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ABSTRACT
Analytical applications, such as exploratory data analysis and deci-

sion support, process complex workloads that include sequences of

inter-dependent queries. While modern OLAP systems exploit data

parallelism, dependencies force execution ordering constraints that

severely limit task parallelism. The serialization of tasks leads to

long query response times and under-utilization of resources.

We propose a new query processing paradigm that accelerates

inter-dependent queries using speculation. As when used in OLTP

or in computer micro-architecture, speculative execution helps in-

crease parallelism and improve scheduling efficiency. Nevertheless,

analytics present unique challenges in making the right specula-

tive execution decisions, in validating predictions and in repairing

results. We enable fast and accurate predictions through approxi-

mate query processing (AQP), and efficiently validate speculations

through a new streaming join operator. In case of mispredictions we

do not discard progress, but apply corrective actions to incremen-

tally repair the result. Our experiments over the TPC-DS benchmark

show that, even though speculation adds work, it improves task

parallelism, queries run faster, and more importantly, the speedup

is increased as a function of query complexity.

1 INTRODUCTION
Academia and industry capitalize on data abundance to drive deci-

sion support. To efficiently extract deep insights from data, stake-

holders retrieve as much information as possible in a single complex

query [32]. Advanced SQL features such as views, nested queries

and control flow allow users to express such complex analytical

workflows monolithically. Hence, a single analytical query plan is

typically translated into multiple inter-dependent sub-queries. The

dependent parts of the plan require access to the full results of the

dependees before they can execute. Clearly, dependencies enforce

serialization and reduce task parallelism.

Limited task parallelism, in turn, hurts scalability. Modern analyt-

ics usually take place in large, distributed infrastructures, where the

abundance of available resources enables data parallelism. Amdahl’s

law, however, implies that data parallelism by itself is insufficient,

as an increase in resources often results in diminishing returns

[10]. Moreover, if the dataset cannot scale out to the entire infras-

tructure, resources remain idle. The combination of data and task

parallelism pushes further the scalability wall and enables better re-

source utilization. The following example query helps demonstrate

the impact of dependencies:
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Q1: SELECT COUNT(*) FROM store_sales, date_dim
WHERE ss_quantity > 90 AND
ss_sold_date_sk = d_date_sk AND
d_date BETWEEN '3/18/98' AND '6/16/98'
AND ss_sales_price > (SELECT 1.2*AVG(cs_sales_price)
FROM catalog_sales WHERE ss_item_sk=cs_item_sk)

The outer query computes an aggregate over the store_sales
table. However, for filtering the tuples, we have to compute the

corresponding correlated aggregate of the inner sub-query. The

dependency on the inner sub-query serializes the two tasks and

delays execution.

While Q1 has a single dependency, in reality we may encounter

arbitrarily complex dependencies. In exploratory analysis – a com-

mon task for analysts and computer scientists – the result of each

query parameterizes the next. If the decision-making algorithm is

known, rather than ad-hoc, control-flow constructs can express

exploration as a deep decision tree. The final outcome of the process

lies in a single leaf of the tree, and tree traversal depends on the

results of a sequence of queries.

In this work, we show how to relax dependencies and compute

the inner and outer sub-queries in parallel through the use of spec-

ulative execution. Speculative execution is an established technique

in OLTP systems [4] and also in computer architecture [12] super-

scalar CPUs use branch prediction to speculate the next instruction
to fetch and execute. After evaluating the condition, the CPU val-
idates the prediction: correct predictions boost the utilization of

pipeline slots and instruction-level parallelism, whereas mispredic-
tions flush the pipeline and restart execution at the correct branch,

incurring a delay.

Inspired by this model, we adapt speculative execution to com-

plex analytics. As in the example of Q1, dependencies often occur

as conditions that involve the result of the inner sub-queries; the

branch prediction paradigm naturally fits the problem. Neverthe-

less, speculative execution is riskier and not as straightforward to

apply in analytics: (i) in contrast to microprocessors, where specu-

lation fetches a single instruction, branch prediction in analytics

forwards large amounts of data to the execution path of the outer

sub-query; therefore, mispredictions are much more expensive. (ii)

Validation of the prediction is not supported at the hardware level

but is implemented by an expensive join. (iii) Finally, to repair mis-

predictions, we need to re-compute a complex OLAP query, instead

of simply flushing the pipeline.

At the same time, there are also some opportunities. First, pre-

dictions in analytics are data-dependent. We show that by using

approximate query processing (AQP) as a branch predictor, we

enable fast and educated predictions. Second, in case of mispredic-

tions, analytics present opportunities for more fine granular actions

than accept/re-compute the final result. Our mechanism triggers
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some updates selectively rather than discarding the entire progress

and restarting execution.

The contributions of this paper can be summarized as follows:

• We propose a framework based on speculative execution for

accelerating complex OLAP queries. By relaxing dependencies,

we improve task parallelism and enable data and operator shar-

ing in cases where otherwise sharing could not be applied. Our

experiments show that we gain an average speedup of 1.6× for

TPC-DS queries.

• We propose the use of AQP techniques as query-aware branch

predictors and show that our predictions offer both low latency

and high accuracy. Speculation is a novel application for AQP

that is fertile for future research.

• To offset the challenge of efficient validation, we motivate a new

streaming join operator that exploits AQP and the opportunities

for early validation. By selectively correcting predictions, our

operator renders validation faster by an order of magnitude.

