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ABSTRACT
Today’s permissioned blockchain systems come in a stand-
alone fashion and require the users to integrate yet another
full-fledged transaction processing system into their already
complex data management landscape. This seems odd as
blockchains and traditional DBMSs share considerable parts
of their processing stack. Therefore, rather than replacing
the established infrastructure, we advocate to “chainify” ex-
isting DBMSs by installing a lightweight blockchain layer
on top. Unfortunately, this task is challenging: Users might
have different black-box DBMSs in operation, which poten-
tially behave differently. To deal with such setups, we intro-
duce a new processing model called Whatever-Voting (WV),
pronounced [weave]. It allows us to create a highly flexible
permissioned blockchain layer coined chainifyDB that (a) is
centered around bullet-proof database technology, (b) can
be easily integrated into an existing heterogeneous database
landscape, (c) is able to recover deviating organizations,
and (d) adds only up to 8.5% of overhead on the under-
lying database systems while providing an up to 6x higher
throughput than Hyperledger Fabric.

1. INTRODUCTION
A blockchain can be defined as an immutable ledger for

recording transactions, maintained within a distributed net-
work of mutually untrusting peers. The peers execute a con-
sensus protocol to validate transactions, group them into
blocks, and build a hash chain over the blocks. Blockchains
may execute arbitrary, programmable transaction logic in the
form of smart contracts. A smart contract functions as a
trusted distributed application and gains its security from the
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blockchain and the underlying consensus among the peers. [8]
Many descriptions of “blockchain-technology” read as if

they describe an unexplored data management planet in a
far distant galaxy. To bring things back to earth, in this pa-
per, we will take an old database researcher’s attitude: What
if all of this could be realized using our good old relational
database systems? With this in mind, we can translate the
above foreign language into the following: We form a net-
work of DBMSs, where each DBMS keeps a replica of the
database. When executing transactions, we ensure that all
databases change in the same way. If a database deviates
for whatever reason, we try to recover it. As we build upon
established DBMSs, we can easily integrate our layer into
an existing IT-landscape and build upon the powerful fea-
tures of these systems: SQL, the relational model, and high
transaction processing performance.

Feature DBMS Blockchain chainifyDB
Well-integrated in IT-
landscape

X × X

Convenience and accessibility X × X
Robustness via recovery X × X
High performance X × X
Sync. in untrusted environ-
ments

× X X

Table 1: chainifyDB combines the best of both worlds.

Thus, instead of reinventing the wheel, we advocate to
simply combine the best of both worlds. Table 1 lists the
database features we build upon as well as the blockchain
features we add by chainifying our good old relational
DBMSs.

1.1 Permissioned Blockchain Systems (PBS)
Blockchain systems are required in situations, where mul-

tiple organizations, that potentially distrust each other, in-
dependently maintain a shared state. This situation is for
example present in the medical area: When multiple doc-
tors treat a patient, they independently keep a patient file
and record their treatments therein. Without a blockchain
system, the following problems can arise in such a situation:

Missing data synchronization. Each of the doctors has
their own local version of the patient data, without prop-



erly synchronizing it with the data of all other doctors in
charge. Thus, differences in form of errors or missing data
can appear over time.

Missing transaction synchronization. Each of the doctors
treats the patient independently, without synchronizing his or
her intended treatment with the plans of the other doctors.
This renders their treatment in the best case inefficient, in
the worst case harmful.

A so called permissioned blockchain system (PBS) seems
to provide exactly what the doctors need: a way of sharing
and managing data across a set of known but independent
organizations. However, if this is the case, why don’t we see
permissioned blockchains everywhere? The following num-
bers show how severe the need is: 86% of treatment errors
are actually caused by missing or faulty information in pa-
tient files [2]. The cost caused by double treatment and
redundant information is estimated at 1950 USD per hos-
pital patient [2]. In total, 210 billion USD per year go to
unnecessary or needlessly expensive care [4] in the US.

The reason lies in that although PBSs solve these two
problems, they actually introduce at the same time various
new problems:

First of all, the typical PBS comes as yet another stand-
alone system. As such, it is extremely hard to integrate into
an existing data management landscape. E.g. our doctors
have a large database of patient files already, which must be
migrated to the new blockchain system. Furthermore, PBSs
such as Fabric are neither based on SQL nor do they use a
relational engine underneath. The entire system is designed
from the point of view of a distributed system rather from
the point of view of a database system. This is very unfortu-
nate as like that many technologies are either solved solved
unsatisfactorily or get reinvented on the way. For instance,
recent work has shown that Fabric can basically be con-
sidered a distributed version of MVCC [23]. Additionally,
PBSs such as Hyperledger Fabric do not provide any recov-
ery mechanism. This is really unfortunate as this implies
that if any node deviates, it implicitly leaves the network
forever.

