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ABSTRACT
Recently, the database management system (DBMS) com-
munity has witnessed the power of machine learning (ML)
solutions for DBMS tasks. Despite their promising perfor-
mance, these existing solutions can hardly be considered sat-
isfactory. First, these ML-based methods in DBMS are not
effective enough because they are optimized on each specific
task, and cannot explore or understand the intrinsic connec-
tions between tasks. Second, the training process has serious
limitations that hinder their practicality, because they need
to retrain the entire model from scratch for a new DB. More-
over, for each retraining, they require an excessive amount
of training data, which is very expensive to acquire and un-
available for a new DB. We propose to explore the trans-
ferabilities of the ML methods both across tasks and across
DBs to tackle these fundamental drawbacks.

In this paper, we propose a unified model MTMLF that
uses a multi-task training procedure to capture the transfer-
able knowledge across tasks and a pre-train fine-tune proce-
dure to distill the transferable meta knowledge across DBs.
We believe this paradigm is more suitable for cloud DB ser-
vice, and has the potential to revolutionize the way how ML
is used in DBMS. Furthermore, to demonstrate the predict-
ing power and viability of MTMLF, we provide a concrete
and very promising case study on query optimization tasks.
Last but not least, we discuss several concrete research op-
portunities along this line of work.

1. INTRODUCTION
Database management system (DBMS) is the cornerstone

of a broad range of applications such as big data platforms,
cloud computing, internet of things, and artificial intelli-
gence. Designing and tuning DBMS involves a series of
complicated tasks ranging from physical design, configura-
tion tuning, to query optimization and execution schedul-
ing, which all require intensive expertise. With the growth
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of data volume and complexity, it becomes increasingly dif-
ficult to maintain DBMS purely using human efforts.

Recently, the prosperity of machine learning (ML), es-
pecially deep learning, helps to resolve a large number of
DBMS challenges. ML techniques enable automatic, fine-
grained, and more accurate characterization of the problem
space and benefit a variety of tasks in DBMS. Specifically,
unsupervised ML techniques can model the data distribution
for cardinality estimation (CardEst) [Zhu et al. 2021, Hil-
precht et al. 2020, Wu and Shaikhha 2020, Yang et al. 2019,
Yang et al. 2020] and indexing [Kraska et al. 2018, Ding et al.
2020b, Ding et al. 2020a, Nathan et al. 2020]; supervised ML
models can replace the cost estimator (CostEst) [Sun and
Li 2019, Marcus and Papaemmanouil 2019, Siddiqui et al.
2020] and execution scheduler [Marcus and Papaemmanouil
[n.d.], Sheng et al. 2019]; and reinforcement learning meth-
ods solve decision making problems such as configuration
tuning [Zhang et al. 2019, Li et al. 2019, Basu et al. 2016]
and join order selection (JoinSel) [Marcus et al. 2019, Mar-
cus and Papaemmanouil 2018, Guo and Daudjee 2020, Yu
et al. 2020, Ortiz et al. 2018].

Motivation: Despite these ML methods’ promising results
on each individual task, the existing ML techniques in DBMS
do not explore the following transferabilities and can lead to
impractical solutions and/or ineffective models.

(1) Transferability across databases: Existing ML meth-
ods for DBMS only focus on learning the database-specific
knowledge and ignore the database-agnostic meta knowledge
that can be transferred to new DBs. Therefore, they need to
retrain the entire model from scratch for a new DB, and gen-
erally require an excessive and impractical amount of data,
such as executed queries and logs, for each retraining, which
is very expensive to acquire especially for a new DB [Ma
et al. 2020] (referred to as the notorious “cold-start” prob-
lem). Fortunately, some meta knowledge can be distilled and
shared across DBs to mitigate this problem. This knowledge
(such as expert experience and heuristics in the physical join
implementation and access path selection) is independent of
each specific DB. For example, the query optimizer usually
chooses an index scan for high-selectivity predicates and a
sequential scan for low-selectivity ones; and the hash join
is usually more memory-intensive than nest loop join and
merge join. This knowledge should be distilled and shared
across various databases to avoid the redundant learning
process and mitigate the “cold-start” problem.

(2) Transferability across tasks: Existing ML approaches
are only optimized on individual DBMS tasks and neglect



the task-shared knowledge, leading to inefficient use of data
and ineffective model. Since all these approaches are fun-
damentally based on understanding the data distributions
and query workload representation, the shared knowledge
can be used to reduce model redundancy and improve data
efficiency across tasks. More importantly, it can enhance the
model effectiveness because these tasks are inter-dependent
and this knowledge can capture the inherent interactions.
For example, the purpose of CardEst model is to help gener-
ate better query plans. However, different estimations have
different impacts on the quality of the generated plan, which
is also determined by the plan enumeration method and the
cost model. Sometimes a series of bad estimations will not
lead to a worse plan, but a small estimation error of a critical
sub-query can have catastrophic outcomes. Thus, a CardEst
model trained without considering other tasks can not effec-
tively generate better query plans [Negi et al. 2021].

Inspired by the recent success of the pre-trained models
(e.g., BERT [Devlin et al. 2018] and GPT-3 [Brown et al.
2020]) in NLP domain, we advocate for the next genera-
tion of ML-based methods for DBMS to explore and exploit
the aforementioned transferabilities in a unified framework.
Within this framework, the knowledge can be distilled and
shared across tasks to mutually benefit all, and the meta
knowledge can be reused for new DBs. Specifically, we pro-
pose a meta-learning paradigm that pre-trains a model on
various DBs to condense the database-agnostic meta knowl-
edge and fine-tunes this model to fit a new DB with a small
number of training examples. Moreover, we propose a multi-
task training procedure that simultaneously trains the model
on all DBMS tasks to extract the task-shared knowledge.

