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Abstract

Modern application development addresses increasingly special-
ized problems using domain-specific utilities, such as Optical Code
Recognition and standalone statistical tools. The diversity of tool-
ing, combined with the ever-growing volume of data, requires data
pipelines to be both efficient and support a variety of data process-
ing tools within the same pipeline. Existing approaches, however,
impose a tradeoff between modularity and performance: on the one
hand, data processing systems are specialized for fast execution of
complex queries, favoring efficiency at the expense of high devel-
opment costs and required domain expertise. On the other hand,
highly extensible systems opt for composability at the expense of
inefficient execution due to minimal assumptions about input and
output formats.

This paper proposes Generalized OLAP (GOLAP), a new DBMS
paradigm that places automatic extensibility of functionality as a
first-class design goal. GOLAP ingests external utilities to achieve
the functionality provided by external modular data pipelines while
maintaining the performance of natively optimized DBMS func-
tions. Through a combination of runtime inspection and static
analysis, GOLAP detects inter-utility communication inefficiencies
and parallelization opportunities beyond the limits of isolated util-
ity optimizations. It then modifies the utilities to elide unnecessary
inter-utility operations and parallelizes the pipeline to increase
hardware utilization. To evaluate GOLAP, we build Caesar, a proto-
type that optimizes simple pipelines, showing up to 22x speedup
while introducing a limited instrumentation period with a slow-
down of less than 17%.

1 Introduction

The ever-growing demand for sophisticated applications creates an
unprecedented need for complex, domain-specific, and heteroge-
neous building blocks that surpass the capabilities of traditional data
processing engines. Fortunately, data practitioners have a plethora
of ready-made building blocks at their disposal, ranging from new
statistical tools to specialized utilities like Optical Code Recogni-
tion (OCR) to extract text from images to system monitoring tools.
However, the absence of a do-it-all infrastructure creates a dilemma:
sacrifice performance and create multi-system pipelines, or wait for
all the required utilities to be implemented on the same framework.
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While integration into a unified framework allows global opti-
mizations as well as a consistent type system and data represen-
tation, it requires time-consuming manual effort. Thus it is often
limited to popular utilities, like the latest machine learning algo-
rithms. Nevertheless, the fast pace of application development and
the wide range of developer expertise leads to the reuse of libraries
created for a single purpose. As a result, data practitioners priori-
tize components that serve their purpose — even at the expense of
interoperability overheads such as utilities communicating via a
human-readable, e.g., CSV/JSON, intermediary format.

To minimize the interoperability cost, existing works follow two
main directions: building adaptive systems or transcompiling ex-
isting utilities. The first category relies on having modular system
designs that virtualize data accesses [14, 15] to reduce the cost
of operating on raw data, by requiring all utilities to adhere to a
custom system-specific architecture. The second category relies
on software lifting techniques [5, 6, 9] to lift a lower-level, usually
imperative, program description to a higher-level optimizable rep-
resentation. This comes with the requirement that the program is
representable in the higher-level Domain Specific Language (DSL)
- thus restricting the utilities that can be lifted to ones that the
system can understand. In both cases, the focus is on optimizing
the utilities internally.

Nevertheless, many common overheads originate from ineffi-
ciencies due to the integration of utilities and not due to inefficient
implementation of their internal core logic: gluing together multi-
ple small, off-the-shelf utilities introduces costly materializations
beyond the responsibility bounds of any single utility. Similarly,
exploiting the available hardware parallelism requires orchestrat-
ing the utilities to exploit data and task parallelism - often beyond
the implemented intra-utility parallelization. As a result, existing
approaches create a tradeoff between expressiveness, i.e., using
off-the-shelf coarse-grained components to express the required
operations, and performance, i.e., having an efficient runtime.

This work presents GOLAP - an ecosystem-centric architecture
that allows engines to extend their functionality without sacrificing
performance by inspecting and optimizing data pipelines. GOLAP
optimizes interoperability and orchestration of data pipelines by
i) using both compile and runtime information to detect and re-
move unnecessary serialization operations, ii) using orchestration
contracts to parallelize and batch data pipeline operations. In con-
trast with previous approaches, GOLAP improves interoperability
overheads by optimizing utilities near their boundaries instead of
trying to fully understand the core functionality of each utility. To
evaluate the applicability of GOLAP, we build Caesar, a preliminary
prototype that optimizes data pipelines to achieve up to 22x speed-
up in end-to-end execution latency compared to the unoptimized
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base="https://wwwl.ncdc.noaa.gov/pub/data/ghcn/daily/by_year";
for y in {2010..2020}; do

curl -s "$base/$y.csv.gz" |

gunzip | noaa-decoder | range-calc |

sed -e "s/ *$//" | xargs -I{} grep {3} ghcnd-stations.txt |

sed "s/*/Station with the largest temperature range in $y:'
done

Figure 1: Example analytical pipeline with a mix of utilities

data pipeline and similar performance to manually optimized ones.
Overall, GOLAP enables a new breed of analytical systems that
auto-expand their functionality by absorbing external utilities.
This paper makes the following contributions:

o We identify that off-the-shelf components provide fast access
to new functionality while also providing an initial imple-
mentation that is amenable to optimizations and automatic
tuning,.

