
Automating StateManagement in Computational Notebooks
StephenMacke

smacke@berkeley.edu

University of Illinois (UIUC) and UC Berkeley

Recently, computational notebooks have emerged as essential tools

that enable scientists and engineers to perform exploratory data

analysis with especially tight feedback. Jupyter [4] in particular has

gained widespread popularity. With an estimated 4.7 million note-

books on GitHub as ofMarch 2019, it has been called “data scientists’

computational notebook of choice” [9]. Furthermore, its impact has

been formally recognized by the ACM Software System award in

2018 [8], and continued shared interest has led to the emergence of

the JupyterCon conference. All the evidence suggests that computa-

tional notebooks, and especially Jupyter, have cemented themselves

as essential data tools that will be with us for years to come.

Despite their popularity, notebooks have a number of drawbacks

that are well-documented in academic [5, 9] and industry [2, 3, 10]

literature. While the specific complaints about notebook behavior

vary, they all stem from the inherent difficulty in manual manage-

ment of the global state that notebooks keep persistent in memory.

This global state can be highly dependent on the order in which cells

are run,making it difficult to rectifywith code visible on screen. This

issue is further exacerbated by the ability to reorder, rerun, edit, and

delete notebook cells. However, existing approaches [5, 10] sacrifice

flexible any-order execution semantics [6] of notebooks, prompting

us to ask the question: can we have our cake (by reducing errors in

notebooks) and eat it too (keeping existing notebook semantics)?

Leveraging Wisdom from the DB Community. To reduce er-

rors and reproducibility problems in notebooks, we propose that,

just as a relational database pushes responsibility of managing data

integrity from application logic to a DBMS, we need ways to push

management of notebook state from the brain of the user down

into smarter notebook kernels. In doing so, we can enable a number

of desirable properties toward making notebooks safer.

1. Atomicity of Cell Execution. We propose that notebooks should

obey transactional semantics when cells are executed. For example,

if a user forgets to define a variable or import a package, we should

warn the user, instead of leaving the cell in a partially-executed

state — particularly egregious if the cell is not idempotent, and the

user goes to re-execute it after fixing any undefined references.

2. Idempotence of Cell Executions. Idempotent cell executions are de-

sirable in their own right, since cells can be re-executed an arbitrary

number of times. For example, if a user runs a cell that increments

a counter variable, we should detect that this cell is not idempotent.

In this way, the user can be warned if they attempt to execute it

again, in case they did so by accident.

3. Obedience of DataflowConstraints. Additionally, notebooks should
be able to infer dataflow constraints without explicit guidance from

users, based solely on the dependencies between variables and

cells. In this way, if a dependency changes, the notebook can au-

tomatically determine which cells are unsafe to execute (because

This article is published under a Creative Commons Attribution License (http://
creativecommons.org/ licenses/by/3.0/ ), which permits distribution and reproduction in
any medium as well as allowing derivative works, provided that you attribute the original
work to the author(s) and CIDR 2021. 11th Annual Conference on Innovative Data Systems
Research (CIDR ’21), January 10-13, 2020, Chaminade, USA.

they contain references to non-updated variables) using program

analysis techniques such as liveness analysis [1, 7].

Furthermore, we propose that even richer desired semantics can

be inferred by examining the relationship between cell version and

variable version, if only our notebook kernels captured variable

version. For example, if some variable has a version more recent

than the cell in which it was defined, this suggests that there is

some initialization process for this variable; e.g., preprocessing a

dataframe after reading a csv from disk. Enforcing this constraint for

future uses of the aforementioned dataframe can help prevent errors

that occur when the user forgets to execute the preprocessing code.

Our Proposed Approach.We propose that many of these proper-

ties can be enforced via a combination of runtime tracing (in order

to infer desired program semantics without explicit indication from

the user) along with static program analysis (in order to enforce

these semantics). The advantage of inferring desired user semantics

is that, unlike in previous systems wherein users must explicitly

annotate their data dependencies [5], we can preserve the flexibility

of existing notebook semantics. And what more natural way to infer

these semantics than by tracing the actual code written by the user?

To enforce these semantics, we propose leveraging state-aware
program analysis techniques. Based on metadata inferred during

execution, we can, for example, be aware of which variables are

resident in notebook memory, and we can combine this knowledge

with liveness analysis [1] to detect cells that refer to uninitialized

variables, and in doing so enforce atomicity.

We are currently building such a system, called nbsafety, for

which we have already seen that such an approach can capture

a subset of the dataflow constraints we indicated earlier [7]. We

wager that this basic approach of capturing desired semantics in

a define-by-run manner can help enable safer computational note-

books while maintaining their existing flexibility, and in doing so

seamlessly augment modern data science with structure and rigor.

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[2] Joel Grus. 2018 (accessed June 26, 2020). I Don’t Like Notebooks (JupyterCon 2018

Talk). https://t.ly/Wt3S.

[3] Or Hiltch. 2019 (accessed August 26, 2020). Jupyter Notebook is the Cancer of ML
Engineering. https://medium.com/@_orcaman/jupyter-notebook-is-the-cancer-

of-ml-engineering-70b98685ee71.

[4] Thomas Kluyver et al. 2016. Jupyter Notebooks-a publishing format for

reproducible computational workflows.. In ELPUB. 87–90.
[5] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking

dependencies of cells. In 9th {USENIX}Workshop on the Theory and Practice of
Provenance (TaPP 2017).

[6] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of

Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.

In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (VL/HCC ’20).

[7] S Macke, H Gong, D Lee, A Head, D Xin, and A Parameswaran. 2020. Fine-
Grained Lineage for Safer Notebook Interactions. Technical Report. Available at:
https://smacke.net/papers/nbsafety.pdf.

[8] Jim Ormond. 2018 (accessed June 26, 2020). ACM Recognizes Innovators Who Have
Shaped the Digital Revolution. https://awards.acm.org/binaries/content/assets/

press-releases/2018/may/technical-awards-2017.pdf.

[9] JeffreyM Perkel. 2018. Why Jupyter is data scientists’ computational notebook

of choice. Nature 563, 7732 (2018), 145–147.
[10] Kevin Zielnicki. 2017 (accessed July 5, 2020). Nodebook. https:

//multithreaded.stitchfix.com/blog/2017/07/26/nodebook/.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://t.ly/Wt3S
https://medium.com/@_orcaman/jupyter-notebook-is-the-cancer-of-ml-engineering-70b98685ee71
https://medium.com/@_orcaman/jupyter-notebook-is-the-cancer-of-ml-engineering-70b98685ee71
https://smacke.net/papers/nbsafety.pdf
https://awards.acm.org/binaries/content/assets/press-releases/2018/may/technical-awards-2017.pdf
https://awards.acm.org/binaries/content/assets/press-releases/2018/may/technical-awards-2017.pdf
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/

	References