1.2 Contributions
As a consequence of these observations, we introduce

chainifyDB, which solves all aforementioned problems. We
make the following contributions:

1. Whatever-Voting model (WV). Instead of reaching con-
sensus on the order of transactions before the execu-
tion, our WV-model reaches consensus on the state
change generated by the execution. We do so by using
an pluggable voting-based algorithm [18]. This allows
us to form a private blockchain network out of poten-
tially different DBMSs. In particular, it allows us to
treat these DBMSs in a completely black-box fashion,
i.e. we do not have to access or modify the code of the
used system in any way.

2. Synchronized Transactions without a middleman.
chainifyDB keeps local databases, which are main-
tained by individual organizations, synchronized. Al-
though these organizations potentially do not trust
each other, we ensure that transaction processing is
reflected equally across all databases in the network.
chainifyDB achieves this without introducing a mid-
dleman.

3. Built on established DBMS-Technology. chainifyDB
reuses the already existing execution engine and query
language of the underlying DBMS. If the DBMS is a
SQL-based relational system, then chainifyDB com-
municates via SQL as well.

4. Robustness via recovery. chainifyDB provides efficient
mechanisms to recover from any form of state devia-
tion. Deviation can be caused by crashes and hardware
problems, but also by malicious and/or non-agreeing
behavior.

5. Extensive experimental evaluation of chainifyDB. In
comparison with the comparable state-of-the-art per-
missioned blockchain systems Fabric [8] and Fab-
ric++ [23], chainifyDB achieves an up to 6x higher
throughput. We show that chainifyDB is able to fully
utilize the performance of the underlying database sys-
tems and demonstrate its recovery capabilities experi-
mentally.

2. WHATEVER-VOTING MODEL
In summary, we “chainify” existing data management in-

frastructures. This creates a set of interesting challenges: As
mentioned, we have to assume that different DBMSs come
together in a single heterogeneous network. Although these
systems all understand SQL, they might execute the very
same transaction slightly differently. Thus, we cannot rely
on that each organization executes every transaction in ex-
actly the same way. Further, we have to treat the DBMSs
as complete black-boxes, which cannot be adapted in any
way. Connected to this, we cannot rely on that the underly-
ing storage and execution engine provides features tailored
towards our system. This is drastically different to classi-
cal PBSs. For example, Fabric requires the computation of
read/write-sets as a side-product of transaction execution —
something, a black-box DBMS does not provide. Addition-
ally, we have to assume, that any component of the system
can potentially behave in a malicious way.

To address these challenges, we argue that the consensus-
phase must be pushed towards the end of the processing
pipeline. Instead of reaching consensus only on which trans-
action to execute, we advocate to reach consensus on the ac-
tual state changes performed by the transactions. By this,
we are able to detect any deviating behavior that might
have happened during execution. In fact, this enables the
organizations to implement whatever they want there. The
result is a new, highly flexible processing model we call
the Whatever-Voting model (WV ). It has the following two
phases:

(1) Whatever-phase. Each organization does whatever it
deems necessary to pass the V-phase later on. As a
side-product, each organization produces a digest of
its behavior of the W-phase.

(2) Voting-phase. We perform a voting round on the di-
gests of the W-phase to check whether agreement can
be reached on them with respect to an agreement pol-
icy. Only if agreement is reached, the state changes are
committed to a ledger by the individual organizations.
If an organization is non-agreeing, it can try to recover.
If no agreement is reached at all, all organizations can
try to recover.



This WV model allows us to design and implement our
highly flexible permissioned blockchain system: chainifyDB.
It supports different transaction processing systems across
organizations to build a heterogeneous blockchain network.

Note that WV is also more powerful than classical 2PC or
3PC-style protocols in the sense that they still assume deter-
ministic behavior of the organizations without looking back
at the performed state changes. In WV, we simply do not
care about whether organizations claim to be prepared for
a transaction and what they claim to commit. In contrast,
we solely look at the outcome. In summary, we measure the
outcome rather than the promises.
Figure 1 presents a visualization of the entire model. Let
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Figure 1: Round-based processing of the WV model.

O1, . . . , Ok be k independent organizations in the network.
They process one transaction per round. Currently, we are
in round t.

By default, our model treats the W-phase as a blackbox
and makes no assumptions on its internal behavior. The
only requirement is that as a side-product of executing the
W-phase Wl of organization Ol in round t, a digest Dl,t

must be produced. The idea of this digest is to externally
represent the impact of the changes that happened in the
W-phase. For example, the digest could be a cryptographic
hash-code of all updates that were performed. The k di-
gests D1,t to Dk,t are now passed to the V-phase to check
whether an agreement can be reached on them. Our V-phase
supports the usage of arbitrary vote-based mechanisms or
consensus mechanisms, such as Paxos oder PBFT, depend-
ing on the required guarantees. To showcase our system, we
use a lightweight vote-based algorithm [18]. We believe this
allows for a fair comparison with Fabric, which relies on a
trusted ordering service.