e We provide GOLAP, a new DBMS design that absorbs func-
tionality by inspecting external pipelines to avoid interoper-
ability overheads and missed parallelization opportunities —
a significant benefit for DBMS-native operations.

e Through Caesar, we evaluate GOLAP on a mix of analytical
and OCR-enabled pipelines and show up to 22x speed-up in
end-to-end execution latency.

2 Motivating Example

Modern data pipelines target complex data collection and pro-
cessing tasks. For example, a data pipeline may fetch images of hand-
written notes, apply an Optical Code Recognition (OCR) method
to extract the text, and run analytics on the result. Pipelines may
be even more domain-specific, for example translating proofs from
scans of old textbooks into an automatic theorem prover to create a
database of theorems. While these are two very specific examples,
they illustrate that the diversity of modern applications 1) requires
data pipelines to be easily expressed in high-level, often domain-
specific terms (“verbs”) and 2) has made specialized examples the
norm rather than the exception.

While database vendors put in significant effort to incorporate
new functionality, support lags for less popular utilities. This im-
pacts expressiveness, as data practitioners cannot introduce custom
verbs into pipelines without sacrificing performance. If the database
engine does not support functionality like fetching data from the
network based on a subquery, uncompressing images, or running
OCR, then the user is forced to invoke UDFs or external pipelines
and tools. However, the effectiveness of the database performance
optimizations reduces as the main workload shifts towards the
chained external utilities.

As an alternative, we make the case for first-class support for
expressing data pipelines using ready-made applications. Tradi-
tionally, there have been two extremes: on one side, analytical
engines optimize for high performance of data pipelines expressed
in the engine’s native (e.g., relational) algebra. On the other side,
bash/Python/serverless-like gluing frameworks optimize for ex-
pressiveness and composability at the expense of interoperability
overhead. In this work, we show that optimizing interactions be-
tween applications allows data practitioners to express complex
tasks in high-level terms without sacrificing performance.
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Figure 1 depicts a modified version of a data pipeline from
PaSh [30] that fetches data from the National Oceanic and Atmo-
spheric Administration (NOAA) to find which weather monitoring
station had the highest single-day temperature range per year. We
use this pipeline as an example of a traditional analytical query, one
that uses a set of off-the-shelf general utilities (curl, gunzip, and
sed to fetch, decompress and post-process the data, respectively)
as well as two task-specific utilities (noaa-decoder processes data
to extract relevant values and range-calc groups the input CSV
by the first column and simultaneously computes the max of the
second column).

The NOAA pipeline is put together using bash to pipe data from
one utility to the next. For the rest of the text we use bash-like
terminology to describe the pipelines and application interactions;
however GOLAP is not a bash optimizer. GOLAP is a proof-of-
concept for a DBMS design that ingests analytical pipelines: we
consider data pipelines composed of applications (utilities) that
communicate through explicit pipes. At the moment, the individual
operators are executables that read data from stdin and write it to
stdout. Our implementation and examples use C++ for the appli-
cation code; however, our proposal can be extended to ingest and
optimize other source languages. Furthermore, for utilities to take
advantage of optimizations that are based in just-in-time inspec-
tions and source code modifications, we assume the source code
and build system of the pipeline’s applications is available.

While the NOAA pipeline requires minimal development effort,
it misses standard OLAP performance optimizations such as paral-
lelization and suffers from unnecessary serializations. Expressing
the same pipeline in an OLAP engine, however, requires operations
that are often missing from a DBMS, such as task-specific function-
ality like noaa-decode. In this paper, we propose GOLAP: a system
design that targets both expansion of DBMS functionality and efficient
execution of external utilities, through inspection and rewriting of
data pipelines.