Our Contributions: We identify the transferable and non-
transferable knowledge that ML models try to understand
and use to solve the DBMS tasks. Based on the transfer-
ability across DBs, we classify the knowledge into database-
agnostic meta knowledge and database-specific knowledge.
Based on the transferability across tasks, we classify the
knowledge into task-shared knowledge and task-specific knowl-
edge.

Thereafter, we propose the multi-task meta-learning frame-
work (MTMLF) with three modules: (1) a featurization and
encoding module to characterize the database-specific knowl-
edge such as the data distributions in each DB, (2) a shared
representation module to extract task-shared knowledge that
would benefit all DBMS tasks, and (3) a task-specific module
to tackle each task (such as CardEst, CostEst, JoinSel, in-
dexing, and configuration tuning) and learn the task-specific
knowledge. Furthermore, the architecture of MTMLF nat-
urally enables a pre-train fine-tune meta learning paradigm
to distill the database-agnostic meta knowledge.

In order to demonstrate the viability of the envisioned
MTMLF, we provide a case study MTMLF-QO for query
optimization tasks, including CardEst, CostEst, and Join-
Sel. Thanks to the multi-task joint learning, the MTMLF-
QO on a single DB outperforms the previous state-of-the-art
(SOTA) method on CardEst/CostEst tasks, and yields near-
optimal results in JoinSel task. When trained on multiple
DBs with the proposed meta-learning algorithms, MTMLF-
QO has ability to distill the meta knowledge that can be
transferred on new DBs.

The contributions of this paper are summarized as follows:

1. We identify and classify the knowledge that ML models

in DBMS essentially trying to comprehend (Section 2).

2. We propose the MTMLF, a unified transferable model
for all DBs and all tasks in DBMS (Section 2).

3. We design a concrete model MTMLF-QO to showcase
that MTMLF’s viability for query optimization (Sec-
tion 3).

4. We conduct experiments to demonstrate MTMLF-QO’s
superior performance and effectiveness of multi-task
learning and multi-DB meta-learning (Section 4).

5. We point out several concrete future research direc-
tions along this line of work (Section 5).

2. MULTI-TASKING META-LEARNING
FRAMEWORK

In this section, we classify the knowledge that ML meth-
ods in DBMS trying to comprehend, from the data and
task dimensions in Section 2.1. Based on this classifica-
tion, we design the multi-tasking meta-learning framework
(MTMLF) to explicitly learn each type of knowledge in
Section 2.2. At last, we provide the workflow about the
MTMLF with the potential to revolutionize the way how
ML methods are used for DBMS in Section 2.3.

2.1 Knowledge classification
The ML solutions for DBMS are fundamentally based on

extracting knowledge from the DB and apply it to various
tasks. We can classify this knowledge from two aspects as
shown in Figure 1.

From data aspect based on whether the knowledge is trans-
ferable across DBs, it can be classified into database-specific
and database-agnostic meta knowledge:

Database-specific knowledge refers to the knowledge that
is unique and can hardly benefit other DBs. Specifically, it
includes the data distributions, the join schema (i.e. the
fact/dimension tables and their join relationship), and the
query workload in a DB.

Database-agnostic meta knowledge refers to the knowl-
edge that should be distilled and shared across various DBs.
In a high level, this knowledge is independent of the data
distributions and query workloads in specific DBs, such as
the expert experience and heuristics about the physical join
implementation and access path selection. E.g., to imple-
ment a hash join for foreign key join, the dimension table is
usually the build side and the fact table is the probe side.
Furthermore, in a distributed setting, the hash join is usu-
ally implemented using broadcast join where the dimension
table is broadcasted. This type of meta knowledge should
be shared across DBs to avoid redundant learning process
for each new DB.

From task aspect based on the knowledge’s transferability
across tasks, it can be classified as task-shared and task-
specific knowledge:

Task-shared knowledge refers to the data and query rep-
resentation that can benefit all tasks in DBMS. The exist-
ing ML approaches to all DBMS tasks are fundamentally
based on understanding the underlying data distributions
and query workload representation. Therefore, these tasks
are inter-dependent and the shared knowledge can capture
their inherent interactions to enhance the model effective-
ness. For instance, the index recommender analyzes the
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Figure 1: Framework and knowledge overview

data and query workload to recommend an index that can
improve a large portion of join and scan cases encountered
by the query optimizer. Conversely, the query optimizer,
which plans the execution essentially based on understand-
ing the distributions, can generate more efficient query plans
by considering the learned index.

Task-specific knowledge will be used to tackle each spe-
cific task based on the shared data and query workload rep-
resentation. For example, having access to the shared rep-
resentation, a JoinSel model still needs to explicitly solve
an NP-hard problem [Leis et al. 2015]. Specifically, after
deriving estimated cardinalities and the cost of different op-
erations from the shared knowledge, the JoinSel model will
design specific features to solve an NP-hard combinatorial
optimization problem and plan an optimal join order. This
step is hardly beneficial to other tasks and too complex to
be shared with.

Existing ML approaches in DBMS are not effective or
practical mainly because they did not explore or learn the
database-agnostic meta knowledge and task-specific knowl-
edge. Therefore, we propose the MTMLF to explicitly learn
these two types of knowledge.

