
Cloud Observability:
A MELTing Pot for Petabytes of Heterogenous Time Series

Suman Karumuri
Slack Technologies

skarumuri@slack-corp.com

Franco Solleza, Stan Zdonik
Brown University

{fsolleza,sbz}@cs.brown.edu

Nesime Tatbul
Intel Labs and MIT
tatbul@csail.mit.edu

On May 12, 2020 at 4:45pm PST, the cloud-based business com-
munication platform Slack experienced a total service disruption
[3]. To its millions of users, the outage lasted for 48 minutes;
within Slack, the cascade of events that led to this outage had ac-
tually started several hours before, at 8:45am PST. A post-mortem
analysis of this 8-hour incident is laid out in Slack’s engineering
blog in detail [5]. However, triaging the problem to identify its
root cause on the spot, under time pressure was not a trivial en-
deavor. Engineers from multiple teams put "all hands on deck",
exploring patterns and correlations across PBs of operational data
that were visible to them through Slack’s monitoring, dashboard-
ing, and alerting infrastructure.

This incident is a prime example for why observability has been
emerging as a critical capability for large-scale software systems
and services that are built and operated on the highly distributed,
heterogeneous, and complex setting of the cloud-native ecosystem
[1]. Borrowed from control theory, the notion of observability aims
at bringing better visibility into testing, debugging, and understand-
ing the general behavior of software based on telemetry data col-
lected from the internals of a system as it operates [6, 7]. Beyond
simple black-box monitoring of known scenarios, observability re-
quires deeper contextual information and insight about operational
semantics of systems for root cause analysis of unforeseen prob-
lems. The main goal is to minimize time to insight - a critical mea-
sure of understanding what is happening in the system, and why.

Due to its data-intensive and time-sensitive nature, observabil-
ity is essentially a data management problem. Large volumes of
heterogeneous time series data should be collected, stored, and in-
dexed from instrumented systems in a way that enables their low-
latency search, analysis, and visualization in real time and on de-
mand. Since observability is critical for meeting service-level ob-
jectives, there is a lot of industrial activity in this domain. However,
current solutions are mostly ad hoc, custom-built solutions with
many moving pieces [4]. We believe that these solutions will not
scale well in the long term, as they incur high performance over-
heads, operational complexities, and infrastructure costs. There is
a growing need to rethink the current design of data and software
infrastructures to enable observability data management at scale.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

Observability data typically consists of four time series cate-
gories that widely differ in terms of their storage, querying, and
long-term retention needs as well as payload types and volumes:
Metrics (M), Events (E), Logs (L), and Traces (T). Metrics provide
quantitative (numeric) measurements of system performance and
availability at a specific point in time. Events are highly structured
strings that identify a finite set of possible occurrences. Logs are
semi-structured strings that expose higher granularity event infor-
mation with rich local context. Finally, Traces capture the end-to-
end request flow of logical operations through various components
of a distributed system [2].

Slack generates 100s of TBs of MELT data every day, which
needs to be ingested, stored, and indexed to serve a variety of ob-
servability queries. For example, to identify the root cause of its
outage incident, Slack had to run various types of analytical queries
across all of its MELT data for the time period immediately pre-
ceding the incident. Despite their differences, there are also certain
workload characteristics that are common across all MELT data:
they are all immutable, append-heavy, and bursty, and queries over
them have a bias to freshness (e.g., > 95% of all queries on MELT
data in a Slack workload that we analyzed were on data that was
less than 24 hours old). Understanding the complete requirements
of heterogeneous MELT datasets and query workloads over them is
key in building a scalable observability data management system.

Based on current experience in industry exemplified by Slack,
this talk will discuss why today’s approaches to cloud observability
are all facing technical and practical challenges, and what guiding
design principles should instead be followed while building data
systems that can handle this emerging workload at scale [2].
REFERENCES
[1] C. Chan and B. Cooper. Debugging Incidents in Google’s Distributed

Systems. ACM Queue, 18(2):47–66, March-April 2020.

[2] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul. Towards Observ-
ability Data Management at Scale, 2020. Under submission.

[3] R. Katkov. All Hands on Deck: What does Slack do when Slack goes
down? https://slack.engineering/all-hands-on-deck/, 2020.

[4] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner. On Observ-
ability and Monitoring of Distributed Systems – An Industry Interview
Study. In International Conference on Service-Oriented Computing
(ICSOC), pages 36–52, October 2019.

[5] L. Nolan. A Terrible, Horrible, No-Good, Very Bad Day
at Slack. https://slack.engineering/a-terrible-horrible-no-good-very-
bad-day-at-slack/, 2020.

[6] OpenTelemetry. The OpenTelemetry Observability Framework. https:
//opentelemetry.io/, 2019.

[7] C. Sridharan. Distributed Systems Observability: A Guide to Building
Robust Systems. O’Reilly Media, July 2018.

https://slack.engineering/all-hands-on-deck/
https://slack.engineering/a-terrible-horrible-no-good-very-bad-day-at-slack/
https://slack.engineering/a-terrible-horrible-no-good-very-bad-day-at-slack/
https://opentelemetry.io/
https://opentelemetry.io/