3 Background and Related Work

Optimizing data pipelines has received attention from both the data-
base and compiler communities. This section surveys the related
work and explains how GOLAP extends the state-of-the-art.
Efficient analytical query execution. Analytical engines have
powered pipelines and heavy-duty warehousing queries for decades.
OLAP engines use internal properties to parallelize execution. Specif-
ically, they inject meta-operators [10] or use parallelized opera-
tor variants [20] to achieve efficient, scalable execution. Vectoriza-
tion [2], code generation [22], and their combination [17, 21] have
ameliorated indirection and inter-operator overheads. Furthermore,
just-in-time code generation allows analytical engines to execute
queries over various data formats [14, 15] efficiently. As external
utilities are outside GOLAP’s control, it uses orchestration contracts
and utility rewrites to achieve similar optimizations.
Auto-managed pipelines. The complexity of modern workloads
has led to the transition to automanaged, serverless environments
that provide orchestration as a service, inspiring work on opti-
mizing execution in the cloud [6, 13] and on scalable operating
systems [3] to support it. As a core component of these infrastruc-
tures, including Docker, the UNIX Shell is at the frontend [11, 25],
with PaSh [30] parallelizing scripts through annotations. Lastly,
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speculation [26] and auto-parallelization through look-ahead pre-
dictions [18, 31] expose additional parallelism. GOLAP uses or-
chestration artifacts similarly to PaSh but is not Shell specific and
modifies the application source to further optimize execution. GO-
LAP provides a runtime layer for running applications similarly
to DBOS [3], but instead of providing efficient OS primitives, it
modifies the execution layer itself.

Domain-Specific Languages (DSLs) allow expressive and opti-
mizable representations for many domains, including for data-
intensive [23] and machine learning [4] tasks. Furthermore, veri-
fied lifting [5, 6, 9] allows the lifting of low-level representations
into higher ones if the higher-level DSL supports the low-level
operations. However, finding a DSL that has broad applicability
is an open challenge. Thus, MLIR [19] proposes loosely combin-
ing multiple DSLs through a generic representation that allows
co-optimizing multiple representation levels. GOLAP follows a
multi-representation strategy, similarly to MLIR, and lifts input
programs, similarly to verified lifting. In contrast to both MLIR and
verified lifting, GOLAP uses runtime information to lift the input
programs and optimize them.

Code optimization through traces. Profile-Guided Optimization
(PGO) [24] uses traces to guide compiler optimizations. Partial Eval-
uation (PE) [27, 32] modifies the binary just-in-time, to aggressively
inline and improve branch handling inside the boundaries of an
single utility/application. In this work we build on top of PE to 1)
enable inter-utility optimizations, and 2) take advantage of the lim-
ited operations on intermediary (cross-application) data to extend
these techniques to modify the intermediary data representation.
Similarly to JVM JIT compilers [32], GOLAP does not apply opti-
mizations if assumptions are invalidated during runtime. Weldr [12]
fuses binaries to allow inter-application analysis. Both PGO & Weldr
operate at compile time and thus have to generate programs equiv-
alent to input ones — prohibiting aggressive optimizations such as
changing output formats that GOLAP can perform by modifying
utilities just-in-time. Furthermore, in contrast with PE, GOLAP
has multi-application visibility and thus gathers and synchronizes
information across utilities.

4 Where Time Goes

Despite the plethora of performance optimizations described above,
connecting multiple off-the-shelf utilities into data pipelines still
suffers from inefficiencies: application boundaries hinder inter-
process optimizations and orchestration, resulting in a trade-off
between modularity and performance. This section discusses these
two sources of inefficiency and how the increasing diversity of
tooling challenges existing database solutions.

4.1 Interoperability & Intermediate Data

What happens. Big data-intensive applications and frameworks
often support multiple input/output formats, from human-readable
ones like CSV to high-performance, standardized ones like Protocol
Buffers. Same-process pipelines may also rely on language-native
containers such as NumPy arrays, or C++ std: : vectors.

The problem. Pipelining from a data-producing utility to a data-
consuming utility requires both applications to support at least
one common (physical) data format, potentially through a third
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Figure 2: Potential speed-up by inter-process optimizations

(converter) utility, as well as compatible input shapes (logical layout)
like requiring that no extra columns are outputted by a producer
to a consumer that can not handle them.

The traditional way. In traditional DBMS architectures, operators
are composable by design: the engine can connect logical opera-
tors to create complex execution plans. The valid plans satisfy the
requirement for compatible logical layouts across operators. For
the physical layout, multiple alternatives have been proposed, with
either a fixed set of data representations across the operators, char-
acterized mostly by volcano-based [10] and vectorized execution
engines [1, 2], or by more flexible intermediate representations
across fused operators [22] and just-in-time data access paths that
span multiple operators [14, 15]. In all cases, as the data exchange
across operators resides on the critical path, existing DBMS archi-
tectures either make strong assumptions about the data types and
compatibility across operators or invasively require the operators
to be expressed using the DBMS framework internals.
Limitations. End-to-end pipelines that rely on off-the-shelf com-
ponents can not make assumptions about what frameworks each
component uses, nor expect components always to produce the op-
timal output shape. Instead, pipelines often rely on human-friendly
formats as a default (for when components are physically incompat-
ible) or intermediate transformations (for when they are logically
incompatible). Nevertheless, performance-critical data conversions
often apply the same operations repeatedly, providing the potential
to either avoid conversion costs by fusing applications (e.g., making
calls through the internal APIs) or by injecting alternative input
paths that impose lower overheads.

