
tiations of the same pipeline type, our cost models take general
features of a pipeline (such as the base table size, tuple-width, etc.)
as input to estimate the execution time.

The currently supported pipeline types in our cost model are
shown in Table 1 (as the first three rows). The cost model for each
of these pipeline types is composed of one or multiple differen-
tiable functions that capture the cost for each operator used in that
pipeline. For example, the cost model cbuild−pipe is composed of
two differentiable functions: one function cscan−op that captures
the cost for a filter operator and one function cbuildht−op that cap-
tures the cost of building a hash table. The fittable cost models for
the operators that we use for the different pipeline types are shown
in Table 1 (as the last four rows).

Another aspect of our fittable cost model is that the cost models
for pipeline types, such as cbuild−pipe , define weights (e.g.,wf and
wb) that reflect the influence of a particular operator on the overall
cost, when executed in that pipeline. These parameters are fitted
individually for each pipeline type, since the same operator (when
used in different pipeline types) can have a different influence on
the overall cost. For example, the cost of materializing the output
might be more dominant in a scan-pipeline than in a probe-pipeline,
where the overall cost is dominated by random memory accesses
resulting from probing into the hash table(s).

Finally, for the actual fitting of the cost models of the different
pipeline types, we collect the actual runtime for a variety of pipeline
instances for a given hardware platform. We use this collected train-
ing data for gradient-based optimization to fit the cost model and
learn the parameters of pipelines end-to-end, as indicated in Ta-
ble 1. The pipeline types we currently support already allow us to
estimate the execution time for a wide variety of query plans rang-
ing from simple query plans over a single table to complex query
plans with multi-way hash joins over multiple tables consisting
of multiple build- and probe-pipelines. In the future, we plan to
extend the pipeline types to cover also other operations such as
aggregations.

3.3 Initial Results
In the following, we show the initial results of fitting our cost
model and compare the results also to recent learned cost models
that purely rely on DNNs [18]. The aim of our experiments is to
show that (1) white-box model can provide high accuracy for cost
estimates, (2) white-box models need less training data than black-
box models and (3) white-box models can generalize.

For the experiments, we implemented our fittable cost model
based on the Autograd3 framework in Python and a prototypical
main-memory based execution engine in C++ to run SQL queries
to collect training data. The code of our implementation is available
open-source4.

For running all experiments, we used a server with two Intel
Gold 5120 Skylake CPUs (2.2 GHz, 19.25 MiB L3 cache) and 384GB
of DDR4 RAM. For collecting training data, all SQL queries were
executed single-threaded inside our execution engine. We make
use of the Adam [7] optimizer inside the Autograd framework for
fitting our cost model.

Exp. 1 - Accuracy of Model. In this experiment, we report the
accuracy of our fittable cost model to show their potential to provide
high quality estimates. To measure the quality of cost estimates in

3https://github.com/HIPS/autograd
4https://github.com/DataManagementLab/cidr-cost-model/

https://github.com/HIPS/autograd
https://github.com/DataManagementLab/cidr-cost-model/

DBMS Fitting: Why should we learn what we already know? CIDR’20, January 12-15, 2020, Amsterdam, Netherlands

Name Type Cost function Learned Parameters and Comments
scan-pipe pipeline cscan−pipe = wf · cscan−op (T) +wm · cmat−op (applypipe (T)) wf andwm .
build-pipe pipeline cbuild−pipe = wf · cscan−op (T) +wb · cbuildht−op (applypipe (T) wf andwb .
probe-pipe pipeline cprobe−pipe = wf · cscan−op (T) +wp ·

∑n
i=1 cprobeht−op (HT

i , applypipe (T)+ wf ,wp andwm . The pipeline can probe into multiple hash-tables
wm · cmat−op (applypipe (T)) denoted as HT i for the i-th join to implement multi-way joins.

scan-op operator cscan−op (T) =


rows(T) · (a1 · |T | + b1) |T | < L1-cache
rows(T) · (a2 · |T | + b2) L1-cache ≤ |T | < L2-cache
rows(T) · (a3 · |T | + b3) L2-cache ≤ |T | < L3-cache
rows(T) · (a4 · |T | + b4) L3-cache ≤ |T |

ai andbi whereai andbi are linear combinations of tuple-width and num-
ber of attributes in the filter predicate each having its own fittable parameter.
Moreover, we not only use different parameters ai and bi (i.e., segments)
for different table sizes but also for selectivities < 0.5 and ≥ 0.5 as well
as for number of attributes in selection predicates to model effects such as
branch-mispredictions and effects of cache-line sizes. However, showing the
parameters for all cases in this table would decrease the readability and thus
we omit them.

buildht-op operator cbuildht−op (T) = wb · tw · rows(T) wb . Cost for inserting a tuple linearly depending on tuple-width (tw).

probeht-op operator cprobeht−op (HT ,T) =


wp1 · tw · rows(T) ht − size < L1-cache
wp2 · tw · rows(T) L1-cache ≤ |HT | < L2-cache
wp3 · tw · rows(T) L2-cache ≤ |HT | < L3-cache
wp4 · tw · rows(T) L3-cache ≤ |HT |

wp1 , wp2 , and wp3 . We use different parameters to reflect the different
cost depending on the fact whether the HT fits into one level of the caches.
Moreover, the cost of probing a single tuple into a HT linearly depends on
the tuple-width (tw) of the probed tuple.

mat-op operator cmat−op (T) = wm · |T | wm . Cost for materializing a single tuple are constant.

