
Developer’s Responsibility or Database’s Responsibility?
Rethinking Concurrency Control in Databases

Chaoyi Cheng*, Mingzhe Han*, Nuo Xu, Spyros Blanas, Michael D. Bond, Yang Wang

Ideal World vs. Reality

• Ideal world: Serializable transactions
• Developers don’t need to worry about concurrency issues

• Reality: Most applications don’t use serializable transactions
• Many use weaker isolation levels (READ COMMITTED, etc.)
• Some use ad-hoc transactions (i.e., individual SQL statements + external

concurrency control mechanisms)

Ideal World vs. Reality

1. If (quantity > 0):

2. Update (quantity = quantity – 1)

“Buy One Item” transaction

“The unit test always passes but in my
production database quantity is
sometimes -1, please investigate.”

Ideal World vs. Reality

“Buy One Item” transaction

“The unit test always passes but in my
production database quantity is
sometimes -1, please investigate.”

Under Read Committed:

TX1 TX2

1 Reads 1

2 Reads 1

3 Updates to 0

4 Commits

5 Updates to -1

6 Commits

1. If (quantity > 0):

2. Update (quantity = quantity – 1)

Overview

• A study of real-world concurrency bugs
• Looked at 93 bugs from 46 open-source applications
• Understand their consequences, root causes, and their fixes

• What can we do?

A Study of Real-world Concurrency Bugs

Questions
• Do weakly isolated or ad-hoc transactions actually cause anomalies in

real-world applications?
• How much effort does it require to handle these anomalies?
• Why aren’t people more eager to use Serializable transactions?
• Maybe the contention level is low and correctness issues don’t arise?
• Maybe the occasional data inconsistency is OK and can be manually fixed?
• Maybe fixing correctness issues in an application is easy for its developers?

A Study of Real-world Concurrency Bugs

Methodology
• Investigated active, open-source database applications
• Domains: e-commerce, gaming, chatting, ORM tools

• Inspected bug reports, discussions and code commit history
• No specific keyword or phrase
• Started from broad search: “SQL”, “transaction”, “red committed”, “race

condition”, “concurrent”, “for update”, “duplicate”, …
• Manually inspected each bug
• Ignored deadlock-related issues, unless related to isolation level

A Study of Real-world Concurrency Bugs

Outcome
• Found 93 isolation bugs in 46 different applications
• Identified consequence, root cause, and fix for each bug

• Full bug list: http://go.osu.edu/isolation-bug-study

http://go.osu.edu/isolation-bug-study

A Study of Real-world Concurrency Bugs

Limitation: selection bias
• Looked at open-source applications only
• Corollary: most bug reports on open-source database systems

• Keyword search limitation
• May have over-represented behaviors that can be described succinctly
• May have missed bugs that are described only in domain-specific terms

• We cannot answer what percentage of applications experience
concurrency issues
• But we know that it affects many applications

Consequences of concurrency bugs

• Most common inconsistencies:
• Wrong count (30)
• Duplicate IDs (16) ß big problem!

• New insight: Mostly idle
applications are also impacted!
• “About 2-5% chance this happens.

I have about 100 orders per day.”
• “It is rare, but it has happened 5

times over the past few months in
a set of 10,000 orders”.

78

13

2

Inconsistency
Unavailability
Others

Root causes of concurrency bugs

52

10

4

3
2

22

Read followed by
relevant write
Inapprpriate
error handling
Lock timeout

Unnecessary
concurrency
Interleaved
updates
Others

• Read followed by relevant write:
• Single row check-then-update (42)

• If (quantity > 0), then
Update (quantity = quantity – 1)

• Multi-row check-then-update (10)
• INSERT (SELECT MAX(id) + 1)

• Inappropriate error handling:
• None/insufficient exception handling (9)
• Exception over-handling (1)

• Unnecessary concurrency:
• TXs don’t commit in order issued (3)

• No isolation level provides this guarantee!