2 DEPENDENCIES IN OLAP QUERIES
First, we define the dependencies that exist in analytical workloads

and can be efficiently resolved by speculative execution. In short,

they should satisfy two properties: (i) be involved in a cross-query

condition, and (ii) be introduced by a pipeline breaker.

Cross-query conditions. The proposed framework requires

the results of inner sub-queries to occur in corresponding outer

sub-queries only as part of conditional expressions. For example,

in Q1 the dependency is introduced by the condition:

ss_sales_price > (SELECT 1.2*AVG(cs_sales_price)..)

Cross-query conditions are common in nested SQL queries and

appear in the WHERE, HAVING or CASE WHEN clauses. They

restrict speculations to boolean, rather than continuous predictions.

Pipeline breakers. In database literature, a pipeline breaker is

an operator that fully materializes at least one of its inputs [21],

such as the hash or sort-based join.

The twomentioned properties define stage breakpoints and stages.

Definition 1 (Stage Breakpoint). A materialized input of a
pipeline breaker is a stage breakpoint, if it participates only in cross-
query conditions.

Stage breakpoints logically partition the query plan into stages
that have different intermediary datasets as inputs.

Definition 2 (Stage). A stage is a sub-tree of the query plan,
where its root node is either an operator whose result is a stage break-
point or the root of the query plan, and its leaves are either base
relations or stage breakpoints.

For example, consider the query plan of Fig. 1. The red nodes pro-

duce stage breakpoints and the plan is partitioned into four stages.

The joins in 𝑆4 inject the cross-query conditions. The following

definition introduces dependencies:

Definition 3 (Dependency). Let a stage of execution 𝑆𝑖 that
ends with stage breakpoint 𝐵 and materializes a dataset 𝐷 . Let also
a stage 𝑆 𝑗 of the query plan with 𝑆 𝑗 ≠ 𝑆𝑖 . A dependency between 𝑆𝑖
and 𝑆 𝑗 exists iff 𝐷 belongs to the inputs of 𝑆 𝑗 .

As pipeline breakers require full materialization, inter-dependent

stages need to be serialized. Given sufficient resources, the total
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Figure 1: Example of query plan with dependencies and the
corresponding stage dependency graph (blue dashed lines).

execution time for the dependency graph of Fig. 1 (blue dashed lines)

is𝑇1 = 𝑡𝑆4 +𝑚𝑎𝑥{𝑡𝑆1 , 𝑡𝑆2 , 𝑡𝑆3 }, where 𝑡𝑆𝑖 denotes the execution time

of 𝑆𝑖 . As 𝑆4 depends on the other three stages, it needs to wait for

the slowest of 𝑆1, 𝑆2, 𝑆3 in order to be executed. The aim of this work

is to relax dependencies and allow inter-dependent stages to either

run in parallel or share data/operators. In our example, we would

overlap the execution of 𝑆4 with the other stages and ideally, this

would produce a running time of 𝑇2 =𝑚𝑎𝑥{𝑡𝑆1 , 𝑡𝑆2 , 𝑡𝑆3 , 𝑡𝑆4 }. Then,
the maximum possible speedup

𝑇1
𝑇2

would be 2× in the case when

𝑡𝑆4 =𝑚𝑎𝑥{𝑡𝑆1 , 𝑡𝑆2 , 𝑡𝑆3 }. By generalizing, speculative execution can

claim an𝑂 (𝐿) speedup, where 𝐿 is the length of the longest path in

the dependency graph. Thus, the potential benefits are proportional

to the depth of chained dependencies.

3 DATA VS TASK PARALLELISM
In the example of Fig. 1, we claim a speedup of up to 2× by overlap-

ping two stages that normally would have to be serialized due to

the dependency between them. While the potential gain is obvious

from a theoretical viewpoint, it needs more discussion in terms of

practical performance evaluation.

Data analytics systems are data-parallel, meaning that they parti-

tion data across multiple workers. These workers operate in parallel

and can scale the execution of a single stage to utilize the whole

cluster. Since parallelism exists even within a single stage, the ques-

tion that naturally arises is why is this insufficient and how we

benefit by overlapping stages and increasing task parallelism.

For many workloads, data parallelism scales sublinearly the exe-

cution and an increase in resources results in diminishing returns.

This happens due to common primitives in analytical processing

that introduce parallelization overheads, and hence, the correspond-

ing stages hit a scalability wall. In this Section, we give examples

of such primitives and discuss some specific cases where we can

decrease the amount of resources allocated to a stage without a

proportional performance decrease. Our examples are based on the

in-memory execution of OLAP queries over distributed frameworks

such as Spark.

Shuffling. Common database operations, such as GROUP-BY

and JOIN, usually involve data exchange over the network (a.k.a
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shuffling) and disk accesses, when implemented on top of dis-

tributed frameworks. As the network bandwidth is usually much

lower than the one of memory, it can become a bottleneck when

running in-memory analytics. For the GROUP-BY case, increased

parallelism may lead to increased shuffling size
1
and thus increased

overhead. For high degrees of parallelism, the latency of processing

a single block of data becomes too small and execution time is

dominated by network/disk overheads.

While JOIN also includes shuffling, it suffers from a different kind

of bottleneck; in the JOIN case, the shuffling size does not depend on

parallelism. However, computation does and diminishing returns

are observed due to arguments similar to Amdahl’s law for parallel

processing.

