Towards Observability for Machine Learning Pipelines

Shreya Shankar
UC Berkeley

shreyashankar@berkeley.edu

ABSTRACT

Software organizations are increasingly incorporating machine learn-
ing (ML) into their product offerings, driving a need for new ML-
centric data management tools. Such tools facilitate the initial de-
velopment and deployment of ML applications, contributing to a
crowded landscape of disconnected solutions targeted at different
stages, or components, of the ML lifecycle. A lack of end-to-end
ML pipeline visibility makes it hard to address any issues that may
arise during a production deployment, such as unexpected output
values or lower-quality predictions. In this paper, we introduce our
prototype and our vision for MLTRACE, a platform-agnostic system
that provides observability to ML practitioners.

1. INTRODUCTION

Organizations, big and small, are devoting increasingly more re-
sources towards developing and deploying applications powered by
machine learning (ML). ML applications consist of pipelines that
span multiple heterogeneous stages or components, such as ETL
and model training. To support visibility into one or more compo-
nents of the ML pipeline, the database community has proposed a
variety of solutions, e.g., for identifying data bugs during prepro-
cessing [6l|10], and for logging models and model metadata during
training for post-hoc debugging [13} 14,8l |5]]. Additionally, indus-
try solutions such as MLFlow [15]] and Weights & Biases [2] have
garnered widespread adoption by handling data management issues
during the training component of a pipeline. Unfortunately, these
piecemeal approaches do not address the problem of end-to-end
visibility, thereby making debugging and maintenance difficult.

One promising approach for end-to-end visibility is to employ a
holistic ML framework, such as TFX [9] or Overton [11]]. Users
need to use the framework to implement all components—from
data preprocessing to deployment—to benefit from it. This rewrite
can be cumbersome to users, who often prefer to reuse existing
code and avoid vendor lock-in [[7}[1]]. Other approaches involve the
use of various best practices and understanding of failure case stud-
ies [3L|12]; neither of which provide easy-to-use software solutions.
Instead, in this work, we propose a lightweight, platform-agnostic
system for end-to-end ML application observability.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2022.
12th Annual Conference on Innovative Data Systems Research (CIDR ‘22)
January 10-13, 2022, Chaminade, USA.

Aditya Parameswaran
UC Berkeley

adityagp@berkeley.edu

2. ML OBSERVABILITY

Typical software observability solutions present metadata in the
form of logs, metrics, and traces and synthesize this information to
allow engineers to ask questions about system health. ML appli-
cations add new criteria to system health, as performance extends
beyond system uptime; it also relies on the quality of predictions
or outputs. We use the three aforementioned pillars of software ob-
servability as inspiration for the key facets of our ML observability
approach, and outline the corresponding research challenges, next.

Logging. ML applications add complexity to logging since they
can experience silent failures (e.g., covariate shift or concept drift),
which may not be reflected in typical output or error logging state-
ments. Thus, our approach must capture inputs and outputs of in-
termediate components, both of which can be computationally ex-
pensive and bulky to store (e.g., large DNN models).

Monitoring. Monitoring is not straightforward in ML because
the success of an ML application depends on model performance,
which cannot easily be measured; labels, or true values, are often
not provided in real-time in the production endpoint. Even if direct
feedback is available (e.g., when a user clicks on an ad), ML met-
rics, such as F1 and t-test scores, can be expensive to compute at
scale. Users should also be able to set alerts, triggers, or constraints
to ensure overall ML pipeline health. Determining when data has
“drifted” to alert users to retrain models is an unsolved algorithmic
problem. Computing simple metrics like the mean and median is a
good start but can fail when skew and kurtosis changes. Computing
well-known metrics like the Kolmogorov-Smirnov test statistic can
be expensive and produce too many false positive alerts [4].

Querying. To debug traditional software applications, engineers
typically first inspect a trace, or the end-to-end journey of a data
point, to understand the lineage of that request and determine where
the bug may lie. This lineage may be straightforward to track
when transformations are done in a single framework (e.g., REST),
but ML applications are built using heterogeneous stacks of many
tools, fragmenting access to information about data flow and prove-
nance.

2.1 MLTRACE

We propose MLTRACE, a lightweight end-to-end framework cen-
tered around the execution of individual pipeline components that
supports: (i) logging of component runs, inputs and outputs, (ii) a
pluggable library of metrics and alerts to sustain ML performance
(iii) a flexible querying framework and UI for users to debug their
pipelines. With over 300 GitHub stars, MLTRACE has received ini-
tial interest from practitioners (github.com/loglabs/mltrace)
and flexibly interoperates with existing tools used in ML applica-
tion development.



3.
(1

[2]
[3]

[4]

[5]
[6]

[7]
[8]
[9]

[10]
[11]

[12]
[13]

[14]

[15]

REFERENCES

A. Agrawal et al. Cloudy with high chance of dbms: a 10-year prediction for
enterprise-grade ml. In CIDR’20, 2020.

L. Biewald. Tracking with weights and biases www.wandb. com/, 2020.

E. Breck et al. The ml test score: A rubric for ml production readiness and
technical debt reduction. In Big Data’17, 2017.

E. Breck, M. Zinkevich, N. Polyzotis, S. Whang, and S. Roy. Data validation
for machine learning. In Proceedings of SysML, 2019.

R. Garcia et al. Hindsight logging for model training. In VLDB’21, 2021.

S. Grafberger, S. Guha, J. Stoyanovich, and S. Schelter. Mlinspect: A data
distribution debugger for machine learning pipelines. In SIGMOD’21, 2021.

E. Liberty et al. Elastic machine learning algorithms in amazon sagemaker.
pages 731-737, 06 2020.

H. Miao, A. Li, L. Davis, and A. Deshpande. Towards unified data and lifecycle
management for deep learning. In ICDE’17, 2017.

A. N. Modi et al. Tfx: A tensorflow-based production-scale machine learning
platform. In KDD 2017, 2017.

E. Rezig et al. Dagger: A data (not code) debugger. In CIDR, 2020.

C. Ré, F. Niu, P. Gudipati, and C. Srisuwananukorn. Overton: A data system for
monitoring and improving machine-learned products. In CIDR, 2020.

D. Sculley et al. Hidden technical debt in ml systems. In NIPS, 2015.

M. Vartak. Modeldb: a system for machine learning model management. In
HILDA ’16, 2016.

M. Vartak et al. Mistique: A system to store and query model intermediates for
model diagnosis. In SIGMOD ’18, 2018.

M. Zaharia et al. Accelerating the machine learning lifecycle with mlflow. IEEE
Data Eng. Bull., 41:39-45, 2018.



	Introduction
	ML Observability
	mltrace

	References