Additionally to the digests, an agreement policy P is
passed to the V-phase. It specifies, which organizations are
expected to agree on their digests. If the digests are equal
for at least one of the combinations {C1, C2, ...}, then agree-
ment is reached. For example, P = {{1, 2}, {1, 3}} specifies
that either the organizations O1 and O2 or organizations O1

and O3 must have the same digest to reach agreement. The
logic of the V-phase is shown in Algorithm 1. It essentially
tests the passed combinations one by one and tries to reach
agreement on one combination.

If no agreement is reached, then no one is allowed to start
the next round. In such a case, all organizations try to re-
cover. If agreement on a digest is reached, it is returned
as Dagreed,t. Now, each organization Ol, whose digests
equals the agreement digest (Dl,t = Dagreed,t) is allowed
to proceed to the next round t + 1. If the locally computed
digest differs from the agreement digest, then the organiza-
tion must not proceed but can try to recover, as described
in the next Section.

Algorithm 1 V-phase

1: procedure V(Digest D1,...,Digest Dk, Agreement
Policy P = {C1, C2, ...})

2: for each Combination C in P do
3: boolean agreement = true
4: Digest Dcons = DC.p1

5: for Digest D = DC.p2 to DC.pl do
6: if Dcons 6= F then
7: agreement = false
8: break
9: if agreement then return Dagreed

10: return no agreement reached

2.1 Whatever Recovery
As described, our model allows us to treat the W-phase

as a complete blackbox. This is possible as the proceeding
is only determined by whether an agreement is reached on
the produced digests of the W-phase and not by its inter-
nal behavior. However, if we have no information about the
internal behavior of the W-phase available, then we have
very limited options in recovering from the situation that
the system as a whole or an individual organization cannot
proceed to the next round. To tackle this problem, we al-
low the W-phase to optionally expose information about its
internal behavior to enable a more sophisticated recovery.
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Figure 2: Checkpoint-based recovery of organization Ok. The
state is first restored from the most recent checkpoint Sk,t−2

earlier than t and then replayed till round t, resulting in S′k,t.
If the new digest D′l,t now matches Dagreed,t, recovery was
successful.

For example, we could have the very valuable informa-
tion available, that the W-phase maintains and modifies a
local database. Thus, the database is capturing the current
state Sl,t of organization Ol after round t. Having access to
the state enables recovery via checkpointing, as visualized in
Figure 2: Let us assume that agreement on the digest Dcons,t

was reached, but the digest Dk,t of organization Ok is dif-
ferent. If organization Ok creates a checkpoint every second
round in form of a snapshot of the state, then it can try to
recover by replaying the two intermediate transactions on
the most recent checkpoint before t, namely Sk,t−2. This
leads to a potentially new state S′k,t with a corresponding
new digest D′k,t. If now D′k,t = Dagreed,t, then we recovered
successfully.

3. CHAINIFY DB
In this Section, we present chainifyDB and how it instan-

tiates the WV model. As described in the introduction,



the core idea of chainifyDB is to equip established infras-
tructures, which already consist of several database man-
agement systems, with blockchain functionality as a layer
on top. The challenge is that these infrastructures can be
highly heterogeneous, i.e. every participant potentially runs
a different DBMS where each system can interpret a cer-
tain transaction differently. As a result, the digests across
participants might differ. Note that per round, chainifyDB
does not process only a single transaction, but a batch of
transactions. This is a performance optimization in order to
reduce the amount of overall network communication.

The W-phase of chainifyDB looks as follows: First, it
takes a batch of proposed transactions and orders them in
a TransactionBlock. Precisely, we want to establish an order
that is globally valid, i.e. all organizations should receive the
same order of transactions. The simplest way of implement-
ing this is to host a dedicated orderer for this task. This
(untrusted) orderer forms a TransactionBlock of proposed
transactions, which is then distributed to all other organi-
zations for execution. Of course, a malicious orderer could
manipulate transactions or send different blocks to different
organizations. However, this is not an issues in our WV-
model. In the V-phase, we are able to catch all malicious
or deviating behavior, that might have happened earlier in
the W-phase. This is in strong contrast to the other mod-
els, which has to rely on the orderer being trustworthy or
at least byzantine fault tolerant. Each transaction of the
TransactionBlock is now executed against the local relational
database. Obviously, this execution potentially updates the
database. As a side-product of execution, we produce the
digest Dl,t, as described in the following.

