
Transactions Make Debugging Easy
Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe,

Christos Kozyrakis, Michael Stonebraker, Lalith Suresh, and Matei Zaharia

Qian Did All The Work

2

A Real Bug in

● A popular online education platform.
● Users can subscribe to a forum and create posts in it.

● All persistent state is managed in Postgres.

3

A Real Bug in

● MDL-59854: Users can get registered for the same forum twice.

● Developers struggled to reproduce the bug and took 3 months
to release the bug fix.

4

A Real Bug inTransactions Make Debugging Easy
Qian Li1, Peter Kraft1, Michael Cafarella2, Çağatay Demiralp3, Goetz Graefe4, Christos Kozyrakis1,

Michael Stonebraker2, Lalith Suresh5, and Matei Zaharia1
1Stanford, 2MIT, 3Sigma Computing, 4Google, 5VMware

Abstract
We propose TROD, a novel transaction-oriented framework for de-
bugging modern distributed web applications and online services.
Our critical insight is that if applications store all state in databases
and only access state transactionally, TROD can use lightweight
always-on tracing to track the history of application state changes
and data provenance, and then leverage the captured traces and
transaction logs to faithfully replay or even test modi�ed code
retroactively on any past event. We demonstrate how TROD can sim-
plify programming and debugging in production applications, list
several research challenges and directions, and encourage the data-
base and systems communities to drastically rethink the synergy
between the way people develop and debug applications.

1 Introduction
In this paper, we propose TROD, a novel Transaction-Oriented
Debugging framework for modern distributed web applications
such as a travel reservation website or an e-commerce microser-
vices application. TROD targets applications that follow three design
principles:
P1. Store all application-shared state in databases.
P2. Access or update shared state only through ACID transactions.
P3. Produce deterministic outputs and state changes.
We adopt these principles because they radically simplify the

problem of debugging modern distributed applications. Currently,
debugging is hard because developers need to unravel the complex
interactions of thousands of concurrent events [28]. Existing dis-
tributed debugging tools are limited as they rely on developers to
provide su�cient logs and traces [29], which requires intensive
manual logging or annotations. However, if applications follow
our principles, TROD can augment database transaction logging to
capture a complete record of application state accesses and changes,
enabling powerful features such as faithful replay of any past event.

The TROD principles are practical because they align with cur-
rent trends in application design. For example, developers increas-
ingly deploy applications on serverless platforms such as AWS
Lambda [2]. These serverless applications naturally follow TROD

principles because they handle requests with stateless and deter-
ministic functions and manage state using cloud databases. In fact,
we originally developed TROD to debug applications in the DBMS-
oriented operating system (DBOS) project [16], which runs pro-
grams as work�ows of transactional serverless functions [14]. As

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

1 def subscribeUser (userId , forum):
2 if (not isSubscribed (userId , forum)):
3 forumInsert (userId , forum)
4
5
6 def fetchSubscribers (forum):
7 users = DBquery (" forum_sub ", forum)
8 if (hasDuplication (users)):
9 ERROR (" Found duplications !")

Figure 1: Simpli�ed code for a concurrency bug in the database-
backed online education platform Moodle (MDL-59854). The �rst
handler, subscribeUser, has two transactions and manifests a race
condition causing duplicated subscriptions but returns with no error.
The second handler, fetchSubscribers, fetches the list of subscribers
and raises an error if it detects duplicates.

part of DBOS, we found it was easy to build performant web and
microservice applications using TROD principles.

TROD helps developers investigate and better understand bugs
by faithfully replaying past events. Faithful replay is challenging
because we need to accurately reconstruct past state for applica-
tions while considering interleaving concurrent executions. How-
ever, because TROD assumes state is centralized in databases and
only accessed transactionally, it can capture a detailed history of
application state changes and events with lightweight always-on
transaction tracing. Developers can directly query traces to locate
buggy executions. Then, during replay, TROD can re-apply logged
state changes to reconstruct past application states. Since TROD can
consistently replay past events, it transforms most Heisenbugs [11],
bugs that happen rarely and are hard to reproduce because of com-
plex and unpredictable interactions between concurrent events,
into easily reproducible “Bohrbugs”.

