Transactions Make Debugging Easy

Qian Li, Peter Kraft, Michael Cafarella, Cagatay Demiralp, Goetz Graefe,
Christos Kozyrakis, Michael Stonebraker, Lalith Suresh, and Matei Zaharia

S i sigma G vmware

Qian Did All The Work

AT

A
A
(il

A Real Bug in rmOOdle

e A popular online education platform.
e Users can subscribe to a forum and create posts in it.
e All persistent state is managed in Postgres.

A Real Bug in mOOdIe

e MDL-59854: Users can get registered for the same forum twice.

e Developers struggled to reproduce the bug and took 3 months
to release the bug fix.

Since the time window, between the execution of the two line,

responsible for the race condition, is pretty small. You have to be pretty
fast and pretty lucky to actually reproduce this issue (we have only 14

occurrences in 190111 forum subscriptions).

A Real Bug in rmOOdle

e |f a user hasn't subscribed to a forum, insert a subscription to
the database table.

e isSubscribed and forumInsert run in separate transactions.

1 def subscribeUser (userId, forum):
2 if (not isSubscribed (userId, forum)):

3 forumInsert (userId, forum)

A Classic Time-of-Check/Time-of-Use Bug

R1 '

Rl (subscribe) Subscribed? |-NO-| nsert -
-f-: R2 (subscribe)

@ e EETDE Subscribed? [NO Insert [
=

e R2 started before R1's insert and didn't see the change. Both
requests succeeded.

A Classic Time-of-Check/Time-of-Use Bug

R1 (subscribe)

---------------------------------- Subscribed? 7 Insert [
: R2 (subscribe)
subscribe
@ e e AR Subscribed? No_ Insert |- >
<
-

R3 (fetchSubscribers) ERROR:
Duplications!

e R2 started before R1's insert and didn't see the change. Both
requests succeeded.

e Alater request failed when it fetched the subscribers.

Existing Tools Are Not Enough

Did you remember to make the first column something unique in your call
to get records? Duplicate value '24028' found in column 'id'. —
@

e line 807 of /lib/dml/pgsql native moodle database.php: call to
debugging()

e line 456 of /mod/forum/classes/subscriptions.php: call to
pgsgl _native moodle database->get records_sql()

e line 114 of /mod/forum/subscribers.php: call to
mod_forum\subscriptions::fetch subscribed users()

Conventional error messages and stack traces only provide
information for the failed request, but not the root cause.

How Can We Simplify Debugging?

Recent trends in cloud applications:

e Modern applications have little local persistent state and manage
state in remote data stores.

o E.g., Moodle, microservices and serverless applications.

e Many data stores are providing strong transactional semantics.

A Vision for TROD:
Transaction-Oriented Debugging

\)

R

TROD Leverages Trends in Cloud Applications

TROD targets applications that follow three design principles:

1) Store all application shared state in databases.
2) Manage shared state only through ACID transactions.

3) Deterministic.

They align with recent trends in cloud applications.

11

TROD Principles Enable Powerful Features

e Automatic low-overhead tracing and declarative debugging.
e Faithful bug replay.

e Retroactive programming.

12

Automatic Tracing and Declarative Debugging

e TROD can intercept DB queries and automatically track app
execution and data operations in a provenance store.

o Drop-in replacement for data access libraries (e.g., JDBCQ).
o Low overhead: Leverage Change-Data Capture and transaction logs.

App Runtime

TROD Interposition Layer

I] 4)
I -ExecutionTraces, TROD

Provenance DB
_ J 13

S
---------- ->

Automatic Tracing and Declarative Debugging

e Developers can use a declarative language (SQL) to query this
provenance store. E.g., to locate the root cause of a bug.

/

-

TROD
Provenance DB

~ £-8
| Queries
|—
J

14

TROD Tracing Can Locate the Moodle Bug

e Change data log: What data items are written by each transaction.

E.g., "Find transactions that inserted (U1, F2)"

Txn_ID Query Userld Forum
1 Check if (U1, F2) exists null null
2 Check if (U1, F2) exists null null

———

3 Insert U1 F2
4 Insert U1 F2

Duplicated inserts!

-— .

15

TROD Tracing Can Locate the Moodle Bug

e TROD log: Transaction order and corresponding code.
E.g., “Check all executions that are relevant to duplicated (U1, F2)."

