Amalur: Next-generation Data Integration in Data Lakes

Rihan Hai Christos Koutras

Andra Ionescu

Asterios Katsifodimos

Delft University of Technology

ABSTRACT

Data science workflows often require extracting, preparing and
integrating data from multiple data sources. This is a cumbersome
and slow process: most of the times, data scientists prepare data in
a data processing system or a data lake, and export it as a table, in
order for it to be consumed by a Machine Learning (ML) algorithm.
Recent advances in the area of factorized ML, allow us to push down
certain linear algebra (LA) operators, executing them closer to the
data sources. With this work, we revisit classic data integration
(DI) systems and see how these fit into modern data lakes that are
meant to support LA as a first-class citizen.

1 INTRODUCTION

Use case and problem. Consider data scientists who try to build
an ML model, but relevant data is spread over multiple tables in
the data lake. In the traditional way, they need to integrate source
tables and export a single table as follows. They first perform data
discovery or schema matching to find matched columns containing
similar information. The next step is combining these source tables
and creating the schema of target table T (also referred to as the
mediated schema), which contains all the selected features needed
for training. After generating schema mappings and linking entities,
this process would result in the materialized target table T for
exporting. The above DI process is tedious, even with the help of
commercial data integration/preparation tools. Moreover, creating
formal mapping specifications or refining mappings are far beyond
the skill set of today’s data scientists.

Enter Amalur. Many ML tasks are expressed in linear algebra
(LA). Given multiple datasets and downstream ML applications, our
ultimate goal with Amalur is twofold: 1) It automates data integra-
tion tasks, and relieves data scientists from heavy manual labor or
complex data transformation queries. 2) It supports LA operators
and ML factorization in a data lake system, which reduces data
redundancy and improves runtime efficiency. That is, exporting
the data can incur huge computation costs as opposed to running
those computations within the data lake. Instead, we can signifi-
cantly improve the run-time efficiency of a LA pipeline if we avoid
materializing the target table T by factorizing LA operators [1].

2 IN-LAKE LA PROCESSING

Two types of matrices. The final task of most traditional DI sys-
tems falls into either query reformulation (virtual integration) or
target instance materialization (data exchange). In either case, we
need column matching (via schema matching and mapping) and
row matching (via record linkage) between the source tables and

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR °22). January 9-12, 2022, Chaminade, USA.

Sourceschema Targetschema

Sy (survived, naime, sex, age) T(survived, sex, age, parch)
Sa(survived, name, sex, parch, dest)

Schema mappin
pping 12 0 12 0123

m: Vs,n,se,a,p,d (Si(s,n,se,a) A Sa(s,n, se, p,d) — T(s,se,a,p))
Mappingmatrices

S;.5 S,se Spa S5 S,se S.p

M1 1]o]o]|T* M2 T oo |7
0| 1|0 [Tse 0o | 1| o |Tse
1] [1] 1 Ta 0 1] 0 |Ta
0 0 |0 |Tp oo 1 | Tp

Figure 1: Schema mapping and mapping matrices

the target table. A similar requirement applies when we facilitate
LA rewrite rules. However, there are two differences. The selected
subset of source data to be processed is in the form of matrices, and
the operators to be decomposed are linear algebras. Thus, in Amalur
we encode the column matching and row matching information
also as matrices, i.e., mapping matrices and indicator matrices. Fig. 1
depicts an example of source schema (S7 and Sz) and target schema
T with user-selected columns. The corresponding schema mapping
m is specified as a tuple generating dependencies (tgd). m is also a
full tgd, since all attributes of T are from S; and Sz, and m has no
existentially quantified variables. Given m, Amalur generates the
corresponding mapping matrices (M, Mz), which can be directly
computed with the subset of source data in the matrix form. For
row matching, we adapt and extend indicator matrices [1] to store
the existing record linkage results.

Linear algebra rewrite opportunities. We simplify the in-lake
processing of a linear algebra operator (part of an ML algorithm)
in two steps. First, with the help of the aforementioned two types
of matrices, we decompose and rewrite the LA operators, and push
them down into individual source tables and compute the local
LA results. Second, to compute the final result, we merge the lo-
cal results and “stitch” them back as if the original LA operator
was executed over a single target table. Notably, although such a
procedure shares similarities with view-based query rewriting, its
LA-based nature calls for new rewriting algorithms. Future chal-
lenges include (but are not limited to): 1) Existing LA rewriting
rules (for both linear and non-linear ML models) are mainly devel-
oped based on joining two or multiple tables, and mainly equi-joins.
Novel efficient algorithms are needed to tackle more complicated
data integration scenarios. 2) The topic of data integration has well-
studied systematic and theoretical results (e.g., schema mapping,
query reformulation), leaving a large body of theoretical blank
space to be filled for LA processing. 3) To support scalable ML, cost
estimation is essential, which decides when the factorization should
be performed.

REFERENCES

[1] L. Chen, A. Kumar, J. Naughton, and J. M. Patel. Towards linear algebra over
normalized data. PVLDB, 10(11), 2017.

	Abstract
	1 Introduction
	2 In-lake LA processing