2.2 Framework overview
We design the MTMLF with the following architecture to

explicitly capture the aforementioned four types of knowl-
edge (shown in Figure 1). First, the MTMLF uses a fea-
turization and encoding module for each DB to process the
non-transferable database-specific knowledge. Second, it con-
structs a shared representation module to learn the data dis-
tributions and query workload representation that can ben-
efit all DBMS tasks. This module will be trained jointly on
all tasks in order to extract the task-shared knowledge and
improve model effectiveness on each task. Third, it creates a
task-specific module with each sub-module corresponding to
one DBMS task and understands the task-specific knowledge.
Fourth, the architecture design of MTMLF enables an effec-
tive meta-learning procedure to distill the database-agnostic
meta knowledge. All database-specific information is pushed
to the featurization and encoding module. The remaining
modules are devoted to understanding the database-agnostic
knowledge. Therefore, we hypothesize that the task-specific
and shared representation modules can benefit significantly
from pre-train fine-tune paradigm. I.e. we can pre-train
these two modules of MTMLF using data from various DBs;
thereafter, when deployed on a new DB, the pre-trained
model only needs a small number of training examples to
fine-tune for the best accuracy.

Featurization and encoding module adaptively applies

feature engineering to three types of input: the data ta-
bles, the executed query workload, and additional informa-
tion such as join schema and physical machine properties.
(1) This module will take each data table in the DB as in-
put and output its encoded distribution. (2) This module
can directly apply the existing procedures [Sun and Li 2019,
Marcus et al. 2019] to featurize each query in the workload.
(3) Some tasks may take additional information into con-
sideration. For example, a resource allocation and execu-
tion scheduling model might need to know the memory size,
buffer size, CPU usages, etc. This module can also featurize
these inputs accordingly.

Shared representation module takes the featurized and
encoded inputs, models their interactions, and outputs a
shared representation that could benefit all tasks/DBs. For
example, many tasks (e.g. CardEst, JoinSel) must under-
stand the data distribution of the join on multiple tables.
This module can learn such distribution by analyzing the
cardinality of executed join queries and combining the sin-
gle table distributions. Inspired by recent advance using
pre-train models for NLP [Brown et al. 2020, Devlin et al.
2018], data cleaning [Tang et al. 2020] and relational ta-
ble understanding [Herzig et al. 2020, Deng et al. 2020], we
advocate for implementing the shared representation mod-
ule with transformer [Vaswani et al. 2017], which is demon-
strated to be very powerful in modeling interactions, extract-
ing effective representations, and easy for pre-train fine-tune
procedure.

Task-specific module contains a series of models corre-
sponding to all DBMS tasks, some of which may contain
many sub-tasks (for example, the query optimization task
consists of CardEst, CostEst, JoinSel sub-tasks). Each model
takes the shared representation from the previous module
and returns the desired outputs for its corresponding DBMS
task. This module learns the task-specific knowledge, which
can also benefit various DBs through meta-learning.

2.3 Workflow overview
The MTMLF has the potential to revolutionize the way

how ML is used in DBMS. It is more suitable in the form
of cloud service, which can significantly reduce the time
and complexity of adopting ML-powered DBMS components
(such as DB auto-tuner and learned query optimizer) on
users’ DBs, and boost the wide applications of these ML
components. We provide the details from the service provider
and the users sides.

Service provider side: The cloud service provider will train
the MTMLF on multiple users’ DBs and provide the shared
representation and task-specific modules as part of the DB
service to the users. In this way, the provider can leverage
its advantages: 1) it has access to various users’ DBs either
through anonymous access or federated learning [Konečnỳ
et al. 2015] to protect the data privacy; 2) it has powerful
computation resources to train large models; and 3) it has
abundant time because the training process is offline. Thus,
the pre-trained MTMLF can fully exploit these advanatges
to distill the database-agnostic meta knowledge beneficial to
all users’ DBs.

Furthermore, the service provider can periodically collect
useful information from the users side in the form of anony-
mous training data or gradients of model parameters (in fed-
erated learning). This information will be used continuously
and asynchronously to update and optimize the pre-trained



MTMLF. The new model will be published as service up-
grades to benefit all users.

Users side: The DB users will locally adjust the received
pre-trained MTMLF to best fit their DBs. This fast local
training process only requires the users to (1) analyze the
data tables in the user’s DB to summarize the data distri-
butions, similar to an “ANALYZE” operation in traditional
DBMS [Group 2018], and (2) execute a small number of
representative queries to fine-tune the pre-trained MTMLF.
This training procedure only needs to be conducted once
and all tasks are tuned to the best performance.

The MTMLF model is very effective in inference. Since
all tasks are trained jointly to learn the task inherent inter-
actions, the inference of each task can effectively take others
into consideration, guaranteed to make consistent decisions.
For example, the physical design wizard will only recom-
mend indices that the query optimizer finds useful for a large
portion of query workloads.

This pre-train fine-tune paradigm can significantly reduce
the management complexity. First, the MTMLF can swiftly
evolve itself as the DB changes. When the data or query
workload distribution in this DB shifts, only the featuriza-
tion and encoding module of MTMLF needs to be updated
without affecting the other two modules. Second, despite
the diverse set of DBMS tasks, only a single model needs to
be maintained, monitored, and regularly updated.

3. CASE STUDY: QUERY OPTIMIZATION
In this section, we describe the MTMLF in a concrete sce-

nario, query optimization (QO), a key component in DBMS.
In Section 3.1, we first review the relevant learning tasks in
QO: CardEst, CostEst, and JoinSel tasks. Then in Sec-
tion 3.2, we present the case study model, MTMLF-QO for
a single DB, which can be jointly trained on these three tasks
to mutually benefit all. At last in Section 3.3, we explain the
meta-learning algorithm of MTMLF-QO for multiple DBs,
which helps distill the meta-knowledge beneficial to all DBs.