TROD extends faithful replay to support an even more powerful
debugging feature: retroactive programming. Developers can use
TROD to test their modi�ed code on past events, for example, to test a
bug �x before pushing it into production. Retroactive programming
is challenging because TROD cannot simply re-apply the transaction
log as in replay but must actually re-execute all concurrent events
as their computations and e�ects might change. Retroactive pro-
gramming is possible in TROD because request executions only share
state through transactions. Therefore, TROD can identify relevant
transactions and only enumerate possible re-execution orderings
of those transactions to thoroughly test di�erent possible e�ects of
interleaving concurrent executions.

Our proposed implementation of TROD mainly focuses on cor-
rectness issues such as functionality or semantics bugs, with an
emphasis on hard-to-debug server-side concurrency issues [24].
At present, we have much of TROD running in DBOS. Preliminary
results are promising, including low overhead (<15%) always-on
tracing. We expect to present a demonstration at the conference.

2 Debugging Frustrations

● If a user hasn’t subscribed to a forum, insert a subscription to
the database table.

● isSubscribed and forumInsert run in separate transactions.

A Classic Time-of-Check/Time-of-Use Bug

● R2 started before R1’s insert and didn’t see the change. Both
requests succeeded.

Th
re
ad

s

R1 (subscribe)

R2 (subscribe)

Subscribed? InsertNo

Subscribed? InsertNo

A Classic Time-of-Check/Time-of-Use Bug

● R2 started before R1’s insert and didn’t see the change. Both
requests succeeded.

● A later request failed when it fetched the subscribers.

R1 (subscribe)

R2 (subscribe)

R3 (fetchSubscribers)

Subscribed? InsertNo

Subscribed? InsertNo

ERROR:
Duplications!

Th
re
ad

s

Existing Tools Are Not Enough

Conventional error messages and stack traces only provide
information for the failed request, but not the root cause.

8

How Can We Simplify Debugging?

Recent trends in cloud applications:

● Modern applications have little local persistent state and manage
state in remote data stores.

○ E.g., Moodle, microservices and serverless applications.

● Many data stores are providing strong transactional semantics.

9

A Vision for TROD:
Transaction-Oriented Debugging

10

TROD Leverages Trends in Cloud Applications

TROD targets applications that follow three design principles:

1) Store all application shared state in databases.

2) Manage shared state only through ACID transactions.

3) Deterministic.

They align with recent trends in cloud applications.

11

TROD Principles Enable Powerful Features

● Automatic low-overhead tracing and declarative debugging.

● Faithful bug replay.

● Retroactive programming.

12

Automatic Tracing and Declarative Debugging

● TROD can intercept DB queries and automatically track app
execution and data operations in a provenance store.

○ Drop-in replacement for data access libraries (e.g., JDBC).

○ Low overhead: Leverage Change-Data Capture and transaction logs.

13

App Runtime

TROD Interposition Layer

Transaction Logs

Execution Traces TROD
Provenance DB

Automatic Tracing and Declarative Debugging

● TROD can intercept DB queries and automatically track app
execution and data operations in a provenance store.

● Developers can use a declarative language (SQL) to query this
provenance store. E.g., to locate the root cause of a bug.

14

App Runtime

TROD Interposition Layer

Transaction Logs

Execution Traces TROD
Provenance DB

Queries

TROD Tracing Can Locate the Moodle Bug

● Change data log: What data items are written by each transaction.
E.g., "Find transactions that inserted (U1, F2)"

15

Txn_ID Query UserId Forum
1 Check if (U1, F2) exists null null

2 Check if (U1, F2) exists null null

3 Insert U1 F2

4 Insert U1 F2

… … … …

Duplicated inserts!

● TROD log: Transaction order and corresponding code.
E.g., “Check all executions that are relevant to duplicated (U1, F2).”