3.1 From Digests to LedgerBlocks
In chainifyDB we assume SQL-99 compliant relational

DBMSs to keep the state at each organization. Thus, we
can utilize SQL 99 triggers to realize a vendor-independent
digest versioning mechanism, that specifically versions the
data of chainifyDB in form of a digest table. The digest ta-
ble is computed per TransactionBlock. We instrument every
shared table in our system with a trigger mechanism to au-
tomatically populate this digest as follows: for every tuple
changed by an INSERT, UPDATE, and DELETE-statement, we cre-
ate a corresponding digest tuple. It captures the primary key
of the changed tuple, a counter of the change, the hash as the
digest of the values of the tuple after it was changed (for a
delete: its state before removing it from the table), and the
type of change that was performed. Figure 3 shows how to
process a block of an update, delete, and insert transaction.
Although the digest table captures all changes done to a
table by the last TransactionBlock, it does not represent
the digest yet. The actual digest is represented in form
of a so called LedgerBlock, which consists of the follow-
ing fields: (1) TA_list: The list of transactions that were
part of this block. Each transaction is represented by its
SQL code. (2) TA_successful: A bitlist flagging the success-
fully executed transactions. (3) hash_digest: A hash of the
logical contents of the digest table. In our case, this is a
SHA256 hash over the hash-values present in the digest ta-
ble. (4) hash_previous: A hash value of the entire contents
of the previous LedgerBlock appended to the ledger, again in
form of a SHA256 hash. This backward chaining of hashes
allows anyone to verify the integrity of the ledger.

This LedgerBlock leaves the W-phase as digest and en-
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Figure 3: Logical tuple-wise per block digest computation.

ters the V-phase to determine whether agreement can be
reached. As mentioned before, we use a lightweight voting
algorithm [18] in the V-phase of chainifyDB. Other consen-
sus mechanisms, like Paxos or PBFT, could be applied here
as well.

3.2 Logical Checkpointing and Recovery
If, after the V-phase, an organization is non-agreeing or no

agreement is reached at all, a checkpointing-based recovery
of the organization respectively all organizations happens.

In chainifyDB, we create a checkpoint by creating a snap-
shot of the database after every k blocks, where k is con-
figurable. The snapshot is created for all tables that were
changed since the last consistent snapshot. Snapshots are
created on the SQL-level through either a non-maintained
materialized view or by a CREATE TABLE command. Creat-
ing such a snapshot is surprisingly fast: Snapshotting the
accounts table with 1,000,000 rows, which is part of the
Smallbank [5] benchmark used in our experiment evalua-
tion, only takes 827ms in total on our machine of type 2
(see Section 4) running PostgreSQL.

Figure 4 shows an organization switching to recovery
mode, as the digest of block 46 of this organization is non-
agreeing. It recovers by restoring the consistent snapshot
Foo_block_44 and by replaying the transaction history, until
it reaches a consistent block 46. If it would not be able to
recover from this checkpoint, it would try to recover from an
older available checkpoint. In general, we go back as many
snapshots as are maintained by the system.

3.3 Parallel Transaction Execution
So far, we did not specify how the W-phase is actually

running transactions in the underlying DBMS. Naively, we
could simply execute all transactions of a block one by one in
a sequential fashion. However, this strategy is highly ineffi-
cient, if the underlying system is able to execute transactions
in parallel. This leads us to an alternative strategy, where
we could submit all transactions of a block to the underly-
ing (hopefully parallel) database system in one batch and
let it execute them concurrently. While this strategy lever-
ages the performance of the underlying system, it creates
another problem: it is very likely that every DBMS sched-
ules the same batch of transactions differently for parallel
execution, eventually leading to non-agreement.

The strategy we apply in chainifyDB sits right between
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Figure 4: chainifyDB’s recovery using checkpoints. As block 46 is non-agreeing it has to enter the recovery phase. It tries to
recover using the most recent local checkpoint. If this would fail, it would try to recover from an older checkpoint.

the previously mentioned strategies and is inspired by the
parallel transaction execution proposed in [24] and relates to
the ideas of [15, 12, 22]. When a block of transactions is re-
ceived by the execute-subphase, we first identify all existing
conflict dependencies between transactions. This allows us
to form mini-batches of transactions, that can be executed
safely in parallel, as they have no conflicting dependencies.

Stage 1 Stage 2 Stage 3 Stage 4

T4
T6
T1
T3

T2
T5

T8

T7
T9

Figure 5: A topological sort of the dependency graph with
k = 9 transactions yielding four execution stages.

Let us see in detail how it works. The process can be
decomposed into three phases: (1) Semantic Analysis. First,
for a block of transactions, we do a semantic analysis of
each transaction. Effectively, this means parsing the SQL
statements and extracting the read and write set of each
transaction. These read and write sets are realized as in-
tervals on the accessed columns to support capturing both
point query and range query accesses. For instance, assume
the following two single-statement transactions:

T1 :UPDATE Foo SET A = 5 WHERE PK = 100 ;
T2 :UPDATE Foo SET A = 8 WHERE PK > 42 ;

The extracted intervals for these transactions are:

T1 : A i s updated where PK i s in [ 1 00 , 1 00 ]
T2 : A i s updated where PK i s in [ 4 2 , i n f i n i t y ]