3.1 Learning tasks in query optimization
The query optimizer, which takes as input a SQL query

and outputs its physical execution plan, directly determines
the performance of DBMS. Tuning the query optimizer is a
challenging task, requiring thousands of expert-engineering
hours [Marcus et al. 2019, Leis et al. 2015]. Thus, numer-
ous efforts have been devoted to optimizing QO using ML
techniques [Zhou et al. 2020].

Each candidate plan of a query Q can be regarded as a
tree, where each leaf node is a (sequential or index) scan
operation on some tables and each inner node is a (merge,
nested loop, or hash) join operation between multiple tables.
Following previous work [Marcus et al. 2019], as we focus on
JoinSel, we omit other physical operations (e.g. aggregate or
hash). The QO process would enumerate several candidate
plans, estimate their cardinality and cost, and select the
optimal one. Next, we list the core learning tasks of QO:
• Cardinality estimation (CardEst) refers to estimating

the number of tuples satisfying a query before its execution.
ML-based CardEst techniques try to build either unsuper-
vised models characterizing the data distribution [Hilprecht
et al. 2020] or supervised models mapping featurized queries
to the cardinality [Kipf et al. 2019]. Recent evaluation re-
sults [Han et al. 2021] have exhibited their superiority over
traditional methods.

• Cost estimation (CostEst) refers to estimating the la-
tency and/or throughput of a (sub-)query execution plan.
ML-based CostEst methods use tree-based models (such as
tree convolution [Marcus and Papaemmanouil 2019] and tree-
LSTM [Sun and Li 2019]) to encode a plan and map the
encoding to its estimated costs.
• Join order selection (JoinSel) decides the order with

minimal cost to join multiple tables in the query. It is an NP-
hard problem with a large search space [Leis et al. 2015]. Ex-
isting ML-based solutions attempt to effectively solve Join-
Sel using deep reinforcement learning techniques [Marcus
et al. 2019, Marcus and Papaemmanouil 2018, Guo and
Daudjee 2020, Yu et al. 2020].

These core tasks in QO are interdependent. Specifically,
CostEst is fundamentally based on CardEst; JoinSel requires
CardEst and CostEst to evaluate the quality of the join or-
der. It has been shown empirically that the CardEst model
learned without considering the join order and cost model
will not generate effective prediction [Negi et al. 2021]. Thus,
these tasks will be learned jointly in MTMLF-QO.

3.2 Architecture
As a concrete case study of the aforementioned MTMLF,

the MTMLF-QO model also consists of inputs (I), featuriza-
tion and encoding module (F), shared representation module
(S), task-specific module (T), and loss criteria and training
(L), as shown in Figure 2.

(I) Inputs: The MTMLF-QO model takes two types of in-

puts: (I.i) the data tables T = {T1, T2, . . . , Tn} in the DB
and (I.ii) the query Q = (TQ, jQ, fQ) where TQ ⊆ T denotes
the tables touched by Q, jQ = {j(T1, T2), . . .} denotes the
join predicates, and fQ = {f(T1), f(T2), . . . , f(Tn)} denotes
the filter predicates. We also provide Q’s initial plan P with
each node corresponding to a join or filter scan operation.

We modify the CardEst and CostEst tasks to let MTMLF-
QO take the query P and estimate the cardinality and cost
of the sub-plan rooted at each node of P. All three tasks
will be trained jointly.

(F) Featurization and encoding module: We try to ex-
tract the useful information from each data tuple and input
queries, and embed them into vectors [Sun and Li 2019,
Marcus et al. 2019] (shown in F.i). Specifically, we provide
a value embedding for each unique column domain value in
the DB to embed the tuples and the predicates j(Q), f(Q).
We use a one-hot vector to represent each distinct table,
column, and physical operation of a DB.

After the featurization, (F.ii) of this module will encode
the data distribution of each table. For each single table Ti,
this module deploys a transformer encoder [Vaswani et al.
2017] (Enci), which takes the filter predicate on this table
f(Ti) and outputs E(f(Ti)) representing the distribution of
Ti after applying f(Ti).

Thus far, we can embed each node Ni of the query plan
P as a concatenation of the one-hot vector embedding of
tables touched by Ni, the one-hot vector of operation type,
and the embedding for predicate j(Ni) or encoded E(f(Ni)).
We denote the embedding of Ni as E(Ni). At last, a serial-
izer (F.iii) will convert the tree-structured plan into a vector
E(P) = (E(N1), E(N2), . . .) using the transformers’ tree po-
sitional embedding techniques [Shiv and Quirk 2019].

(S) Shared representation module: After the previous

module produces a sequence of embeddings E(P) for the
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Figure 2: MTMLF-QO Model for a single DB

query, MTMLF-QO will model the interactions among ele-
ments E(Ni) of E(P) and generate a shared representation
for the subsequent tasks. We use a transformer encoder
Trans Share to learn such interactions.

The input E(P) to Trans Share contains the information
of single table distributions and join predicates. Trans Share
will construct the multi-table join distributions and under-
stand the cost of different physical operations on specific sin-
gle and join tables. The output (S1, S2, . . .) of Trans Share
has the same length as the input, with one-to-one corre-
spondence. For example, the Si corresponding to E(Ni)
will represent the query P’s sub-plan rooted at node Ni.