Txn_ID Timestamp Exec ID Metadata
1 TS " R1T subscribeUser:issubscribed
2 TS2 i R2 subscribeUser:isSubscribed |
3 TS3 i R2 subscribeUser:forumInsert i
4 TS4 i\ R1 subscribeUser.forumInsert /'=

Root cause: interleaved subscribeUser executions

16

Faithful Replay

If apps are deterministic, and access shared state only
transactionally, we can faithfully replay any past trace:

1. Re-execute code normally but stop before each transaction;
2. Restore the DB to an equivalent original state;
3. Re-execute the transaction.

Follow the transaction order obtained from the DBMS.

17

TROD Replay Can Reproduce the Moodle Bug

— -
[

Snapshot

e Restore the DB to a snapshot right before subcribeUser executions.

18

TROD Replay Can Reproduce the Moodle Bug

e~ R1

—
o |isSub.
Snapshot | (r3|se)

e Replay relevant transactions according to the execution log.

19

TROD Replay Can Reproduce the Moodle Bug

isSub. || isSub.
Snapshot (False)|f(False)

e Replay relevant transactions according to the execution log.

20

TROD Replay Can Reproduce the Moodle Bug

isSub. || isSub. || Insert
Snapshot (False)||(False)]|([U1,F2])

e Replay relevant transactions according to the execution log.

e Both R1 and R2 see no subscriptions and insert the same entry.

21

TROD Replay Can Reproduce the Moodle Bug

R1
isSub. || isSub. || Insert Insert
Snapshot (False)||(False)||([UL1,F2])|{([U1,F2])

e Replay relevant transactions according to the execution log.

e Both R1 and R2 see no subscriptions and insert the same entry.

22

TROD Replay Can Reproduce the Moodle Bug

R1 R3
isSub. || isSub. || Insert Insert];e:;:-
Snapshot (False)||(False)||([U1,F2])|([U1,F2]) (U1 U.l)

e Replay relevant transactions according to the execution log.

e Both R1 and R2 see no subscriptions and insert the same entry.

e The last request prints the same error message.

23

Retroactive Programming

e Based on faithful replay, TROD allows developers to modify
their code and test it on past events: retroactive programming.

e Useful for testing whether a bug fix works and doesn't cause
new bugs.

24

TROD Makes Retroactive Programming Practical

e Retroactive programming is challenging because it requires
tracking causality.
e Otherwise, we have to rerun everything even for a small change.

e Infeasible to track every variable and memory address.
e But feasible in TROD because state is only accessed through
transactions.
e We can track causality through data provenance and selectively
re-execute traces.

25

TROD Retroactive Programming Can Test the Bug Fix

— -
—

Snapshot

e Restore the DB to a snapshot right before subcribeUser executions.

26

TROD Retroactive Programming Can Test the Bug Fix

R1’
~—
— (isSubscribed)
— (False)
Snapshot
foruminsert
. ([ULF2]))

e Re-execute requests with the new code.

27

TROD Retroactive Programming Can Test the Bug Fix

R1’ R2’

- fisSubscribed\ 4 N
Sn:’hot (False) isSubscribed
P foruminsert (True)

 ([ULF2]))\ y

e Re-execute requests with the new code.
e The second request no longer inserts a duplicated subscription.

©)

Because isSubScribed and Insert run in one transaction, two concurrent
requests cannot interleave.

28

TROD Retroactive Programming Can Test the Bug Fix

RY’ R2’ R3’
— (isSubscribed) \(N
— . . fetch-
Snapshot (False) isSubscribed Subs
P forumlnsert (True) (Ul).
([ULF2]) J AN y

e Re-execute requests with the new code.

©

e The second request no longer inserts a duplicated subscription.

e The last request prints no more error messages - the bug fix works!

29

TROD in Action

[WARN] RetroDemo - Non-replay mode.
[ERROR] MDLFetchSubscribers - Duplicated subscriptions for forum 22, userId 11

qianli@gian-node-qjk8:~/trod$
qianli@qian-node-qjk8:~/trod$ | .

Our Next Step

e How to restore the production database efficiently in a
development environment?

e What do we replay and what can we skip?
o Track dependencies through data provenance.

e For retroactive programming, in what order should concurrent
requests execute?

o Reduce the number of enumerations through dependency analysis.

32

Conclusion

e We present our vision for TROD: transaction-oriented debugging.

e We are actively developing and improving our prototype.

e The next time you have a bug, TROD on it!

DBOS project: https://dbos-project.github.io

Contact Qian: https://cs.stanford.edu/~qianli/

Looking forward to your feedback!

https://dbos-project.github.io
https://cs.stanford.edu/~qianli/