(2) Creating the Dependency Graph. With the intervals at
hand, we can create the dependency graph for the block. For
two transactions having a read-write, write-write, or write-
read conflict, we add a corresponding edge to the graph.
Note that as transactions are inserted into the dependency
graph in the execution order given by the block, no cycles

can occur in the graph.
Let us extend the example from our Semantic Analysis

Phase and let us assume, that T1 has been added to the
dependency graph already. By inspecting T2 we can deter-
mine that PK[42, inf] overlaps with PK[100,100] of T1. As
T2 is an update transaction, there is a conflict between T2
and T1 and add a dependency edge from T1 to T2. Figure 5
presents an example dependency graph for 9 transactions.
(3) Executing the Dependency Graph. Finally, we can exe-
cute the transactions in parallel. To do so, we perform topo-
logical sorting, i.e. we traverse the execution stages of the
graph, that are implicitly given by the dependencies. Our
example graph in Figure 5 has four stages in total. Within
one stage, all transactions can be executed in parallel, as no
dependencies exist between those transactions.

The actual parallel execution on the underlying database
system is realized using k client connections to the DBMS.
To execute the transactions within an execution stage in
parallel, the k clients pick transactions from the stage and
submit them to the underlying system. As our method
is conflict free, it guarantees the generation of serializable
schedules. Therefore we can basically switch off concurrency
control on the underlying system. This can be done by set-
ting the isolation level of the underlying system to the lowest
support level (e.g. READ COMMITTED for PostgreSQL)
or if possible completely turned off to get the best perfor-
mance.

3.4 Running Example
Let us now discuss the concrete system architecture at

the running example of Figure 6. chainifyDB consists of
three loosely coupled components: ChainifyServer, Execu-
tionServer, and CommitServer. In Step 1, the client creates
a Proposal from a SQL transaction. This Proposal contains
the original transaction as a SQL string along with meta-
data information, such as the client ID and a signature of
the transaction. The client then sends the Proposal to the
ChainifyServer of O1.

In Step 2, the ChainifyServer early aborts all Proposals,
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Figure 6: Architecture of a chainifyDB.

which have no chance of reaching agreement later on. To
do so, the ChainifyServer of O1 first accesses the authen-
tication policy of the client, the public key of the client,
and the agreement policy. The agreement policy P is in
our example that all three organizations have to agree on
the proposal. If the ChainifyServer of O1 successfully au-
thenticates the client and the verification of the Proposal is
successful, it forwards the Proposal to O2 and O3 as spec-
ified in the agreement policy. Every ChainifyServer in the
network now tests, whether the Proposal has a chance of
reaching agreement later on (e.g. by checking local con-
straints) and prepares a signed EarlyAbortResponse, which
contains whether the organization wants to early abort the
proposal or not, as well as the Proposal itself. The Chaini-
fyServers of O2 and O3 then send their EarlyAbortResponse

to the ChainifyServer of O1. In Step 3, as all three organi-
zations agreed upon the Proposal, the ChainifyServer of O1

creates a ChainedTransaction from the original Proposal and
the three EarlyAbortResponses, and sends it to the pluggable
and potentially untrusted OrderingService, which can be dis-
tributed as well. The OrderingService is then queuing this
ChainedTransaction. In Step 4, when a certain amount of
ChainedTransactions are queuing, the OrderingService pro-
duces a TransactionBlock from these ChainedTransactions.
The dispatch service of the OrderingService then forwards
the TransactionBlock to every ExecutionServer in the net-
work. In Step 5, the ExecutionServer of each organization
now computes the near-optimal execution graph and ex-
ecutes the ChainedTransactions in the TransactionBlock in
parallel. As a side-product, the ExecutionServer computes
the LedgerBlock as digest. In Step 6, the ExecutionServer
forwards the LedgerBlock to the local CommitServer. In
Step 7, the CommitServers perform the agreement round
according to the agreement policy. This involves all three
CommitServers. In Step 8, they reach agreement, each Com-
mitServer generates the corresponding LedgerBlock and ap-
pends it to its ledger.

4. EXPERIMENTAL EVALUATION
To evaluate chainifyDB we use the following setup and

workload:
Type 1 (small): Two quad-core Intel Xeon CPU E5-2407
running at 2.2 GHz, equipped with 48GB of DDR3 RAM.
Type 2 (large): Two hexa-core Intel Xeon CPU X5690 run-
ning at 3.47 GHz, equipped with 192GB of DDR3 RAM.

Unless stated otherwise, we use a heterogeneous network
consisting of three independent organizations O1, O2, and
O3. As chainifyDB will be employed within a permissioned
environment between a relatively small number of organiza-
tions, which know each other, we evaluate its behavior for
three organizations. Organization O1 owns two machines of
type 1, where PostgreSQL 11.2 is running on one of these
machines. Organization O2 owns two machines of type 1 as
well, but MySQL 8.0.18 is running on one of them. Finally,
organization O3 owns two machines of type 2, where again
PostgreSQL is running on one of the machines. The individ-
ual components of chainifyDB, as described in Section 3.4,
are automatically distributed across the two machines of
each organization. Additionally, there is a dedicated ma-
chine of type 2 that represents the client firing transactions
to chainifyDB as well as one that solely runs the ordering
service.