Broadcast join. This is typically the algorithm of preference

when a small table is involved in a join operation. The small table

is broadcasted to all partitions and a fully data-parallel probing

phase follows. The broadcast of the small table incurs a synchro-

nization overhead that limits scalability. By increasing the dedicated

resources for the query, we decrease the amount of work for each

executor and make probing faster. If the cost of probing becomes

smaller than broadcasting the table, execution ceases to scale.

Data skew. Distributed operations require the partitioning of

data and assignment to workers. Depending on the data distribution

and partitioning logic, we may end up with an imbalanced situation

where a few workers hold the majority of data and become strag-
glers. Increasing the amount of resources results in no benefit. We

need to either change the partitioning algorithm or take advantage

of the free resources to run another stage of the query.

Therefore, in cases similar to the aforementioned, executions

schedules that fully utilize the cluster for a single stage are sub-

optimal, even when there is enough data to do so. By increasing

task parallelism and overlapping stage execution, we can achieve

better end-to-end execution time. Next section shows how specula-

tive execution achieves increased parallelism even between inter-

dependent stages.

4 SPECULATIVE EXECUTION
In this Section, we show how speculative execution relaxes depen-

dencies, increases task parallelism, and reduces end-to-end latency.

We first describe our approach for the case of a single dependency,

and then generalize to complex dependency graphs.

Fig. 2 presents a high-level overview of the execution workflow.

When a query is submitted, the optimizer detects the dependency

between the outer and inner sub-queries and creates two separate

execution paths: one for speculative execution and one for valida-

tion/repairs. The speculative execution path (solid black arrows)

executes the outer query. Whenever a cross-query condition ap-

pears in the outer query, it is resolved by the branch predictor

and execution continues in a pipelined fashion until results are

produced. At the same time, the validation/repair execution path

(red arrows) performs three steps: (i) it fully computes the inner

query, (ii) it validates the speculative decisions and (iii) it repairs the

results in case of mispredictions. Speculation decouples the inner

and outer queries and permits the two tasks to run completely in

parallel – or share data and operators if they process rows from the

1
Assuming an early aggregation mechanism such as Hadoop Combiners is available

Compute 
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Inner Query

Dependency
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Predictor
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Sharing opportunities
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Figure 2: Overview of speculative execution for OLAP
queries.

same table. In the example of Q1, the speculative execution path

computes the COUNT over of the store_sales table, while the

validation execution path computes the AVG of the inner query.

4.1 AQP for Branch Prediction
As in computer architecture, a branch predictor takes speculative

decisions. However, the predictor’s accuracy highly affects the

overall efficiency of the proposed scheme. An ideal predictor would

correctly evaluate the condition in zero latency. Then, as no repairs

would be needed, we would completely skip computing the inner

query. Also, as the predictor would respond instantly, it would

introduce no delays to the speculative execution path.

Nevertheless, this is an ideal situation that cannot be realized.

In practice, we have to strike a balance in the trade-off between

an efficient but data-agnostic predictor, and a heavyweight but

data-aware one. On the one hand, a naïve predictor, such as a ran-

dom true/false evaluation, ensures low-latency decisions, but it

can also yield an excessive number of mispredictions, and hence,

expensive repairs. On the other hand, a more sophisticated pre-

diction mechanism can provide accurate results and decrease the

validation/repair overhead but at the cost of higher latency in the

speculative execution path. Clearly, the predictor’s design affects

both execution paths and consequently end-to-end running time.

To hit the sweet spot in this design space, we employ approximate

query processing. AQP techniques provide tunable knobs to explore

the latency-accuracy trade-off and enable fast speculative decisions

and low validation cost at the same time. In our running example

(Q1), the inner query computes the AVG cs_sales_price of the

tuples with a given item_sk value. An equivalent computation is to

group the tuples by item_sk and fetch the AVG cs_sales_price of
a specified group. Thus, the branch predictor needs to approximate

the AVG for a group and check whether it satisfies the condition.

GROUP-BY queries with aggregates are one of the most common

applications for AQP techniques. Note also, that since the goal is to

evaluate the condition and not the aggregate itself, the predictor is

more robust to errors.

In this work, we motivate the use of AQP as branch predictor

rather than proposing a new approximate algorithm. Moreover,

unlike traditional AQP, in our setup the final query outcome is not

approximate, but exact; approximations are subsequently validated

and repaired. Therefore, we argue that AQP, as an in-engine ac-

celerator, is useful even for applications that require exact results.
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This opens up new research opportunities, and especially for ML-

based AQP techniques [13, 17, 30] that present astonishing results

in practice but have weaker theoretical guarantees.

4.2 Validating Results
For the validation, which is the most challenging part, we need to

keep track of every branch prediction. For this purpose, the predic-

tor materializes its output (orange square in Fig. 2). At the same

time, the validation execution path computes the inner query and

compares the results against the materialized predictions. Essen-

tially, this comparison is a join (green circle in Fig. 2) and in case

either of the two join inputs is large enough, the validation cost

can become significant and offset the benefits of speculation.

For mitigating the validation cost, we propose SVJoin: a new

join operator that works in a streaming fashion and selectively

validates predictions without tampering result correctness. The

streaming nature of SVJoin allows the two execution paths to work

concurrently and modify the query result without blocking each

other.

The operator takes two inputs: the exact results 𝐸 from fully

computing the inner query and the materialized predictions 𝑀 .

