
DataSense: Display Agnostic Data Documentation
Poonam Kumari, Michael Brachmann,

Oliver Kennedy

University at Buffalo, SUNY

{poonamku,mrb24,okennedy}@buffalo.edu

Su Feng, Boris Glavic

Illinois Inst. of Technology

{sfeng14@hawk,bglavic@}.iit.edu

Producing and consuming documentation is an essential step when

creating and analyzing data. Good documentation helps a consumer

of data to understand the context of the data and its schema, includ-

ing (i) semantics (e.g., the currency of an account balance), (ii) data

collection techniques (e.g., which assay was used to measure blood

iron), (iii) limitations or caveats (e.g., that missing values are due to

sensor failure), and (iv) assumptions made (e.g., missing geographi-

cal locations were inferred through geocoding). Misunderstanding

the context of a dataset can lead to statistical errors and mistakes

with potentially serious, life-threatening consequences. In short,

good data documentation is critical. Unfortunately, extensive docu-

mentation can overwhelm users, making it hard to find elements in

the documentation that are relevant for the task at hand. We need

a better way to interact with documentation than the current state

of the art: dozens or even hundreds of pages of word documents.

Modern code development environments (IDEs) present a com-

pelling solution for code: (i) Syntax highlighting is a high-level

overview of the document structure, helping users to survey it; and

(ii) Mouseover detail views show users the specifics of functions,

types, classes, etc. We argue that a similar paradigm is needed

for datasets, a paradigm we term display-agnostic data docu-
mentation (DAD). DAD facilitates both discovery and lookup of

context-relevant data documentation by inlining them directly and

interactively into the data display. This documentation can often

be derived from the data or by analyzing provenance. Many such

techniques already exist, from fully automated data documenta-

tion techniques like data profiling, provenance summarization, to

user-provided prose annotations. For example:

Outliers: Highlighting outliers can assist in finding errors or

interesting data points. Prose annotations can help to explain them.

Missing Values: Under SQL’s NULL Semantics, aggregates silently

ignore null values. Highlighting data derived from null values re-

veals data errors like failed CAST operations.

Cell Provenance: Spreadsheet expression cells (e.g., ’=$A22+$B22’)
can help users to interpret the role of the cell, for example when

the cell’s column name is uninformative. Similar information for

database query results (e.g., AVERAGE(ST_Distance(trip.start,
trip.end))). i.e., schema-level provenance, can be just as helpful.

Annotations: Semistructured documentation is used in program-

ming languages like Python (__doc__ or PEP484) and Java (Javadoc),
and leveraged by IDEs for mouse-over contextual documentation.

Unlike IDEs where users interact with code only through a text

editor, a dataset may be displayed and accessed through many

modalities: as a table, in a graph, on a map, by writing queries, and

more. The need to support multiple modalities poses a challenge

for inline documentation, as each new form of data documentation

needs to be individually adapted for each display modality. A DAD

system needs to separate logic for generating data documentation

Figure 1: The DataSense abstraction layer
and displaying data with the documentation inlined. Creating a

standard interface between these components makes it possible to

implement a documentation generator once, and have it work with

a range of display modalities. This leads us to four central goals:

Process Agnostic: A DAD should support many different types of

documentation generation processes and formats, including free-

form prose, structured properties, provenance, and more.

Declarative: A DAD should generate documentation agnostic to

the modality in which it will be displayed. For example, declarative

roles (e.g., highlight, detail) can help avoid explicit formatting rules.

Context Sensitive: A DAD should dynamically adapt documenta-

tion to what is relevant for a user to avoid overwhelming them.

Unobtrusive: A DAD should (i) facilitate discovery of relevant doc-

umentation without impeding the user’s normal data interactions,

while also (ii) making context-relevant documentation accessible.

Automatic tracking: A DAD should ensure that associations be-

tween data and documentation are preserved when data is trans-

formed, e.g., during data wrangling. This saves the user from having

to manually generate documentation for derived data.

Unlike IDEs however, which manage human-generated (and

thus moderately-sized) programs, datasets (which are much larger)

require a more scalable and flexible way to associate documenta-

tion with data. Figure 1 shows one approach to DAD that we call

DataSense: An abstraction layer that links documentation modules
generates contextual documentation, and relational data display
managers renders (e.g., as a table, plot, or map) the data and its

documentation. We envision DAD allowing users to declaratively

document dataset elements. This will require improving the pro-

cess for inferring documentation from source data, for example

by automatically discovering rules for propagating annotations.

A prototype of DataSense is implemented as part of the Vizier

workflow-notebook (https://vizierdb.info), with support for user-

and heuristically-generated prose annotations and profiling meta-

data, and with support for provenance metadata available soon.

https://vizierdb.info