Table 1: Fittable cost models for pipeline types and operators -T is the input table of a pipeline, |T | is the size of the input table
in Byte and rows(T) the number of rows in T, applypipe (T) is the resulting table T after applying all downstream operators on
T , HT is a hash-table that is either build or probed and |HT | is the size of the hash-table in Byte.

Attributes in predicate 111111222222444444
888888

161616161616

Table siz
e

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

Tu
pl

e
ac

ce
ss

 ti
m

e
(n

s)

40

50

60

70

80

Measured - tuple_widths=16, selectivity=0.5

(a) Real execution time

Attributes in predicate 111111222222444444
888888

161616161616

Table siz
e

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

40 MB
80 MB

160 MB
320 MB

640 MB
1.28 GB

Tu
pl

e
ac

ce
ss

 ti
m

e
(n

s)

40

50

60

70

80

Estimated - tuple_widths=16, selectivity=0.5

(b) Estimated execution time

Figure 4: Exp. 1 - Real and estimated execution time for the
scan-pipeline type for table sizes larger than L3 cache. The
plots show the real and estimated execution time for the dif-
ferent tables sizes and number of attributes used in the selec-
tion predicate. We see that for one attribute in the selection
predicate the tuple-access time is much lower since the at-
tribute to be evaluated fits into one L1 cache line. Our cost
model for the scan-pipeline captures this by using different
segments in a piecewise-linear function for the filter-op as
discussed in Table 1 (last column).

Name Median q-error 90th-percentile
scan-pipe 1.0148 1.0287
build-pipe 1.0355 1.0663
probe-pipe 1.0403 1.0735

Table 2: Q-error of different pipelines when trained on 100%
of the training data on all table sizes.We see that themedian
q-error for the different pipelines is maximum 1.0403.

this experiment, we use the q-error, which is the factor by which
an estimate differs from the real execution time. For example, if the
real execution time of a pipeline is 100ms, the estimates of 10ms
or 1000ms both have a q-error of 10. Using the ratio instead of an
absolute or quadratic error captures the intuition that for making
optimization decisions only relative differences matter.

For collecting training and testing data, we created tables of
different sizes (from 32 kB to 1.28GB) with a varying tuple-width
from 1 attribute (4 Byte) up to 16 attributes (64 Byte). For these
tables we then executed query plans (single table and join queries)
composed of the pipeline types supported by our cost model. In total,
we thus collected the execution time for 56, 730 pipeline instances,
evenly spread across the different pipeline types. Afterwards, we
randomly split the data into 90% for training and 10% for testing.

The q-error (median and 90th percentile) for all table sizes are
shown in Table 2. We can see that our fittable cost models can
provide accurate estimates for the different pipeline types with a
median q-error of less than 1.0403. While in this experiment, we
used the full training data, in the next experiment (Exp. 2) we see
that already 5% of the training data is enough to achieve a similarly
low q-error for our model. Additionally, compared to a black-box
DNN, which we also show in the next experiment, the q-error of
our fitted cost model is lower and requires less training data.

We also visualize the results of the estimated costs of our model
and the real execution times in Figure 4 to see that our model
precisely captures the tuple access cost.

Exp. 2 - Data Efficiency of Model. In this experiment, we show
the data efficiency of our fittable cost model. For this experiment,
we use the same testing set as before but vary the size of the train-
ing data used for fitting our model. Moreover, in order to show

CIDR’20, January 12-15, 2020, Amsterdam, Netherlands B. Hilprecht et al.

Figure 5: Exp. 2 - Data efficiency of our fittable cost model.
This plot shows the result for the scan-pipeline comparing
themedian q-error of ourmodel based (white-box) to aDNN-
based model (black-box) based on [18], when using only x%
of the original training data.

that our model is more data efficient than a black-box model for
cost estimation, we implemented the approach suggested in [18]
that uses a tree-based DNN to estimate the cost of a query plan. A
tree-based DNN uses a separate DNN for each operator in a query
plan that can be stacked together and trained end-to-end. Our im-
plementation of their approach based on the Autograd framework
is also available in our open-source repository.

The results for learning the cost model for simple query plans on
a single table are shown in Figure 5. We can see that our white-box
model can already achieve a low q-error with only 5% of the training
data. In contrast, the black-box model requires much more training
data to achieve a low q-error even for these simple queries. More
interestingly, if we provide the full training data to the black-box
model, it is not able to reach the same accuracy that our white-box
model achieves with only 5% of the training data.

We also executed the same experiment for more complex query
plans that include joins over two tables. The results (which we do
not plot due to space restrictions in this paper) show a similar trend
as for the scan-pipeline only.