𝐸 takes the form of a map from the correlation attribute 𝑘 (e.g.,

item_sk in Q1) to the corresponding true result 𝐸 (𝑘) of the inner
query. The materialization of𝑀 tracks information for every spec-

ulative decision. For each row 𝑖 of the outer query, we maintain: (i)

the correlation attribute 𝑘𝑖 , (ii) the value 𝑣𝑖 of the attribute that is

involved in the cross-query condition (e.g., ss_sales_price in Q1),
(iii) the speculative decision 𝑑𝑖 ∈ {1, 0} (i.e., whether the branch
is taken or not), and (iv) all other attributes 𝑎∗

𝑖
of the row that

are required for the computation of the final result (the current

COUNT of store_sales in Q1). Thus, 𝑀 can be formulated as a

map𝑀 : (𝑘𝑖 , 𝑣𝑖 ) →
(
𝑑𝑖 , 𝑎

∗
𝑖

)
. Note that the key of𝑀 also contains 𝑣𝑖 ,

since speculative decisions are taken for each distinct (𝑘𝑖 , 𝑣𝑖 ) pair.
SVJoin enhances symmetric join to implement𝑀 ⊲⊳ 𝐸 in a stream-

ing and selective way. As 𝑀 can be too large and jeopardize per-

formance, we show how to use the predictor’s AQP semantics to

reduce the size of the join. Fig. 3 illustrates our optimization for

the example of Q1. Without loss of generality, we assume that the

approximation underestimates the real AVG. We observe that in

regions A and C, the speculative decision agrees with the decision

based on the exact computation of the inner query; in region A

both mechanisms discard the result, while in region C both of them

accept it. The controversial area is B, i.e., the interval between the

approximate and the real value. In the example of Q1, we need to

validate only the decisions that involve ss_sales_prices in region
B. The most accurate the approximation, the narrowest the inter-

val and depending on the data distribution, the most selective the

validation process can be. Therefore, SVJoin only needs to process

the tuples from𝑀 that satisfy:

𝑚𝑖𝑛{𝐸 ′ (𝑘𝑖 ) , 𝐸 (𝑘𝑖 )} ≤ 𝑣𝑖 ≤ 𝑚𝑎𝑥{𝐸 ′ (𝑘𝑖 ) , 𝐸 (𝑘𝑖 )} (1)

where 𝐸 ′ (𝑘𝑖 ) is the approximate result for the given correlation

key. Note that 𝐸 ′ (𝑘) does not need to be materialized as it can be

easily derived by querying the corresponding AQP synopsis. Our

experiments in Section 5 indicate that the AQP-enabled selectivity

can decrease validation time by an order of magnitude.

Approx
AVG

Exact 
AVG

ss_sales_price > 1.2 * AVG(cs_sales_price)

A B Cmin{ss_sales_price} max{ss_sales_price}

Figure 3: AQP-enabled selective validation for Q1. Only rows
in region B need to be validated.

Algorithm 1: SVJoin
input :Tuple 𝑡

1 if 𝑡 comes from the speculative execution path then
// 𝑡 =

(
𝑘𝑖 , 𝑣𝑖 , 𝑑𝑖 , 𝑎

∗
𝑖

)
2 𝐸 (𝑘𝑖 ) = probe 𝐸 with 𝑘𝑖 ;

3 if 𝐸 (𝑘𝑖 ) ≠ null then
4 forward

(
𝑎∗
𝑖
, correct

)
in the pipeline ;

5 else
6 forward

(
𝑎∗
𝑖
, speculated

)
in the pipeline ;

7 materialize𝑀 (𝑘𝑖 , 𝑣𝑖 ) =
(
𝑑𝑖 , 𝑎

∗
𝑖

)
8 else

// 𝑡 = (𝑘𝑖 , 𝐸 (𝑘𝑖 ))
9 𝑘𝑖 = correlation attribute of 𝑡 ;

10 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 = [𝑚𝑖𝑛{𝐸 ′ (𝑘𝑖 ) , 𝐸 (𝑘𝑖 )},𝑚𝑎𝑥{𝐸 ′ (𝑘𝑖 ) , 𝐸 (𝑘𝑖 )}];
11 𝑆 = probe𝑀 for tuples with 𝑘 𝑗 = 𝑘𝑖 and 𝑣 𝑗 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠𝑖 ;

12 if 𝑆 ≠ null then
13 foreach tuple ∈ 𝑆 do
14 if misprediction then
15 𝛿 =

(
𝑘𝑖 , 𝑣 𝑗 , 𝑑 𝑗 , 𝐸 (𝑘𝑖 ) , 𝑎∗𝑗

)
; repair(𝛿)

16 materialize 𝐸 (𝑘𝑖 )

Algorithm 1 presents the outline of SVJoin. The algorithm works

at the tuple-level and receives input both from the speculative and

the validation execution paths. For tuples coming from the specu-

lative execution path (lines 1-7), the algorithm probes 𝐸 to check

whether the corresponding result of the inner query has been com-

puted. If so, it instantly validates the prediction and forwards the

correct result to the next stage. Otherwise, if 𝐸 (𝑘𝑖 ) has not been yet

computed, to avoid breaking the pipeline, the algorithm forwards

the speculation and materializes the tuple in𝑀 as explained.

For tuples coming from the validation execution path (lines 8-16),

the algorithm applies selective validation; it locates which tuples are

eligible for validation (line 10) and probes𝑀 for candidate matches.