As agreement policy, we configure two different options:
In the first option Any-2, at least two out of our three or-
ganizations have to produce the same digest to reach agree-
ment. In the second option All-3, agreement is reached only
if all three organizations produce the same digest. Empirical
evaluation revealed a block size of 4096 transactions to be
a good fit. Of course, we also activate parallel transaction
execution as described in Section 3.3.

As workload we use transactions from Smallbank [5]. We
create 100,000 users with a checking account and a savings
account each and initialize them with random balances. The
workload consists of the four transactions TransactSavings,
DepositChecking, SendPayment, and WriteCheck. During a
single run, we repeatedly fire these four transactions at a fire
rate of 4096 transactions per client, where we uniformly pick
one of the transactions in a random fashion. For each picked
transaction, we determine the accounts to access based on a
Zipfian distribution with a s-value of 1.1 and a v-value of 1.

4.1 Throughput
We start the experimental evaluation of ChainifyDB by

inspecting the most important metric of a blockchain sys-
tem: the throughput of successful transactions, that make
it through the system.

Therefore, we first inspect the throughput of ChainifyDB
in our heterogeneous setup under our two different agree-
ment policies Any-2 and All-3. Additionally to ChainifyDB,
we show the following two PBS baselines: (a) Vanilla Fab-
ric [8] v1.2, probably the most prominent PBS system cur-
rently. (b) Fabric++ [23], an improved version of Fab-
ric v1.2. Both Fabric and Fabric++ are also distributed
across the same set of machines, the blocksize is 1024.

Figure 7(a) shows the results. On the x-axis, we vary
the number of clients firing transactions concurrently from
3 clients to 24 clients. On the y-axis, we show the average
throughput of successful transactions, excluding a ramp-up
phase of the first five seconds. We can observe that Chaini-
fyDB using the Any-2 strategy shows a significantly higher
throughput than Fabric++ with up to almost 5000 trans-
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(a) Throughput of ChainifyDB with Any-2 and All-3 pol-
icy for varying number of clients. Additionally, we evaluate
Fabric and Fabric++. We use the Smallbank workload fol-
lowing a Zipf distribution.
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Figure 7: Throughput of successful transactions for the heterogeneous setup as described in Section 4.

actions per second. In comparison, Fabric++ achieves only
around 1000 transactions per second, although it makes con-
siderably more assumptions than ChainifyDB: First, it as-
sumes the ordering service to be trustworthy. Second, it as-
sumes the execution to be deterministic and therefore does
not perform any agreement round on the state.

Regarding ChainifyDB, we can also observe that there is
a large performance gap between the Any-2 and the All-
3 strategy. The reason for this lies in the heterogeneous
setup we use. The two organizations running PostgreSQL
are able to process the workload significantly faster than the
single organization running MySQL. Thus, under the Any-2
strategy, the two organizations using PostgreSQL are able
to lead the progress, without having to wait for the signifi-
cantly slower third organization. Under the All-3 strategy,
the progress is throttled by the slowest organizations run-
ning MySQL. The difference in processing speed also be-
comes visible, if we inspect the throughput of the stand-
alone single-instance database systems in Figure 7(b) un-
der the same workload. This time, we fire the transactions
using OLTP-bench [11]. Note that both system are config-
ured with a buffer size of 2GB to keep the working set in
main memory. As we can see, PostgreSQL significantly out-
performs MySQL under this workload independent of the
number of clients.

There is one more observation we can make: By compar-
ing Figure 7(a) and Figure 7(b) side-by-side, we can see that
ChainifyDB introduces only negligible overhead over the raw
database systems. In fact, for 3, 6, and 12 clients, Chaini-
fyDB under the Any-2 policy actually produces a slightly
higher throughput than raw PostgreSQL. This is due to our
optimized parallel transaction execution, which exploits the
batch-wise inflow of transactions, and executes the transac-
tion at the lowest possible isolation level.

We also show in Table 2 the throughput for Smallbank,
where the accounts are picked following a uniform distri-
bution. As we can see, the throughput under a uniform
distribution is even higher with up to 6144 transactions per
second than under the skewed Zipf distribution, as it allows
for a higher degree of parallelism during execution due to
less conflicts between transactions.

Distribution 3 Clients 6 Clients 12 Clients 24 Clients
Zipf 2757 TPS 3676 TPS 4709 TPS 4812 TPS
Uniform 2279 TPS 3840 TPS 5774 TPS 6144 TPS

Table 2: Average throughput of successful transactions for
ChainifyDB (Any-2) under Smallbank following a Zipf and a
uniform distribution.