(T) Task-specific module: We use two multiple-layer per-

ceptrons(MLPs), namely M CardEst and M CostEst, to di-

rectly extract the estimated cardinality Ĉard and cost Ĉost
from the shared representation (T.i and T.ii, respectively).
However, extracting the optimal join order from this rep-
resentation is much more complicated, because there exists
an exponential number of possible join orders and a large
amount of them might not be executable (e.g. there does
not exist a join predicate between two tables).

As demonstrated in (T.iii), we formulate the JoinSel task
into a sequence to sequence learning task (seq2seq) and use a
transformer decoder [Vaswani et al. 2017] Trans JO to gen-
erate the join order. For clarity of discussion, we focus on
generating the left-deep join orders [Leis et al. 2015], which
can be directly flattened into an ordered sequence of tables.
Specifically, the Trans JO takes as input the shared repre-
sentation (S1, S2, . . .), with each Si representing a single or
join table. At each timestamp t, Trans JO will output a
value P̂t representing the probability of which table should
be joined at the current timestamp. For a DB with n ta-
bles, P̂t will be a multinoulli distribution vector of length
n with the i-th entree corresponding to the probability that
the table Ti is the next table to join with. Then, we design
a novel decoding algorithm to decode a sequence of tables
from the time sequence of P̂t as the predicted join order,
which is guaranteed to be legal and executable.

Please note that the Trans JO can also generate bushy
plans with our novel decoding algorithm based on beam-
search [Boulanger-Lewandowski et al. 2013, Graves 2012].
We put the details of Trans JO for bushy plans and the

decoding algorithm in the technical report [Wu et al. 2021].

(L) Loss criteria and training: In order to train the mod-
els for CardEst and CostEst, we use the conventional Q-error
loss [Kipf et al. 2019, Sun and Li 2019], i.e., the factor be-
tween the predicted and true cardinality or cost (L.i and

L.ii): Lcard = max(ĉard/card, card/ĉard).
For the JoinSel, which can be modeled as the seq2seq task,

we use the cross-entropy loss function. Specifically, given a
ground truth optimal left-deep join order T ′1, T

′
2, . . . , T

′
m for

a query Q touching m tables out of the total n tables, we can
embed each T ′t into Pt, a one-hot vector of length n. At each
time stamp t, the MTMLF-QO outputs a probability vector
P̂t and we can compute a cross entropy loss between P̂t and
Pt. We average the loss across all m timestamps and derive
the loss of join order Ljo = −(

∑m
t=1 Pt · log(P̂t))/m. This

refers to the token-level loss function in NLP context [Graves
2012, Ranzato et al. 2015]. To empower MTMLF with the
ability to effectively learn the optimal join orders, we design
a novel sequence-level loss function to train the Trans JO,
whose details are provided in the technical report of this
paper [Wu et al. 2021].

During the offline training phase of MTMLF-QO, all three
tasks are trained jointly. The overall loss criterion is de-
fined as the weighted combination of three loss functions
for three tasks as defined in equation 1. The weights are
hyper-parameters of the MTMLF-QO.

LQO = wcard ∗ Lcard + wcost ∗ Lcost + wjo ∗ Ljo (1)

The gradient of this loss function will be backpropagated to
update the parameters of the (S) and (T) modules only.

For the (F) module, each single table encoder Enci (F.ii)
is trained separately with a CardEst task on a single table
Ti. I.e. Enci learns the data distribution of Ti through pre-
dicting the cardinality of filter predicate f(Ti). The details
are put in the accompanied technical report [Wu et al. 2021].

Future research opportunities: The optimal join order
for a query with a large number of tables is very expensive
to obtain, limiting the MTF-QO’s ability to extrapolate to
very complex queries. A two-phase training can potentially
alleviate this problem. I.e, an existing DBMS can be used
to generate sub-optimal join orders to train a baseline MTF-
QO, and then the precious data of the optimal join orders
will be used to optimize this model.



Algorithm 1: Meta-learning Algorithm for MTMLF-QO

1: Input: n database ((D1, Q1), (D2, Q2), . . . , (DN , QN ))
2: Initialize empty set Train Data
3: for i ∈ {1, . . . , n} do
4: For each table Tj in Di, train Encj (F.i and F.ii in

Figure 2)
5: (F) module featurizes each query in Qi, and derive

E(P)
6: Add (E(P), Card, Cost, Pt) to Train Data
7: Shuffle Train Data
8: Train (S) and (T) modules with Train Data

3.3 Cross-DB meta learning for MTMLF-QO
In this section, we first propose a meta-learning algorithm

(MLA) for MTMLF-QO and then conceptually reason about
its feasibility.

Meta-learning algorithm: The details of MLA are shown
in Algorithm 1. Assume that MTMLF-QO has access to n
DBs, each with data tables Di and executed query workload
Qi. The MLA aims at enabling MTMLF-QO to predict the
cardinality, cost, and join order for all n DBs using a single
model, and learning the database-agnostic meta knowledge.
Thus, MLA empowers MTF-QO with the ability to transfer
its learned knowledge to new DBs.

First, the data tables and queries in each DB will go
through the featurization module of MTF-QO. Then, fol-
lowing the training procedure described earlier, we train the
single table encoder Encj for each table Tj of each DB (line
4). Thus, the (F) module can embed each query q ∈ Qi with
initial plan P (line 5) and add the embedding E(P) and its
corresponding cardinality, cost, and optimal join order to
the training dataset (line 6). After all queries in all DBs
have been added, MLA will shuffle the training dataset (line
7) and train the share representation (S) and task-specific
modules (T) using the aforementioned loss criteria (line 8).