Of course, for efficient filtering,𝑀 should support range queries on

the key (𝑘𝑖 , 𝑣𝑖 ). However, as range queries are supported by many

systems, we do not further elaborate this point.

In line 15 of the algorithm, when a misprediction is detected, a

𝛿-object, with the correct update, is constructed and forwarded to

the repair mechanism. The repair mechanism identifies the results

that come from wrong speculations and corrects them. To apply

repairs, we define a new algebra A. For each relational operator,

the corresponding operator in A works over 𝛿-objects and updates

the result. The algebra infers a repair plan for each stage of the

original query plan to propagate the updates to the final result.
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Figure 4: Execution plans and time breakdown for the running example Q1.

To sum up, SVJoin never blocks and for each input tuple, it has

three likely outcomes: (i) correcting the speculation on-the-fly and

forwarding the exact value (line 4), (ii) forwarding the speculated

value (line 6), or (iii) forwarding a set of 𝛿-objects (line 15).

4.3 Example
Our framework permits increased task-parallelism and data/work-

sharing between the inner and outer query, but also incurs addi-

tional computation for approximating the inner query, validating

the speculations and repairing the results. Thus, a speculation-

aware optimizer should evaluate the corresponding costs and apply

speculative execution only when the expected benefit outweights

the overhead. Quantitatively, this happens when:

𝑚𝑎𝑥{𝑡𝑖𝑛𝑛𝑒𝑟 , 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 + 𝑡𝑜𝑢𝑡𝑒𝑟 } + (𝑡𝑣𝑎𝑙𝑖𝑑 + 𝑡𝑟𝑒𝑝𝑎𝑖𝑟 ) < 𝑡∗𝑖𝑛𝑛𝑒𝑟 + 𝑡∗𝑜𝑢𝑡𝑒𝑟

where the left-hand-side of the inequality represents the execu-

tion time of our approach and the right-hand-side the purely data-

parallel execution, where different sub-queries are serialized. In

this Section, we provide an execution time analysis for our run-

ning example Q1, through which we explain how the framework

achieves speedup.

Fig. 4(a) depicts the plan we use for processing Q1: it comprises a

GROUP-BY over the catalog_sales table (inner query) followed
by broadcast joins with store_sales and date_dim (outer query).

Fig. 4(b) shows the time breakdown for executing this plan with

in-memory data over a Spark cluster of 4 machines. Details on

our experimental setup are provided in Section 5. We observe that

data parallelism offers diminishing returns and using more than

24 parallel tasks does not significantly reduce execution time. The

cause of the scalability bottleneck is the shuffling due to the GROUP-

BY of the inner query and the broadcast joins of the outer query.

In this case, our framework can provide speedup while using

the same amount of resources. A speculation-aware optimizer

would detect the scalability problem of each stage and instead

of serializing them and investing 48 cores to each sub-query, it

would assign only 24 cores to each sub-query and execute both

in parallel. The corresponding speculative plan is illustrated in

Fig. 4(c). Fig. 4(d) presents the timeline of the speculative versus

the regular data-parallel execution. For the purely data-parallel ex-

ecution, the end-to-end execution time is 𝑡∗
𝑖𝑛𝑛𝑒𝑟

+ 𝑡∗𝑜𝑢𝑡𝑒𝑟 = 9𝑠𝑒𝑐 .

During speculative execution, the inner and outer sub-queries

A

B

C

(a)

B AC

SV1

SV0

(b)

B AC

SV1

Guard

SV0

(c)

Figure 5: Speculative execution plan for a dependency path
of length greater than one: (a) dependency graph, (b) plan
with SVJoins, (c) complete plan with SVJoins and Guards
run completely in parallel and a validation-repairs phase follows

(𝑚𝑎𝑥{𝑡𝑖𝑛𝑛𝑒𝑟 , 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 + 𝑡𝑜𝑢𝑡𝑒𝑟 } + (𝑡𝑣𝑎𝑙𝑖𝑑 + 𝑡𝑟𝑒𝑝𝑎𝑖𝑟 ) = 6𝑠𝑒𝑐). Notice

that the execution time of the speculative outer sub-query is in-

creased compared to the purely data-parallel execution, as it also

includes the computation of approximations(𝑡𝑎𝑝𝑝𝑟𝑜𝑥 ) and the mate-

rialization of the speculative decisions. Moreover, we observe that

validation is an order of magnitude faster than the actual execution

of the two sub-queries. Validation has very low execution time

as it evaluates decisions only for the join’s probe input and only

for the range of ss_sales_price values that satisfy Inequality (1).

Overall, the speedup we achieve for Q1 is 1.5× compared to the

purely data-parallel execution.

4.4 Complex Dependency Graphs
So far, we have discussed the case where a single dependency exists

in the plan. However, the dependency graph can be an arbitrarily

complex DAG of stages. The generalization demands to extend the

above description for the following cases: (i) a single outer query

depends on more than one inner queries, and (ii) the dependency

graph contains paths of length greater than one.

For the first case, where a stage depends onmultiple inner queries

(e.g., Fig. 1), we have extended SVJoin to receive multiple inputs:

one for each inner query’s validation path, and one for the spec-

ulative path that performs branch predictions for all cross-query

dependencies. Thus, in the general, SVJoin is an 𝑛-ary operator.