4.2 Robustness and Recovery
To test the recovery capabilities, we will disturb our

chainifyDB network in two different ways: First, we force-
fully corrupt the database of one organization and see
whether chainifyDB is able to detect and recover from it.
Afterwards, we bring down one organization and see whether
the network is able to continue progressing.

Precisely, we have the following setup for this experiment:
First, we sustain our chainifyDB network with transactions
of the Smallbank workload. Then, after a certain amount
of time, we manually inject an update to the table of or-
ganization O1 and see how fast O1 is able to recover from
the deviation. Note that we do not perform this update
through a chainifyDB transaction, but externally by directly
modifying the table in the database. Finally, we simulate a
complete failure of one organization by removing it from
the network. The remaining two organizations then have
to reach agreement to be able to progress under the Any-2
policy.

In Figure 8(a), we visualize the progress of all organi-
zations for our heterogeneous setup. Additionally, in Fig-
ure 8(b), we test a homogeneous setup, where all three or-
ganizations run PostgreSQL. On the x-axis, we plot the time
of commit for each block. On the y-axis, we plot the cor-
responding block IDs. Every five committed blocks, each
organizations creates a local checkpoint. We can observe
that the organizations O1 and O3, which run PostgreSQL,
progress much faster than organization O2 running MySQL.
Shortly after the update has been applied to O1, it detects
the deviation in the agreement round and starts recovery
from the most recent checkpoint. This also stops the pro-
gression of organization O3, as O3 is not able to reach agree-
ment anymore according to the Any-2 policy: O1 is busy
with recovery and O2 is too far behind. As soon as O1 re-
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(a) Heterogeneous Setup (2x PostgreSQL, 1x MySQL).

Organization 1: Recovery finishes
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(b) Homogeneous Setup (3x PostgreSQL).

Figure 8: Robustness and Recovery of ChainifyDB under the Any-2 agreement policy.

covers, which takes around 17 seconds, O3 also restarts pro-
gressing, as agreement can be reached again. Both O1 and
O3 progress until we let O3 fail. Now, O1 can not progress
anymore, as O3 is not reachable and O2 still too far behind
due its slow database system running underneath. Thus, O1

halts until O2 has caught up. As soon as this is the case,
both O1 and O2 continue progressing at the speed of the
slower organization, namely O2. In Figure 8(b), we retry
this experiment on a homogeneous setup, where all organi-
zation run PostgreSQL. Thus, this time there is no drasti-
cally slower organization throttling the network. Again, at
a certain point in time, we externally corrupt the database
of organization O1 by performing an update and O1 starts
to recover from the most recent checkpoint. In contrast to
the previous experiment, this time the recovery of O1 does
not negatively influence any other organization: O2 and O3

can still reach agreement under the Any-2 policy and con-
tinue progressing, as none of the two is behind the other
one. Recovery itself takes only around 4 seconds this time
and in this case, another organization is ready to perform
a agreement round right after recovery. When O3 fails, O2

has to halt processing for a short amount of time, as O1 has
to catch up. In summary, this experiment shows (a) that
we can detect deviation and recover from it, (b) that the
network can progress in the presence of failures, (c) that all
organizations respect the agreement policy at all times, and
(d) that recover neither penalizes the individual organiza-
tions nor the entire network.

4.3 Cost Breakdown
In Section 4.1, we have seen the end-to-end performance of

chainifyDB. In the following, we want to analyze how much
the individual components contribute to this. Precisely, we
want to investigate: (a) The cost of all cryptographic com-
putation, such as signing and validation, that is happening
at several stages (see Section 3.4 for details). (b) The impact
of parallel transaction execution on the underlying database
system (see Section 3.3).
Figure 9 shows the results. We can observe that the over-
head caused by cryptography is surprisingly small. Under
the Any-2 policy, activating all cryptographic components
decreases the throughput only by 7% for parallel execution.
Under the All-3 policy, the decrease is only 8.5%. While
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Figure 9: Cost breakdown of ChainifyDB.

our cryptographic components have a negligible negative im-
pact, our parallel transaction execution obviously has a very
positive one. With activated cryptography, parallel transac-
tion execution improves the throughput by up to 5x.

4.4 Varying Blocksize
Finally, let us inspect the impact of the blocksize, which is

an important configuration parameter in any blockchain sys-
tem. We vary the blocksize from 256 transactions per block
in logarithmic steps up to 4096 transactions per block and
report the average throughput of successful transactions.
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Figure 10: The effect of varying the blocksize.

Figure 10 shows the results. We can see that both under
the Any-2 and All-3 policy, the throughput increases with



the blocksize. This increase is mainly caused by our parallel
transaction execution mechanism, which analyzes the whole
block of transactions and schedules them for parallel conflict-
free execution.