Example. Figure 2 shows the execution time for three pipelines,
two of which have unnecessary materializations. The first one, “Int-
Sum”, is an integer generator (i.e. a producer utility) that pushes data
into a summation aggregation (i.e. a consumer utility), while the
second one is NOAA of Section 2 which also follows the producer-
consumer pattern. The aggregation stages of both the Int-Sum and
NOAA convert the output elements back to integers to perform
calculations, which is an avoidable overhead. Knowing both sides
of the pipe, a rewrite of the Int-Sum would provide up to 4.5x speed-
up. In the NOAA pipeline, this optimization can be combined with
orchestration optimizations described in the next section.

4.2 Orchestration

What happens. Popular applications often support parallel execu-
tion, either automatically or at the user’s request. Smaller utilities
may not be parallelized, or they may observe small performance
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gains from multiple threads. Non-parallelized utilities may further
be categorized in i) utilities that support running multiple of their
instances concurrently, usually relying on process-level isolation
and task parallelism, or ii) strictly sequential implementations that
modify common state (e.g. files) in a multi-task unsafe manner,
leaving little room for multi-core execution.

The problem. Unfortunately there is minimal support for inter-
utility parallelization: utilities are developed in silos, leaving little
space for automatically parallelizing chains of utilities. Existing
approaches rely on the user manually spawning multiple pipelines,
with the exemplary cases of work queues and serverless infras-
tructures for parallelizing independent tasks. As a result, utilities
with sufficient data parallelism can self-parallelize in isolation but
parallelizing combined pipeline stages is left to the user due to the
architectural separation imposed across utilities for modularity.
The traditional way. Traditional DBMS designs embrace task-
and data-parallelism even in the presence of strict, e.g. ACID, isola-
tion requirements. For data-parallelism, big tasks are broken into
multiple small ones by parallel OLAP engines to exploit multiple
accelerators and CPUs. This is accomplished by leveraging different
operator properties in two ways. First, each execution stream is read-
only and the mutable state is private [7], and the execution plan
handles stream and intermediate data structure consolidation. Sec-
ond, the operators themselves handle inter-stream conflicts [8, 20].
Task-parallelism is exploited during multi-query execution or by
transactions that rely on concurrency control to handle conflicts.
In all cases, existing DBMS designs rely on cooperative concurrent
execution across different DBMS components and knowledge about
the functional characteristics of the queries.

Limitations. The limited number of database operators makes
transcribing the required properties to optimization rules feasi-
ble; however, the diversity of utilities hinder a similar approach
because of sheer volume. Parallelization opportunities are further
decreased due to the architectural boundary that limits the expo-
sure of parallelism by applications themselves: a producer utility
can not control the parallelization level of the utility consuming
its output. Instead, existing pipelines rely on the user explicitly
orchestrating the utilities to achieve efficient hardware utilization.
Example. The default NOAA and OCR pipelines (Figure 2) suffer
from hardware underutilization as parallelization is only within
a utility. Parallelizing the OCR pipeline leads to a 22x speedup
over the default execution, while parallelizing and avoiding the
serialization results in 17x speedup for the NOAA pipeline.

5 Generalized OLAP: Blurring the Boundaries

We envision GOLAP, a DBMS architecture that is ecosystem-aware:
the DBMS understands and ingests applications to optimize the
overall execution and enable efficient, generic data pipelines. GO-
LAP embraces composability by allowing applications to form data
pipelines while at the same time applying optimizations by discov-
ering pipeline characteristics and restructuring both the pipeline
execution as well as the applications themselves. While traditional
database architectures only optimize internal execution, GOLAP
i) makes external utilities a first-class execution primitive, ii) learns
from pipeline descriptions and optimizes inter-utility operations.
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Diverse ecosystem as an opportunity. Instead of trying to mimic
and re-implement the continuously diversifying requirements of
data pipelines, GOLAP embraces external utilities and uses them
as a means of adopting new functionality. GOLAP is based on
the observation that the pipeline description (i.e. the ordered list
of executables and their arguments) is itself a starting point for
the DBMS to learn functionality, by inspecting and executing the
provided pipeline. For example, each stage of the NOAA pipeline
example in Figure 1 would be an element in the ordered list that
makes up a pipeline description. GOLAP can then focus on finding
and optimizing inefficient stages by learning from the description
and inspecting data that flows though the pipeline.