Speculative execution over deep dependency graphs is defined

in a recursive way in Algorithm 2. Let us explain the idea through
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an example. In the dependency path of Fig. 5(a), We start from

the output stage 𝐶 and insert an SVJoin 𝑆𝑉0 in order to resolve

the outermost dependency. 𝑆𝑉0 has two inputs: (i) the materialized

speculative decisions for stage 𝐶 and (ii) the true results for the

query part over 𝐴 → 𝐵. As the second input is not a base relation,

we add another SVJoin 𝑆𝑉1 that resolves the 𝐴 → 𝐵 dependency.

The resulting speculative plan is depicted in Fig. 5(b). However,

deep streaming pipelines can harm repair stability and overall per-

formance predictability. As SVJoin is a streaming operator, it can

forward speculative results from stage 𝐵 to the validation execu-

tion path of 𝑆𝑉0 before 𝑆𝑉1 validates them. The result is multiple

unnecessary and overlapping repairs.

To remedy this, we add a special Guard operator that acts as a

“glue” between successive SVJoins and permits only correct tuples to

flow between them. The type of an SVJoins’s output tuples defines
the Guard’s behavior. If a tuple contains a correct result, Guard
directly forwards it to the next SVJoin. If a tuple is a 𝛿-object then
Guard applies the A algebra, corrects the result and forwards it.

Finally, if the tuple is a speculation, Guard materializes it and waits

until it is corrected before emitting it to the next SVJoin. Fig. 5(c)
illustrates the speculative plan with the Guard included.

Algorithm 2: SVJoinConvert
input :Dependency graph 𝐺 , Graph Node 𝑠

// 𝑠 is the output stage of 𝐺

1 𝑆𝑉 = new SVJoin(); 𝑆𝑉 .inputs().add(𝑠) ;

2 foreach parent 𝑝 of 𝑠 do
3 if 𝑝 has no parents then
4 𝑆𝑉 .inputs().add(𝑝) ;

5 else
6 𝑔 = new Guard(); 𝑆𝑉2 = new SVJoin() ;

7 𝑔.inputs().add(𝑆𝑉2); 𝑆𝑉 .inputs().add(𝑔) ;

8 SVJoinConvert(𝐺, 𝑝) ;

4.5 Imperative Query Processing
The proposed framework accelerates not only nested queries but

also imperative programs that combine multiple relational queries

using imperative constructs, such as variables, conditional state-

ments and loops. Imperative programs can express complex analyt-

ical workloads, including exploratory data analysis and iterative

algorithms such as k-Means [31].

DBMS support imperative programs that may contain SQL state-

ments through stored procedures and user-defined functions. More

recently, to satisfy the demand for interweaving relational pro-

cessing with diverse operations offered by linear algebra, machine

learning, and visualization frameworks, data management has be-

come increasingly integrated to programming languages. The APIs

of library-based frameworks (e.g., Pandas, dplyr) or embedded

databases (e.g., SQLite, DuckDB [25]) inject analytical queries into

programs written in the host language. In all cases, queries handle

data-intensive processing, whereas imperative constructs orches-

trate data and control flow.

Data and control flow create dependencies between queries and

serialize execution. On the one hand, similar to the case of nested

sub-queries, data flow dependencies occur when a query needs to

access the results of another query. Imperative programs achieve

data flow using variables that temporarily store query results; then,

subsequent queries use results assigned to variables. The data flow

dependency serializes the queries involved. On the other hand,

control flow dependencies occur in conditional statements and

loops, when the branch condition contains the results of one or

more queries. Depending on the branch decision, the imperative

program executes different queries(e.g., exploratory data analysis).

Hence, it waits for the queries involved in the branch decision to

finish, before it starts executing any further queries. Both types of

dependencies co-exist in imperative programs.

Imperative programs contain a large number of queries, but

permit limited task-parallelism. By relaxing data and control flow

dependencies, speculative execution can increase task-parallelism

and reduce the total execution time. Using temporary tables is

equivalent to nested queries that our framework accelerates; in

fact, optimizations over imperative programs often produce nested

queries by inlining relational expressions [7, 26]. We further extend

the framework to handle control flow dependencies. By predicting

branch decisions using approximate query results, the framework

eagerly runs queries that are likely to execute. To handle mispredic-

tions, it restarts execution from the first wrongly predicted branch;

then, it benefits from all preceding correct predictions. The frame-

work first handles control flow dependencies, thus deciding which

queries to execute, and then data flow dependencies.

4.6 Discussion
Implementation-wise, the proposed framework requires changes to

both the optimizer and the execution engine. During planning, the

optimizer detects dependencies and creates the stage dependency

graph. Then, it runs Algorithm 2 and inserts SVJoin and Guard op-

erators into the plan. The resulting plan comprises SVJoins, Guards
and stage nodes. To exploit both pipelining within each stage and

sharing across stages, we envision a just-in-time compiled exe-

cution engine [21] that performs intra- and inter-stage operator

fusion.