4.5 Varying the Number of Organizations
Adding a large number of organizations to the chaini-

fyDB network requires a significant amount of computing
resources, making the evaluation of the whole system a bit
tricky. However, if we look closely, only one component
in chainifyDB’s transaction pipeline, namely the V-phase,
involves synchronous communication between the organiza-
tions. Thus, to evaluate the scaling capabilities with the
number of organizations, we simulate the computational and
network-related efforts required in the V-phase from the per-
spective of one organization Oi. For each vote, the organi-
zation creates a signed request, asynchronously simulates
the voting procedure for k − 1 organizations by waiting for
2 · l(Oi, Oj) seconds (round-trip latency), where l(Oi, Oj)
is the network latency between two organizations Oi and
Oj . It then verifies the k − 1 cryptographic signatures of
the responses and finally compares the local digest with the
received digest. In Figure 11, we plot the average latency
(five runs) of the voting round while varying the number of
organizations under three different agreement policies. We
evaluate the V-phase under real-world latencies of AWS re-
gions [1]. For each measurement, we choose a source organi-
zation located in Central-Europe AWS region. All remaining
organizations were selected uniformly from a set of 15 AWS
regions from US, Europe, and Asia.
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Figure 11: Latency of the V-phase from the perspective of
one organization, which performs a voting round with n − 1
other organizations. We show three different policies, where
50%+1, 66.67%, and 100% of the organizations have to agree.

As we can see in Figure 11, for all three evaluated poli-
cies, the latency remains stable until the network contains
8192 organizations. This is because up to this point, the
V-phase is dominated by the network communication, not
the computational effort. If we increase the size of the net-
work further, the computational effort becomes dominant,
increasing the latency of the V-phase linearly with the net-
work size. As the size of a typical permissioned blockchain
network is significantly smaller than 8192 organizations, the
V-phase adds negligible overhead to the transaction pipeline.

5. RELATED WORK
There are other projects that explore the intersection of

databases and blockchains. In [21], the authors extend

PostgreSQL with blockchain features. This results in a
“blockchain relational database”, which is capable of per-
forming trusted transactions between multiple PostgreSQL
instances. While this project is clearly a step in the right
direction, it does not go far enough: In contrast to chaini-
fyDB, the proposed system still comes in a stand-alone fash-
ion and forces the users to integrate yet another new system
into their infrastructure. Further, they heavily modify the
internals of PostgreSQL. We intended to compare chaini-
fyDB against this system, however, the source code was not
available.

BlockchainDB [13, 14] follows exactly the opposite ap-
proach of chainifyDB: It installs a database layer on top
of an existing blockchain, such as Ethereum [3] or Hyper-
ledger Fabric [8]. BlockchainDB basically provides a front
end to the underlying permissioned blockchain. In addi-
tion, the authors introduce a sharding mechanism which
allows them to scale if a relatively large number of orga-
nizations are involved. Overall, while this concept eases the
use of blockchain systems, it does not ease the integration
of blockchain features in established infrastructures.

ChainSQL [20] takes the open-source blockchain system
Ripple [9] and integrates relational and NoSQL databases
into the storage backend. This enables it to run SQL-
style respectively JSON-style transactions. However, similar
to [13, 14], by integrating database systems into the heavy-
weight blockchain system Ripple, the transaction processing
performance is limited to that of Ripple — thus overshad-
owing the high performance of the underlying database sys-
tems.

Another project at the intersection of databases and
blockchains is Veritas [16]. This visionary paper also pro-
poses to extend existing database systems by blockchain fea-
tures; however, they focus on a cloud infrastructure. To syn-
chronize instances, they utilize log shipping. Therefore, this
solution requires the underlying database system to provide
log shipping in the first place and disallows the connection
of different database systems in one network, if their log
shipping mechanisms are not compatible with each other.

BigchainDB [6] combines the blockchain framework Ten-
dermint [7] with the document store MongoDB and therefore
extends it with blockchain features. In contrast to chaini-
fyDB, the system is shipped in a stand-alone fashion and
uses the MongoDB interface.

Apart from works aiming at closing the gap between
databases and blockchains from an architectural perspec-
tive, there is a considerable amount of research improving
the performance of permissioned blockchains, e.g. in partic-
ular for Fabric [17], [10], and [19]. Finally, in our own recent
previous work [23] we explored in depth to which degree the
performance issues of Fabric can be overcome if we keep Fab-
ric as the central component. The lessons from that work
made us drop that idea and highly motivated us to stick
with DBMSs as the powerhouses — and write this paper.

6. CONCLUSION
We introduced a highly flexible processing model for per-

missioned blockchain systems called the Whatever-Voting
model, which avoids making assumptions on the precise be-
havior of organizations by reaching agreement on the out-
come instead of the promise. To showcase the strengths
of WV, we proposed chainifyDB, an implementation of a
blockchain layer, which is able to chainify arbitrary DBMSs



and connect them in a network. We discussed how recovery
of deviating organizations can be performed. In an exten-
sive experimental evaluation, we showed that chainifyDB
does not only offer a 6x higher throughput than comparable
baselines, but also introduces a robust recovery mechanism,
which grant organizations the chance to participate in trans-
action processing again.
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