Domain experts write the core logic of utilities. However, the

interfaces used to connect and interact with other utilities often
lack optimizations — application interfaces are designed based on
expected, not actual, usage patterns . GOLAP inspects the pipeline
statically and dynamically to discover and fix inefficiencies on
the utility boundaries, and improves invocation patterns that are
otherwise outside the responsibility of any single component.
Understand inefficiencies — not operations. Ingesting external
utilities removes the burden from the DBMS to understand what
logical operations are being performed, as long as it has access to
and can transform the utility source to bypass inefficiencies. Fur-
thermore, while general optimization of each utility is challenging,
the GOLAP architecture simplifies the task by reducing the problem
to identifying specific optimizable patterns. Optimizing pipelines
just-in-time allows GOLAP to collect runtime data about the utili-
ties and their invocation parameters. This data informs decisions
about optimization and de-optimization.
Blueprint. An orchestration environment should represent the
pipeline in a form that is amenable to optimization. Creating a
Domain Specific Language (DSL) that encapsulates all the required
traits creates a trade-off between the complexity of the DSL and the
information it encapsulates. Each optimization, however, requires
only a subset of the traits and thus can be best served by a DSL that
is made-to-fit the corresponding optimization.

GOLAP combines multiple optimizations by allowing the system
to operate over each optimization’s preferred representations, as
long as there is a one-to-one mapping back to full utilities. That
is, optimizations are applied by GOLAP using the optimization-
specific representation which must include a reference back to
the original utility. Then, the system can inject instrumentation to
inspect the applications on their runtime and perform rewrites.
Benefits of GOLAP. First, external utilities benefit from the inter-
nal DBMS performance optimizations, while the DBMS benefits
from externally implemented functionality without the overheads
and limitations of UDFs. Second, by optimizing utilities based on
real-time ecosystem and workload information, GOLAP allows in-
formed optimization decisions based on how the utility is used.
Instead of optimizing applications a priori and relying on expected
workloads, GOLAP gathers the optimization and usage information
from the execution environment. Thus expensive yet required func-
tionality for modularity, like managing a multitude of supported
formats, can be omitted. Third, GOLAP avoids transforming the
full application semantics, allowing utilities to be ingested and op-
timized by lifting only inefficient operations that take place near
the inter-utility boundary.
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Challenges. Materializing GOLAP relies on three pillars.
Challenge #1: representation. GOLAP engines need to optimize a di-

verse range of applications with unknown semantics. For GOLAP
to apply the different optimizations, it needs a DSL that is amenable
to multiple transformations but simple enough for a GOLAP imple-
mentation to lift the data pipelines into its DSL.

Challenge #2: understanding. GOLAP relies on compile and runtime
inspection to understand parts of utilities. Verified software lift-
ing [5, 6] frameworks aim to understand the core functionality of
utilities to transform them to an equivalent IR natively supported
by the framework. Lifting, however, requires the principle concepts
of the core functionality to be compatible with the target frame-
work and simple enough for the transformation to succeed. The
GOLAP architecture reduces the concepts that must be learned by
targeting hardware underutilization & interoperability inefficien-
cies across utilities. This creates a new set of challenges for software
lifting and an opportunity for aggressive, focused, partial lifting,
but requires GOLAP to understand the application boundaries and
identify inefficiencies such as inverse operations.

Challenge #3: modification. GOLAP relies on transforming pipelines

to avoid overheads on multiple levels. Nevertheless, avoiding over-
heads like unnecessary serialization requires modifying the utili-
ties. Thus, GOLAP engines need to rewrite utilities not designed
for code generation and structure modifications. Many code gen-
eration frameworks rely on either getting a source language and
lowering it into a lower-level one or into code-generation-aware
infrastructures where the components actively tune themselves
based on their inputs to generate specialized versions. Nevertheless,
GOLAP follows a learn-by-example paradigm where it starts with
the unmodified utilities, and despite the utilities being oblivious to
the code generation, it modifies their source code. As a result, GO-
LAP engines need to modify existing applications without breaking
their semantics in the scope of the current pipeline.

6 Caesar: A GOLAP Orchestration Engine

To evaluate the benefits and the feasibility of GOLAP, we built
Caesar, a prototype orchestration engine that instruments and
optimizes simple pipelines. To this end, Caesar implements sim-
ple versions of the main components required to optimize exam-
ple pipelines, leaving generalization and equivalence guarantees
needed by the end-to-end pipeline for future work. Caesar accepts
a pipeline description, as well as optional testimonials for operators
that are used to apply orchestration and serialization optimiza-
tions. The testimonials include the classification of utilities for
parallelization and the location of the source code for serialization
optimizations.

Caesar overview. To cover multiple cases across the optimization
spectrum described in Section 4, Caesar provides prototype support
for high-level pipeline transformations, i.e., process-level paral-
lelization and low-level pipeline transformations, i.e., serialization
avoidance. To apply low-level pipeline transformations, Caesar fol-
lows a three-phase cycle corresponding to the challenges outlined
in Section 5: i) it creates an optimization-specific representation of
the pipeline, ii) it inspects the description as well as the runtime be-
havior, and iii) optimizes the pipeline by transforming the pipeline,
the utilities that compose it, or both.
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Veni: pipeline representations. During optimization, Caesar keeps
two levels of representation: one in terms of the whole, executable-
level utilities, and one as a parsed version of the utilities’ source
code. If the source code is unavailable, Caesar can still run and par-
allelize the utilities but cannot make low-level modifications. The
executable-level representation is always maintained and is used to
execute the pipeline by connecting and controlling the binaries. The
source-language representation of each utility is used for low-level
transformations and for injecting the data instrumentation.