We also consider future work along three axes: i) approximations:

speculative execution motivates a need for empirically accurate

approximations for a wide range of queries. Moreover, as there is

no silver-bullet in AQP, we aim to work on an optimizer that selects

the most suitable AQP technique for the query at hand. ii) modern

hardware: the proposed framework combines multiple processing

paradigms (e.g., approximations, exact processing, incremental up-

dates, etc.) with different performance characteristics. We plan to

use hardware accelerators to offload execution steps judiciously. iii)

applications: we plan to use speculations for a wider class of work-

loads. In HTAP, for example, analytical queries ingest data from a

transactional engine. To maximize freshness, the analytical engine

can speculatively compute queries over stale data and materialized

views, in parallel with update propagation and incremental view

maintenance, and repair the result based on the update deltas.
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5 EXPERIMENTS
In this Section, we validate the proposed framework with a series of

experiments using the popular TPC-DS benchmark, a decision sup-

port benchmark that models a wide range of applications, including

ad-hoc, reporting, iterative, and data-mining queries [19]. Such

applications often process complex queries, which our framework

targets. We demonstrate: (i) the end-to-end running time improve-

ment, (ii) the importance of task parallelism in overcoming the

scalability wall, and (iii) the correlation between AQP and efficient

validation. By parallelizing stages and applying repairs efficiently,

we increase scalability and significantly reduce the latency of query

processing.

While the proposed framework can be implemented on top of any

analytical engine, we chose to built the initial prototype using Spark,

as it is a mature and widely used system for large-scale analytics.

In general, two basic requirements should be satisfied to enable

speculative execution; the underlying system should support: (i)

concurrent query processing and (ii) work-sharing. Spark achieves

concurrent jobs through Scala’s concurrency primitives (Futures
[1]). As Spark does not natively support work-sharing, currently

we have implemented custom solutions per query.

Then, on top of Spark, we need to implement: (i) the approximate

query processing algorithms for the speculations, (ii) the SVJoin
and Guard operators and finally, (iii) a speculation-aware optimizer.

However, in the current work the plans are manually implemented.

We envision speculative execution to be used in large highly-

parallel clusters with several nodes. We expect large clusters to

have sufficient main memory for storing the data. Furthermore,

for analytical workloads, especially iterative algorithms and ex-

ploratory data analysis which our framework aims to accelerate,

main-memory analytics achieve drastically better performance com-

pared to disk-based analytics such as MapReduce [29]. Therefore, as

our target application is main-memory analytics, in the following

experiments, we store data completely in-memory.

We run experiments in a 4-node homogeneous YARN cluster.

Each machine is equipped with two Intel Xeon CPU E5-2660 CPUs

(2.20GHz, 8 cores), 128 GB of DRAM and SATA 3Gbps HDD config-

ured in RAID0. A 10Gb Ethernet switch connects the nodes. The

cluster configuration designates three nodes as both Spark workers

and HDFS DataNodes and one node as the driver. We use Spark

2.4.6, Hadoop 2.10, JDK 1.8 and Scala 2.11.

5.1 Execution time for TPC-DS
We evaluate our framework over the TPC-DS benchmark with scale

factor SF=100. For this purpose, we have implemented speculative

execution for all the TPC-DS queries with nested sub-queries and

cross-query conditions (9% of the benchmark). Those queries are

representative of the non-trivial case of decorrelation, which re-

solves dependencies by transforming inner queries to GROUP-BY

aggregations and by using a semi-join on the correlated attribute or

aggregated value. As aggregated values only participate in the semi-

join conditions, they satisfy the conditions presented in Section 2.

Efficient approximation methods exist for speculation over the ag-

gregate values. Sideways predicate passing [9] is also used wherever

possible. Sub-queries cover four broad categories: i) aggregation

with a cross-query filtering condition over a view (𝑄1, 𝑄30, 𝑄81), ii)
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Figure 6: Query execution speedup for TPC-DS queries
aggregation with a cross-query filtering condition and a JOIN on

a filtered fact table (𝑄32, 𝑄92), iii) existence with cross-query JOIN

on a fact table (𝑄16), iv) existence with cross-query JOIN on a fact

table with a filtering condition (𝑄10, 𝑄35, 𝑄69).

Fig. 6 shows end-to-end execution time speedup when compared

to the regular Spark execution. The speedup we gain ranges from

1.2× to 2.2× (1.6× on average). While we need to do extra work

for validation and repairs, increased task parallelism accelerates all

implemented queries. The determining factor of expected benefits

for a specific query is the relative difference between the cost of

the outer and inner sub-queries. If the inner and outer queries have

comparable latency, parallelization provides significant speedup. By

contrast, imbalance limits the opportunity for acceleration. A cost-

based optimizer can identify the relative costs of the sub-queries,

and predict the benefit from speculative execution.

The queries with green bars in Fig. 6 are accelerated by exploiting

sharing opportunities, while the rest exploit only task parallelism.

In the case of sharing, our framework permits the computation of

the inner query and of the speculative phase with a single pass over

the data and this is where speedup comes from. Queries with blue

bars overlap the execution of the inner and outer sub-queries, and

by increasing task parallelism, they overcome scalability problems

caused by shuffling and broadcasts and achieve reduced end-to-end

time compared to the regular, data-parallel-only Spark execution.

5.2 AQP Impact
We investigate the suitability of state-of-the-art AQP techniques

for branch-prediction and the correlation between AQP and the

validation cost. We use offline AQP methods as they provide the

highest speedup by constructing data synopses ahead of time, and

evaluate three different scenarios based on the query-driven change

in data distribution. Our microbenchmark considers the following

inner queries:

Q2. SELECT 1.2*AVG(ss_list_price) FROM store_sales
Q3. SELECT ss_store_sk k, 1.2*AVG(ss_list_price)

FROM store_sales GROUP BY ss_store_sk
Q4. SELECT ss_store_sk k, 1.2*AVG(ss_list_price)

FROM store_sales WHERE ss_list_price>100
GROUP BY ss_store_sk

𝑄2 represents the base case where the aggregate value is approx-

imated over the full column of the store_sales table.𝑄3 performs

a GROUP-BY-AVG aggregation, hence it evaluates the resilience of

the approximation method to compute the data distribution based

on individual grouping keys. 𝑄4 adds a filter value in the WHERE
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Figure 7: Comparison of VerdictDB and DeepDB with respect to latency, accuracy and validation cost.

clause of the 𝑄3 and further evaluates the ability of the approxi-

mation to model the subsets of data and changes in the initial data

distribution. For approximations, we use VerdictDB [23] configured

with 1% sampling rate and DeepDB [13].