Exp. 3 - Generalizability of Model. Finally, in the last experiment
we show the capability of our cost model to generalize queries
over new tables. In order to show that our fitted cost model can
generalize to new unseen tables, we excluded tables sizes larger
than 320MB from the training data. For testing, we used tables of
sizes that the model had not seen before including table sizes that
are in the range of those the model had seen before (e.g., 256MB)
as well as table sizes larger than the model had seen (e.g. 512 and
1024MB). The results for estimating the cost of the scan-pipeline is
depicted in Figure 6 showing the real execution time as well as the
estimated execution time for these unseen tables.

As we can see, the model generalizes to these new tables. The
median q-error and 90th percentile are similar to the results of
Exp. 2. We do not show results of the black-box model that we used
in Exp. 2 since this model cannot generalize to new unseen table
sizes. The reason is that tables in this model are encoded using one-
hot vectors; i.e., the model learns the cost estimation individually
for a particular table rather than learning a cost model that is based
on general features such as table-sizes as we do.

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity

0.25

0.50

0.75

1.00

1.25

1.50

Ru
nt

im
e

(s
)

White Box Generalization - 8 attr. in tuple, 8 attr. in predicate
Table 256 MB
Table 512 MB
Table 1024 MB
Real runtime
Estimated runtime

Figure 6: Exp. 3 - Generalizability of our fittablemodel to un-
seen tables. Results show the real and estimated execution
time for table sizes of 256MB, 512MB, and 1GB that have not
been used in the training set.

4 CONCLUSION
In this paper, we have presented our vision towards FITable DBMSs.
Based on our initial case study with a fitted cost model, we have
shown that fitting not only needs much less training data but also
generalizes, since the model itself captures the general shape of
how the cost of operators in a DBMS typically behave.

While cost modelling is a natural candidate for fitting, we be-
lieve that fitting can be used for many other DBMS components.
Furthermore, since differential programming enables end-to-end
learning by composing white-box and black box models, we believe
that this allows us to build holistic models that span across different
DBMS components; e.g., to combine a fittable model for caching
with a fittable cost model for query optimization to enable better
decisions in a DBMS system.

REFERENCES
[1] D. V. Aken et al. Automatic database management system tuning through large-

scale machine learning. In SIGMOD, pages 1009–1024, 2017.
[2] P. A. Bernstein et al. Principles of Transaction Processing for Systems Professionals.

Morgan Kaufmann, 1996.
[3] F. de Avila Belbute-Peres et al. End-to-end differentiable physics for learning and

control. In NIPS, pages 7178–7189, 2018.
[4] J. Ding et al. ALEX: an updatable adaptive learned index. CoRR, abs/1905.08898,

2019.
[5] A. Galakatos et al. Fiting-tree: A data-aware index structure. In SIGMOD, pages

1189–1206, 2019.
[6] S. Idreos et al. Design continuums and the path toward self-designing key-value

stores that know and learn. In CIDR, 2019.
[7] D. Kingma et al. Adam: A method for stochastic optimization, 2014. cite

arxiv:1412.6980 Comment: Published as a conference paper at the 3rd Inter-
national Conference for Learning Representations, San Diego, 2015.

[8] A. Kipf et al. Learned cardinalities: Estimating correlated joins with deep learning.
In CIDR, 2019.

[9] T. Kraska et al. The case for learned index structures. In SIGMOD, pages 489–504,
2018.

[10] T. Kraska et al. Sagedb: A learned database system. In CIDR, 2019.
[11] V. Leis et al. How good are query optimizers, really? PVLDB, 9(3):204–215, 2015.
[12] T. Li et al. Differentiable programming for image processing and deep learning

in halide. ACM Trans. Graph., 37(4):139:1–139:13, 2018.
[13] L. Ma et al. Query-based workload forecasting for self-driving database manage-

ment systems. In SIGMOD, pages 631–645, 2018.
[14] Q.Ma et al. Dbest: Revisiting approximate query processing engineswithmachine

learning models. In SIGMOD, pages 1553–1570, 2019.
[15] R. Marcus et al. Deep reinforcement learning for join order enumeration. In

aidm@SIGMOD, pages 3:1–3:4, 2018.
[16] R. Marcus et al. Neo: A learned query optimizer. CoRR, abs/1904.03711, 2019.
[17] Y. Sheng et al. Scheduling OLTP transactions via learned abort prediction. In

aidm@SIGMOD, pages 1:1–1:8, 2019.
[18] J. Sun et al. An end-to-end learning-based cost estimator. CoRR, abs/1906.02560,

2019.
[19] F. Wang et al. Backpropagation with callbacks: Foundations for efficient and

expressive differentiable programming. In NIPS, pages 10201–10212, 2018.
[20] J. Zhang et al. An end-to-end automatic cloud database tuning system using

deep reinforcement learning. In SIGMOD, pages 415–432, 2019.

	Abstract
	1 Introduction
	2 Vision: A FITable DBMS
	2.1 Basic Idea of Fitting
	2.2 The Bigger Picture

	3 Case Study: A fittable Cost Model
	3.1 The Need for better Cost Models
	3.2 Fitting a Cost Model
	3.3 Initial Results

	4 Conclusion
	References