Representations for parallelization. The parallelization transforma-

tion operates directly on the executable-level representation, as
rewrites only change the invocation pattern of utilities. For ex-
ample, a pipeline that contains a series of embarrassingly parallel
utilities in a row would be transformed by greedily combining
the representations of the utilities until a utility that breaks the
pipeline is reached. The combined utilities would be passed to a
gnu-parallel [28]-like utility which would replace the series of indi-
vidual utilities in the optimized pipeline. Thus, both the final and
the intermediate pipeline representation are in the executable-level
representation. Specifically, the representation is a DAG, with each
node representing an application and its command-line arguments
connected based on the communication patterns. Caesar currently
supports only explicit pipes for inter-process communication.

Representations to avoid serialization. In contrast to parallelization,

avoiding serialization requires fine-grained information about the
conversions performed by each utility to write its output and read its
input. Thus, for serialization avoidance, Caesar inspects the source
code of each utility to find the operations related to the output
and input streams. Avoiding a serialization step requires finding
inverse operations, such as std: : to_string and atoi, across the
utilities and rewriting the source code to transfer the data in its
original, binary form, instead of the serialized values. The modified
source code is compiled, and the representation is then lifted back
into executables to maintain compatibility with the rest of the
optimizations. Furthermore, unlike traditional lifting techniques,
the core, non-serializing code is left untouched, so Caesar avoids
the overhead of analyzing the entire utility.

Vidi: pipeline inspection. To transform the executing pipelines,
we use orchestration contracts (testimonials) to parallelize the
pipeline: by inspecting the pipeline, Caesar recognizes and matches
utilities to their (developer-provided) testimonials in order to par-
allelize subpipelines. We also inspect the execution graph to find
hot paths both in terms of frequently invoked utilities as well as
frequently invoked utility-internal functions. Then, if there is a path
that is sufficiently hot to optimize, we inject logging operations to
find inverse operations across utilities.

Parallelization through testimonials. We rely on testimonials that
categorize the utilities into parallelization categories to increase
hardware utilization. Furthermore, testimonials describe how the
utility should be transformed to enable parallel execution for each
category. Specifically, testimonials assign each utility to a relational
operator category and provide modification rules for the utility
parameters that enable parallelization when possible. Testimoni-
als can categorize utilities as projection/filter-, aggregation- and
join-like, to allow optimization such as parallelizing the corre-
sponding relational operators by moving a parallelization point




CIDR’22, January 10-13, 2022, Chaminade, USA

before the corresponding operation. Currently, Caesar supports
only projection-like testimonials and uses them to parallelize mul-
tiple invocations of the same utility.

In contrast to manual parallelization of a pipeline, testimonials
are utility-specific but pipeline-independent. As a result, testimoni-
als are shared across pipelines and inherited during utility rewrites
(e.g., after removing serialization). Furthermore, as testimonials
provide only a limited number of parallelization categories, they
also create structured information for the parallelization passes to
create long parallel pipelines. While we plan, in future work, to add
support for adaptively deciding based on runtime information the
parallelization degree of each segment, for now, Caesar parallelizes
only projection-like testimonials and it greedily combines the ones
corresponding to a pipeline’s utilities to parallelize execution.
Runtime instrumentation to bypass serialization. To avoid serializa-

tion and deserialization, Caesar first statically searches the utility
source code for pairs of points consisting of a point in the producer
utility that writes serialized data into the pipe, and a point in the
consumer utility that reads the data and deserializes them. When
such a pair is detected, Caesar has to build enough confidence that
these points perform inverse operations before proceeding to the
rewrite phase. While logic-based static analyses like points-to or
dataflow analysis can provide strong guarantees if all the informa-
tion required is available at compile-time, they are pessimistic, often
computationally expensive and may fail to provide specific enough
guarantees when the required information is only available at run-
time. Because of these limitations, Caesar currently uses i) light
source-code analysis based on AST pattern matching to identify
candidate points, and ii) code instrumentation to build the required
confidence by injecting code to log and compare the inputs and
outputs of the candidate points. As a result, the tunable confidence
allows Caesar to perform more aggressive optimizations and with
less analysis effort when inaccuracies are tolerable. Caesar removes
the logging if inspecting the logs proves that the two points are
not inverse. In contrast, if the logs collect enough proof that the
two points perform inverse operations, Caesar proceeds into the
rewrite phase to bypass the serialization. To show the potential of
the aforementioned process, Caesar detects std: : cout.write of
integer-to-string conversion patterns and their inverse; we leave
further extending point discovery to future work.