The returned MTMLF-QO trained by MLA would extrap-
olate to various DBs and produce accurate predictions on
all of them. Thus, for each new DB, we can train the single
table encoders (Encj in F.ii) and the “meta” MTMLF-QO
model only needs to be fine-tuned on a small number of ex-
ample queries. The encoders in (F.ii) only require query
cardinalities on single tables and are efficient to train.

Conceptual reasoning of MLA: MLA pushes all data-
specific information to the (F) module, which can be ef-
ficiently trained for a new BD. By shuffling the training
dataset across different DBs, the MLA enforce subsequent
modules of MTMLF-QO to learn the data-agnostic informa-
tion, such as how the (S) module can derive the distribution
on the join of multiple tables, and how the (T) module can
use the shared representation to predict the cardinality, cost
and join order. Without this training procedure, the (S) and
(T) will merely map the embedded query to the target by
“brute force” without truly understanding the semantics of
the data distribution.

We provide a detailed example as follows of how the (S)
and (T) modules can learn to construct the distribution on
the join of multiple tables from single table distributions
provided by the (F) module. Without MLA, the (S) module
would require thousands of executed multi-table join queries
to forcedly capture this information. Alternatively, the join

Table 1: Q-errors on the JOB workload.

Method
Cardinality Cost

median max mean median max mean
PostgreSQL 184.00 670,000 10,416 4.90 4920 105.00
Tree-LSTM 8.78 696.29 36.83 4.00 290.35 15.01

MTMLF-QO 4.48 614.45 28.69 2.10 37.54 4.20
MTMLF-CardEst 5.12 804.48 36.66 \ \ \
MTMLF-CostEst \ \ \ 2.06 61.41 4.69

Table 2: Execution time with different join orders.
JoinOrder Total Time Overall Improvement Ratio

PostgreSQL 1143.2 min \
Optimal 209.1 min 81.7%

MTMLF-QO 318.3 min 72.2%
MTMLF-JoinSel 450.4 min 60.6%

tables probability distribution can be reconstructed from the
single table distributions. For example, consider two tables
A, B, and their join table O = A ./ B on join predicate
A.id = B.id. The probability of any filter predicate on
O can be derived from the distributions on A and B only,
as shown in Equation 2. By shuffling the training dataset
across different DBs, MLA will compel the (S) module to
learn this reconstruction process because otherwise a single
(S) module can not extrapolate on different DBs.

PO(f(A) ∧ f(B)) =∑
id∈D(A.id)

PA(f(A) ∧A.id = id) ∗ PB(f(B) ∧B.id = id)

(2)

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of MTMLF-

QO for a single DB on CardEst, CostEst, and JoinSel tasks
and the effectiveness of multi-task joint training. Then, we
show the cross-DB “transferability” of MTMLF-QO trained
on multiple DBs via MLA to a new DBs.

4.1 Experiments on single DB
We use the JOB benchmark of 113 queries joining dozens

of tables and having the complex “LIKE” predicates on the
IMDB dataset containing 21 tables with skewed distribu-
tion and strong attribute correlation [Leis et al. 2015]. Fol-
lowing the prior work [Sun and Li 2019], we generate 150K
SQL queries similar to the JOB queries as the training data.
Then, we execute these queries in PostgreSQL [Group 2018]
to derive the query plans and their true cardinalities and
costs. For the JoinSel task, we generate the optimal join
order using the ECQO program [Trummer 2019]. Since de-
riving optimal join order has exponential time complexity,
we can only afford to execute this program for 20K queries
out of the 150K, which touches no more than 8 tables.

Hyperparameters of MTMLF-QO: We use a transformer
with 3 blocks and 4 headers for each Enci, the Trans Share
and the Trans JO. We use two-layer MLPs for M CardEst
and M CostEst. The weights wcard, wcost, and wjo are all
set to 1. The Adam optimizer [Kingma and Ba 2014] with
10−4 learning rate is used to optimize the model. All experi-
ments are conducted on a CentOS Server with an Intel Xeon
Platinum 8163 2.50GHz 64-core CPU, 376GB DDR4 main
memory, and 1TB SSD and GeForce RTX 2080 Ti GPU.



Table 3: Execution time with different join orders.
JoinOrder Total Time Overall Improvement Ratio

PostgreSQL 393.9 min \
MTMLF-QO (MLA) 234.1 min 40.6%

MTMLF-QO (single) 219.5 min 44.3%

Performance on CardEst and CostEst: In order to show
the effectiveness of our MTMLF-QO model on CardEst and
CostEst tasks, we compare it with a traditional DBMS Post-
greSQL [Group 2018], and the previous SOTA method Tree-
LSTM [Sun and Li 2019] on the JOB benchmark. Please
note that we can not compare MTMLF-QO with other data-
driven SOTA methods [Zhu et al. 2021, Wu and Shaikhha
2020, Hilprecht et al. 2020] because they can not support
“Like” predicates on strings [Han et al. 2021].

We take 90% of generated 150K queries as the training
dataset, 10% as the validation set for hyper-parameter tun-
ing, and JOB queries as the test set. We use q-error as the
metric to evaluate cardinality and cost estimation. As shown
in Table 1, our MTMLF-QO significantly outperforms the
traditional DBMS and the previous SOTA Tree-LSTM on
both CardEst and CostEst tasks.

Performance on JoinSel: To evaluate the quality of the
join order generated by MTMLF-QO, we use 85% of the
20K queries to train, 10% of the queries to find the hyper-
parameter, and the rest 5% as the test set to predict the
optimal join orders. Note that, we refrain from testing on
the original JOB queries because MTMLF-QO only has ac-
cess to queries joining no more than 8 tables.