16

Txn_ID Timestamp Exec_ID Metadata
1 TS1 R1 subscribeUser:isSubscribed

2 TS2 R2 subscribeUser:isSubscribed

3 TS3 R2 subscribeUser:forumInsert

4 TS4 R1 subscribeUser:forumInsert

… … … …

Root cause: interleaved subscribeUser executions

TROD Tracing Can Locate the Moodle Bug

Faithful Replay

If apps are deterministic, and access shared state only
transactionally, we can faithfully replay any past trace:

1. Re-execute code normally but stop before each transaction;

2. Restore the DB to an equivalent original state;

3. Re-execute the transaction.

Follow the transaction order obtained from the DBMS.

17

TROD Replay Can Reproduce the Moodle Bug

● Restore the DB to a snapshot right before subcribeUser executions.

18

Snapshot

● Replay relevant transactions according to the execution log.

19

Snapshot
isSub.
(False)

R1

TROD Replay Can Reproduce the Moodle Bug

TROD Replay Can Reproduce the Moodle Bug

● Replay relevant transactions according to the execution log.

20

Snapshot
isSub.
(False)

R1
isSub.
(False)

R2

TROD Replay Can Reproduce the Moodle Bug

● Replay relevant transactions according to the execution log.

● Both R1 and R2 see no subscriptions and insert the same entry.

21

Snapshot
isSub.
(False)

R1
isSub.
(False)

R2
Insert

([U1,F2])

R2

TROD Replay Can Reproduce the Moodle Bug

● Replay relevant transactions according to the execution log.

● Both R1 and R2 see no subscriptions and insert the same entry.

22

Snapshot
isSub.
(False)

R1
isSub.
(False)

R2
Insert

([U1,F2])

R2
Insert

([U1,F2])

R1

TROD Replay Can Reproduce the Moodle Bug

● Replay relevant transactions according to the execution log.

● Both R1 and R2 see no subscriptions and insert the same entry.
● The last request prints the same error message.

23

Snapshot
isSub.
(False)

R1
isSub.
(False)

R2
Insert

([U1,F2])

R2
Insert

([U1,F2])

R1
fetch-
Subs.

(U1,U1)
Error

R3

Retroactive Programming

● Based on faithful replay, TROD allows developers to modify
their code and test it on past events: retroactive programming.

● Useful for testing whether a bug fix works and doesn’t cause
new bugs.

24

TROD Makes Retroactive Programming Practical

● Retroactive programming is challenging because it requires
tracking causality.
● Otherwise, we have to rerun everything even for a small change.

● Infeasible to track every variable and memory address.

● But feasible in TROD because state is only accessed through
transactions.

● We can track causality through data provenance and selectively
re-execute traces.

25

TROD Retroactive Programming Can Test the Bug Fix

● Restore the DB to a snapshot right before subcribeUser executions.

26

Snapshot

TROD Retroactive Programming Can Test the Bug Fix

● Re-execute requests with the new code.

27

Snapshot

isSubscribed
(False)

forumInsert
([U1,F2])

R1’

TROD Retroactive Programming Can Test the Bug Fix

● Re-execute requests with the new code.
● The second request no longer inserts a duplicated subscription.

○ Because isSubScribed and Insert run in one transaction, two concurrent
requests cannot interleave.

28

Snapshot

isSubscribed
(False)

forumInsert
([U1,F2])

R1’

isSubscribed
(True)

R2’

TROD Retroactive Programming Can Test the Bug Fix

● Re-execute requests with the new code.
● The second request no longer inserts a duplicated subscription.

● The last request prints no more error messages – the bug fix works!

29

isSubscribed
(False)

forumInsert
([U1,F2])

isSubscribed
(True)

fetch-
Subs.
(U1)

R1’ R2’ R3’

Snapshot

TROD in Action

30

Demo: Qian’s video

31

Our Next Step

● How to restore the production database efficiently in a
development environment?

● What do we replay and what can we skip?

○ Track dependencies through data provenance.

● For retroactive programming, in what order should concurrent
requests execute?

○ Reduce the number of enumerations through dependency analysis.

32

Conclusion

● We present our vision for TROD: transaction-oriented debugging.

● We are actively developing and improving our prototype.

● The next time you have a bug, TROD on it!

DBOS project: https://dbos-project.github.io

Contact Qian: https://cs.stanford.edu/~qianli/

Looking forward to your feedback!

33

https://dbos-project.github.io
https://cs.stanford.edu/~qianli/