The error-latency results are presented in Fig. 7(a)-(b). Both

AQP techniques are at least an order of magnitude faster than

the exact computation of the inner query, enabling fast branch

predictions with sub-second responses and a speedup ranging from

24× to 159×. VerdictDB evaluates the queries over a stratified data

sample. Processing less data reduces the overall execution time,

while carefully constructing a stratified sample that includes the

grouping columns as keys maintains the approximation quality

over the queries. DeepDB constructs a Sum-Product Network based

synopsis [20] which is more compact than the sample and enables

faster evaluation of aggregate queries. However, in presence of

GROUP-BY queries with small groups the approximation error

is lower for the examined query and data size, while adding a

highly selective predicate reduces the accuracy and increases the

execution time. A trade-off exists between approximation latency

and error: a faster approximation permits speculative execution to

start earlier, while an accurate approximation reduces the cost of

validation and repair. In Fig. 7(c) we quantify the impact of AQP on

the validation cost. As discussed in Section 4.2, AQP enables the

optimization of selective validation; the more accurate the synopsis,

the more efficient the validation. We compare the validation time

when each of the two AQP systems is used versus processing the

full join because there is no selective access path. Both AQP systems

enable highly selective joins and decrease validation time by an

order of magnitude. As VerdictDB is more accurate than DeepDB

when running the queries in our setup, VerdictDB’s validation costs

are lower. Estimating the trade-off between approximate answer

latency and validation cost remains an open research milestone

towards an optimizer that automatically selects the best available

data summary for the speculation.

6 RELATEDWORK
Nested SQL Queries. Nested queries have attracted a lot of inter-

est, as they are a convenient way to express complex dependencies.

The seminal work of Won [15] proposes rewriting queries to move

the correlation predicate to the outer block. Magic decorrelation

[28] is a more general technique that materializes inner query re-

sults for all outer references and then performs a join. SQL window

functions have also been used to eliminate the inner subquery [32].

While window functions are efficient to implement [16], they can

be applied under certain limited conditions. In [27], performance

improvements are demonstrated by caching the portion of the inner

query that is invariant with respect to the changing outer values.

Existing database systems [3, 8] implement one or more of the

aforementioned techniques. While existing techniques can com-

pletely decorrelate and flatten some queries, in the general case they

eliminate redundant data accesses, but retain dependencies which

prevent task-parallel execution. Speculative execution is comple-

mentary to previous research. We assume that it is applied on an

already decorrelated plan that efficiently computes the inner query,

thus yielding an incremental benefit.

Speculative Execution. There are two types of speculation:

predictive and eager. Predictive speculation, in which this work

belongs, predicts the correct path of execution and applies repairs

as needed. This is the case for avoiding pipeline stalls [12] in mi-

croprocessors and for speculative concurrency control [4] in OLTP.

By contrast, eager speculation executes both branches of the condi-

tion or spawns multiple identical tasks to avoid stragglers. This is

inherently supported by some programming languages (e.g., Scala

[1]), and by several big data frameworks (e.g., Apache Spark) [5].

AQP comprises a rich body of work in both algorithms and sys-

tems. There are many techniques such as samples [23], histograms

[24], wavelets [18], sketches [6], and more recently, ML-models

[13, 17, 30]. As there is no silver bullet, depending on the query

type, each technique presents different accuracy-latency trade-offs.

Based on whether the synopses are pre-computed or constructed as

by-product of execution, we classify them as offline [2], online [14]

or hybrid [22]. This work does not propose a new AQP technique

and does not stand for a specific existing one. However, in order

to minimize prediction latency during speculative execution, we

opt for offline techniques. Similarly to selecting and using index

structures, the materialization of the right synopses is part of the

database tuning.

Online aggregation [11] provides approximate, progressively-

refined query results by propagating tuples through operators in

a controlled order. Similarly, speculative execution progressively

repairs the early approximated results in the speculative path. Pro-

gressive execution is only a side-effect of the speculation, where

the main effect is increasing task parallelism and exposing work-

sharing opportunities. Unlike online aggregation, speculative ex-

ecution focuses on reducing end-to-end latency rather than on

providing early results.
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7 CONCLUSION
In this paper, we propose the use of speculative execution for re-

laxing dependencies and parallelizing complex OLAP workloads.

Our framework restores task parallelism across inter-dependent

queries, by resolving dependencies through predictions. We demon-

strate that AQP techniques enable the construction of accurate

low-latency branch predictors. Also, we show that the cost of vali-

dating predictions is crucial and motivate a selective streaming join

operator, SVJoin, that can accelerate validation by more than an

order of magnitude. Despite introducing additional work, the frame-

work accelerates complex TPC-DS queries by 1.6× on average. Our

approach sets the foundations for a new paradigm of data-driven

query processing and presents a novel application for AQP.
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