We compare the quality of the join order generated by
MTMLF-QO against with two baselines: the original Post-
greSQL’s query optimizer and the optimal join order pro-
duced by ECQO. Table 2 shows the results of query exe-
cution time using different join orders, where “total time”
is the total running time of all 1, 000 testing queries, and
“overall improvement ratio” refers to the improvement over
the PostgreSQL divided by the PostgreSQL total time.

Based on this table, we can see that the learned join or-
der of MTMLF-QO can significantly outperform the Post-
greSQL baseline. In addition, for more than 70% of the
1, 000 testing queries, MTMLF-QO can output the optimal
join order. These results indicate that MTMLF-QO can be
a very effective learned query optimizer of PostgreSQL. We
left the comparison of MTMLF-QO with other SOTA join
order selection methods [Marcus et al. 2019, Marcus and Pa-
paemmanouil 2018, Guo and Daudjee 2020, Yu et al. 2020]
as future work.

Benefits of multi-task joint training: In order to demon-
strate the benefits of multi-task joint training of MTMLF-
QO, we conduct an ablation experiment to separately train
the MTMLF-QO model for CardEst (MTMLF-CardEst),
CostEst (MTMLF-CostEst), and JoinSel (MTMLF-JoinSel).
By Table 1 and Table 2, the performance of MTMLF-JoinSel
is much worse than the original MTMLF-QO, and MTMLF-
CardEst and MTMLF-CostEst are also slightly worse than
MTMLF-QO. This suggests that the joint training of CardEst,
CostEst, and JoinSel tasks is indeed more effective than the
separate training.

4.2 Experiments on cross-DB transferrability
Artificial DBs: Since there exists a very limited number
of open-source real-world DBs, we generate artificial DBs to

verify the cross-DB transferability. Specifically, we design a
data generation pipeline to produce 11 DBs, each contain-
ing 6 − 11 tables with a varied number of attributes and
very different distributions. The details of this pipeline are
provided in the technical report [Wu et al. 2021].

Experiment procedures: We first generate 11 artificial
DBs {D1, . . . ,D11}. For each DB Di, we create a work-
load Wi of 20K join queries and execute the ECQO pro-
gram [Trummer 2019] to derive its optimal join order.

The hyper-parameters of MTMLF are the same as de-
scribed in Section 4.1 of the main paper. The training of
the MTMLF follows the MLA procedure. Specifically, we
first generate some single-table queries for each table within
each DB Di. Using these queries, we train a featurization
module Fi for every DB to capture all the dataset-specific
knowledge such as the single table distributions. The pro-
cedure of training each Fi is very efficient since the single
table query can be efficiently executed in parallel or using
AQP techniques. Then, we use 10 DBs {D1, . . . ,D10} as
the training data and learn the (S) shared representation
and (T) task-specific modules for the MTMLF via MLA
described in Section 3.3. These two modules are able to
output effective join orders for all 10 DBs. Thus, it must
have captured the dataset-agnostic knowledge that can be
transferred to a new DB.

We use D11 as testing data to verify the transferability of
MTMLF. Specifically, we connect the learned F11 module
containing all dataset-specific information of D11 with the
pre-trained (S) and (T) modules. Then, we use this MTMLF
model to generate the join order of queries on this DB and
execute these join orders in PostgreSQL.

Effectiveness of MTMLF-QO’s meta-learning: From
Table 3, we observe that the MTMLF-QO trained via MLA
can generate join orders that are 40% faster than the ones
produced by PostgreSQL baseline on a brand new DB. As a
controlled study, we directly train an MTMLF-QO on this
test DB D11 from scratch (MTMLF-QO single), which is
only slightly better than MTMLF-QO trained via MLA.
These results suggest that MTMLF-QO has the capacity
to distill cross-DB meta-knowledge that is transferrable to
new DBs.

5. CONCLUSIONS
In this paper, we present the MTMLF, which can con-

dense an effective shared representation to mutually benefit
various tasks in DBMS and distill the“meta-knowledge”ben-
eficial to all DBs. We also demonstrate with a very promis-
ing case study on query optimization that future research
along this direction can be fruitful.

Next, we list two concrete future research opportunities.
First, inspired by MTMLF-QO, other DBMS tasks can also
be incorporated into the MTMLF framework. Second, a
cloud DB service can greatly facilitate the pre-train fine-
tune paradigm of MTMLF. This setting motivates the re-
search community to design a federated learning algorithm
to protect the DB users’ data privacy and simultaneously
ensure effective training of MTMLF.
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and Daniel Ramage. 2015. Federated optimization:
Distributed optimization beyond the datacenter. arXiv
preprint arXiv:1511.03575 (2015).

[Kraska et al. 2018] Tim Kraska, Alex Beutel, Ed H Chi,
Jeffrey Dean, and Neoklis Polyzotis. 2018. The case
for learned index structures. In Proceedings of the
2018 International Conference on Management of
Data. 489–504.

[Leis et al. 2015] Viktor Leis, Andrey Gubichev, Atanas
Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. 2015. How Good Are Query Optimizers,
Really? Proc. VLDB Endow 9 (2015), 204–215.

[Li et al. 2019] Guoliang Li, Xuanhe Zhou, Shifu Li, and
Bo Gao. 2019. Qtune: A query-aware database tuning
system with deep reinforcement learning. Proceedings
of the VLDB Endowment 12, 12 (2019), 2118–2130.

[Ma et al. 2020] Lin Ma, Bailu Ding, Sudipto Das, and
Adith Swaminathan. 2020. Active learning for ML
enhanced database systems. In Proceedings of the 2020
ACM SIGMOD International Conference on
Management of Data. 175–191.