Vici: pipeline rewrite. Based on the pipeline representations and
inspection, Caesar rewrites the pipelines to take advantage of opti-
mization opportunities in two levels: coarse-grained parallelization
and fine-grained serialization avoidance.

Rewrites for parallelization. The parallelization testimonials allow

for task-parallelism, by spawning multiple instances of the same
utility for different inputs, such as the tasks generated by the for-
loop of the NOAA pipeline. In order for Caesar to handle such
transformations, it handles the pipeline execution by launching
and connecting the utilities itself instead of relying on a shell or
another runtime environment.

Rewrites to avoid serialization. When two points are deemed inverse,
Caesar modifies the applications to bypass the serialization and
deserialization by replacing these calls with writing and reading
the raw binary value directly. To avoid misinterpreting serialized
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data as binary ones or vice versa, Caesar synchronizes the two ap-
plications before switching to binary intermediary data — currently
using the number of produced and consumed data. Furthermore,
fusion plays an important role in state-of-the-art analytical engines.
Caesar extends points matching into partial application fusion:
when a single serialization unit is fully matched, such as in the case
of the Int-Sum pipeline, Caesar fuses the two applications into one
executable to further reduce the communication overhead.

7 Runtime Instrumentation

Source-to-source transformation. Caesar uses source-to-source
translation, namely the removal of calls to (de)serialization func-
tions. This allows Caesar to modify the utility behavior near the
application boundaries, while maintaining the pipeline semantics.
So from a single-application point of view, the optimized utility
produces or consumes a different data format, and thus it is not
equivalent to the initial program. It also allows for language im-
plementation details, for example if a given language is statically
or JIT compiled, to remain transparent to Caesar. Caesar imple-
ments the source-to-source transformations in ANTLR4 [29], a
parser-generator library that ingests grammar specifications and
generates parse-tree visitors. The generated ANTLR visitors are
specialized to perform the appropriate source code modifications,
such as omitting the code generation for specific nodes. ANTLR
grammars are maintained for many programming languages, so
the cost of adding a new languages to Caesar is limited to visitor
specialization.

Avoiding versus replacing serialization. Caesar’s optimizations
to avoid serialization are opportunistic: Caesar instruments the
utilities to prevent calling expensive data transformations when it
detects that the internal format matches the two applications. How-
ever, this can miss two important cases. First, the native data types
across the two applications may differ (e.g., C++’s int and Python 3’s
variable size integers). To handle such cases, Caesar would have to
marshal integers from the producer to the consumer in a data-type
specific manner - essentially requiring Caesar to understand the
binary representation and equivalences across multiple languages.
Second, the two applications use different data types for the same
variable (e.g., the consumer uses a 64bit integer while the producer
uses a 32bit integer). To handle such cases, Caesar would have to
lift the data serialization code and insert casts across data types —
essentially requiring Caesar to understand logical typecasting. Es-
sentially, in both cases, the additional benefits stem from replacing
serialization points — instead of avoiding them and shortcircuiting
a pre-serialization point with a post-deserialization point. However,
both cases require lifting [5, 6] and weighing the replacement gain,
which opens a new research direction. In Caesar, we rely on simple
binary equivalences and exact matches to prune the matching and
discovery effort — showing GOLAP’s potential even when using
simplistic serialization avoidance.

Data shuffling. Caesar currently supports one producer one con-
sumer. In the cases where there is more than a single producer to
consumer, Caesar can be expanded to identify the data flow from
the pipeline description and apply the appropriate modifications.
In order to have a single-producer, multiple-consumer pipeline,
pipelines will include a splitting utility like tee. Caesar can scan
the pipeline for known split operations, inject logging for each
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Figure 3: Impact of different optimizations performed by Caesar

operator, and do an n-way comparison of logs since the split can be
statically detected before instrumentation begins. In the case where
we have n instances of the producer and n instances of the con-
sumer (potentially as the result of parallelization), Caesar currently
ensures that the logs are process-private.

Rewrite granularity and state. Caesar performs rewrites in mul-
tiple stages. Two factors affect rewrite order: whether the number
of application instances changes and how the state is maintained
across rewrites. Specifically, 1) splitting a running application into
two new independent tasks is a non-trivial operation, and 2) restart-
ing a running application without losing the internal state requires,
in the general case, support by the application. Caesar takes advan-
tage of the process-level execution model in data pipelines to avoid
such demanding requirements. Specifically, parallelization and util-
ity fusion change the number of application instances. Thus, Caesar
decides parallelization and fusion optimizations a priori to instanti-
ating the pipeline — avoiding the requirement for task splitting and
consolidation of two running tasks into one process.