[Marcus et al. 2019] Ryan Marcus, Parimarjan Negi,
Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim
Kraska, Olga Papaemmanouil, and Nesime Tatbul.
2019. Neo: A learned query optimizer. PVLDB (2019).

[Marcus and Papaemmanouil [n.d.]] Ryan Marcus and
Olga Papaemmanouil. [n.d.]. Wisedb: A
learning-based workload management advisor for
cloud databases. PVLDB ([n. d.]), 780–791.

[Marcus and Papaemmanouil 2018] Ryan Marcus and Olga
Papaemmanouil. 2018. Deep reinforcement learning
for join order enumeration. In Proceedings of the First
International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. 1–4.

[Marcus and Papaemmanouil 2019] Ryan Marcus and Olga
Papaemmanouil. 2019. Plan-structured deep neural
network models for query performance prediction.
arXiv preprint arXiv:1902.00132 (2019).

[Nathan et al. 2020] Vikram Nathan, Jialin Ding,
Mohammad Alizadeh, and Tim Kraska. 2020.
Learning multi-dimensional indexes. In Proceedings of
the 2020 ACM SIGMOD International Conference on
Management of Data. 985–1000.

[Negi et al. 2021] Parimarjan Negi, Ryan Marcus, Andreas
Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2021. Flow-Loss: Learning
Cardinality Estimates That Matter. arXiv preprint
arXiv:2101.04964 (2021).

[Ortiz et al. 2018] Jennifer Ortiz, Magdalena Balazinska,
Johannes Gehrke, and S Sathiya Keerthi. 2018.
Learning state representations for query optimization
with deep reinforcement learning. In Proceedings of
the Second Workshop on Data Management for
End-To-End Machine Learning. 1–4.



[Ranzato et al. 2015] Marc’Aurelio Ranzato, Sumit
Chopra, Michael Auli, and Wojciech Zaremba. 2015.
Sequence level training with recurrent neural
networks. arXiv preprint arXiv:1511.06732 (2015).

[Sheng et al. 2019] Yangjun Sheng, Anthony Tomasic,
Tieying Zhang, and Andrew Pavlo. 2019. Scheduling
OLTP transactions via learned abort prediction. In
Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management. 1–8.

[Shiv and Quirk 2019] Vighnesh Shiv and Chris Quirk.
2019. Novel positional encodings to enable tree-based
transformers. Advances in Neural Information
Processing Systems 32 (2019), 12081–12091.

[Siddiqui et al. 2020] Tarique Siddiqui, Alekh Jindal, Shi
Qiao, Hiren Patel, and Wangchao Le. 2020. Cost
models for big data query processing: Learning,
retrofitting, and our findings. In Proceedings of the
2020 ACM SIGMOD International Conference on
Management of Data. 99–113.

[Sun and Li 2019] Ji Sun and Guoliang Li. 2019. An
end-to-end learning-based cost estimator. arXiv
preprint arXiv:1906.02560 (2019).

[Tang et al. 2020] Nan Tang, Ju Fan, Fangyi Li, Jianhong
Tu, Xiaoyong Du, Guoliang Li, Sam Madden, and
Mourad Ouzzani. 2020. Relational Pretrained
Transformers towards Democratizing Data
Preparation [Vision]. arXiv preprint arXiv:2012.02469
(2020).

[Trummer 2019] Immanuel Trummer. 2019. Exact
cardinality query optimization with bounded execution
cost. In Proceedings of the 2019 International
Conference on Management of Data. 2–17.

[Vaswani et al. 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in neural
information processing systems (2017).

[Wu and Shaikhha 2020] Ziniu Wu and Amir Shaikhha.
2020. BayesCard: A Unified Bayesian Framework for
Cardinality Estimation. arXiv preprint
arXiv:2012.14743 (2020).

[Wu et al. 2021] Ziniu Wu, Peilun Yang, Pei Yu, Rong
Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai Zeng,
and Jingren Zhou. 2021. A Unified Transferable Model
for ML-Enhanced DBMS. arXiv preprint
arXiv:2105.02418 (2021).

[Yang et al. 2020] Zongheng Yang, Amog Kamsetty, Sifei
Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.
2020. NeuroCard: One Cardinality Estimator for All
Tables. arxiv (2020).

[Yang et al. 2019] Zongheng Yang, Eric Liang, Amog
Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter
Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and
Ion Stoica. 2019. Deep unsupervised cardinality
estimation. Proceedings of the VLDB Endowment
(2019).

[Yu et al. 2020] Xiang Yu, Guoliang Li, Chengliang Chai,
and Nan Tang. 2020. Reinforcement learning with
tree-lstm for join order selection. In 2020 IEEE 36th
International Conference on Data Engineering
(ICDE). IEEE, 1297–1308.

[Zhang et al. 2019] Ji Zhang, Yu Liu, Ke Zhou, Guoliang
Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao
Wang, Tianheng Cheng, Li Liu, et al. 2019. An
end-to-end automatic cloud database tuning system
using deep reinforcement learning. In Proceedings of
the 2019 International Conference on Management of
Data. 415–432.

[Zhou et al. 2020] Xuanhe Zhou, Chengliang Chai,
Guoliang Li, and Ji Sun. 2020. Database meets
artificial intelligence: A survey. IEEE Transactions on
Knowledge and Data Engineering (2020).

[Zhu et al. 2021] Rong Zhu, Ziniu Wu, Yuxing Han, Kai
Zeng, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight
and Accurate Method for Cardinality Estimation.
VLDB (2021).