In contrast, avoiding serialization does not change the num-
ber of launched applications, providing an additional opportunity
for maintaining state across rewrites. Instead of rewriting appli-
cations offline and restoring the state, we can do the rewrites
online and keep the state without additional effort. A naive ap-
proach to rewrite an application to avoid a serialization point
would recompile and restart the application, losing the internal
state. Caesar only opts for such an offline approach, which restarts
the application after a rewrite, for rewrites between two consec-
utive pipeline invocations. However, Caesar also supports online
serialization-avoidance rewrites during the execution of a pipeline.
To enable online rewrites, Caesar exploits the fact that modifying
the (de)serialization code does not affect internal data structures.
Thus, Caesar uses just-in-time code modification to replace the
serialization without affecting the surrounding code.

8 Evaluation

We evaluate Caesar using two microbenchmarks per proposed op-
timization and a combined-optimizations benchmark as an end-to-
end evaluation on a multi-utility pipeline.

Experimental setup. The experiments run on a dual-socket Intel
Xeon E5-2650L v3 CPU machine with 12 physical cores per socket
and a total of 256GB memory. We use dockerized Ubuntu 20.04.2,

GNU Coreutils 8.28, Bash 5.0.17, and JVM Corretto-11.0.10. Caesar is
written in C++ and invokes ANTLR 4.3 to modify inspected utilities.
Utilities are given in the form of compiled binaries. In order to apply
serialization optimizations, the binaries must be accompanied by
their (C/C++) source code and the compilation command. Binaries
without accompanying source code can still be run and parallelized.
Caesar receives the input pipeline as a parsed representation of a
simplistic scripting language. All files are considered immutable
and all inter-utility communication happens through stdin/stdout.
For the evaluation, binary modifications are performed offline, and
we report the corresponding offline time.

Microbenchmark: orchestrating utilities. To evaluate the paral-
lelization opportunities, Figure 3a uses: i) “Relational”, a relational-
like pipeline that scans and ranks a set of text files based on a
keyword frequency, ii) “OCR” uses Tesseract [16], an OCR library,
to perform the same keyword search and rank over images. Paral-
lelizing the Relational text search achieves 14.5x speed-up over the
sequential pipeline description, while the computationally heavier
OCR pipeline has speed-up close to the number of physical cores.
Microbenchmark: optimizing utility boundaries. Figure 3b eval-
uates the benefit of avoiding inter-utility serialization, using two
pipelines: i) “Single column”, a number generator that pushes one
column to a summation, ii) “Double column”, an <IP, size> generator
pushing to an aggregator to find who sent the most data.

The first optimization “Bypassing serialization” applies only
serialization avoidance, without fusion or parallelization, achieving
approximately 2x speed-up over the baseline, unmodified pipeline,
for both pipelines. The second optimization, “Fusion” additionally
performs fusion for the selected utilities, pulling the code of the
second utility into the first one, achieving up to 2.8x speed-up, as it
avoids sending even binary data across the two utilities as well as
invocation overheads.

Caesar employs logging to determine whether a pair of candidate
serialization points is a match across utilities. For the Single and
Double column pipelines, we measure a maximum 17% slowdown
during the logging window compared with the baseline unmodified
pipeline. For more complex pipelines, however, the slowdown fur-
ther decreases as the pipeline complexity increases, giving only 1%
overhead in the case of the “combined optimizations” experiment.
Furthermore, inserting logs and bypassing serialization require
modifying and recompiling utilities, taking 2-3 seconds per binary.
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Combined optimizations. Figure 3c evaluates the potential of
Caesar in a more complex pipeline: the NOAA pipeline, from Fig-
ure 1, modified for local-only files and using 1s instead of the loop.
For the corresponding bars in the figure, we trigger logging at
10/20/30% hotness and rewrites after inspecting 10/20/30% of the
final data through the logs. Due to the multitude of heavy opera-
tions, like unzipping and regex processing, there are relatively small
savings by avoiding the serialization. Avoiding the serialization,
however, enables fusion which has a higher impact. Overall, when
all optimizations are enabled, Caesar achieves ~17x speed-up over
executing the pipeline using its original description, by combin-
ing all the optimizations to take advantage of the multi-core CPU,
the task parallelism created by the multiple files, and the saved
operations by the utility fusion.

9 Conclusion

Traditional DBMS architectures are designed to support a closed set
of operations determined and implemented by the database vendor,
with little support for efficient execution of arbitrary external func-
tions other than black-boxed UD(A)Fs. In this work, we make the
case for a new DBMS architecture paradigm that places the DBMS
into an orchestrating role that gradually understands and adapts to
its surrounding ecosystem through runtime inspections and code
modification. As a result, GOLAP allows optimized execution of
data pipelines that use utilities initially unknown to the DBMS,
with performance similar to integrated functionality with minimal
user effort. Finally, we show through microbenchmarking a proof
of concept for the applicability of the proposed design for simplified
programs and demonstrate a potential 22x speed-up by modifying
the utilities just-in-time.
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