How developers fix concurrency bugs

22

8

11

84
6

7

3
3
1

20
FOR UPDATE
Add constraint
Additional locking
Additional versioning
Check before commit
Serial execution
Stronger isolation
Weaker isolation
Exception handling
Business process fix
Others

No universally acceptable solution!

Answering the questions

• Do weakly isolated or ad-hoc transactions actually cause anomalies in
real-world applications? Yes.

Answering the questions

• How much effort does it require to handle these anomalies? A lot.

1. Reproduction effort: Moderate.
• Most bugs involve very few transactions.
• Nondeterministic bugs, so “luck” and patience needed to hit.

• Common tricks to increase conflict rate: increase concurrency, slow transactions down

2. Diagnosis effort: Low.
• Very little discussion or uncertainty on the cause.

3. Fix and verify effort: Very high.
• Lengthy discussions debating possible fixes and pros/cons of each.
• First suggestions are often flawed or introduce more issues.

Answering the questions

• Why not Serializable transactions? Long locking.

• Common concern is performance
• Reasons of poor performance not a focus of our study

• Error cases are very important too
• Failures do not propagate through layers à wasted resources

• Deadlock detection is very sensitive to timeout parameter
• One application implemented a queue-based solution (serial execution) to

eliminate guessing of deadlock timeouts in deployment

What can we do?

• Short-term solutions

• How much can automatic analysis help?

• How can we incorporate developer effort to fixing concurrency bugs?

• Closing thought: the role of developer education

Short-term solutions

• Point to database systems that implement:
• Snapshot Isolation
• Unique/auto-incremented IDs
• Optimistic concurrency control

• Likely a non-starter for the open-source applications we studied

• But stronger isolation will not address all problematic behaviors:
• Duplicate inserts/deletes
• Transaction ordering assumption

Can automatic analysis help?

• Consider two transactions on rows A, B, C:
T1: Write(A), Read(B)
T2: Write(A), Read(C)

• Lock-based CC will block on write lock for A
• Optimistic CC will abort one transaction, due to write conflict on A

• Automatic analysis can easily determine that execution is serializable,
no matter how operations interleave
• Theoretically possible to run with no concurrency control*

*latching still needed

Can automatic analysis help?

• Can source code analysis identify such “no concurrency control necessary”
phases in actual executions?
• Essentially: identify when isolation is guaranteed by query semantics

• Challenges:
• Sound static analysis struggles to be precise
• Dynamically-typed languages are harder to analyze precisely, tools are not as advanced
• Extracting query predicates from SQL is non-trivial
• Tension between abstract CC model and vendor-specific CC implementation

• Problematic behaviors on an abstract model may not occur in practice, and vice versa

• Opportunities:
• Application logic is often very simple, does not stress scalability of static analysis
• No data sharing in application logic, avoids imprecise analysis due to shared objects

How can we incorporate developer effort?

• Developers can convey application-specific constraints and invariants
that automatic analysis will never reliably extract
• Examples:
• Transaction is for reporting purposes and does not need serializable results
• No concurrent transactions from same client
• Which tables or records are likely to be hot

• Challenges:
• How are we presenting concurrency bugs in an understandable way?

• How can we reliably track executions through software layers?
• How do we incorporate user feedback and allow user control of concurrency?
• Can we automatically suggest modifications to SQL in application code?

Closing thought: developer education

• Application developers are much more comfortable at the
programming language level rather than the database level.
• Noted widespread use of the term “race condition” for weak isolation errors.

• First developer reaction is: “let’s add a lock somewhere”
• Locking is undergraduate concept. Easy to understand, hard to get right.

• Challenges in introducing isolation earlier in the curriculum:
1. Early definitions of isolation are operational: they dictate how to implement

using locks
2. Dependency graph-based definitions of isolation are hard to grasp, even

harder to use to analyze real transactions

Conclusion

• A study of real-world concurrency bugs
• Looked at 93 bugs from 46 open-source applications
• Understand their consequences, root causes, and their fixes:

• Consequence: Most bugs manifest as data inconsistencies
• Root cause: Mainly the assumption of atomic read-then-write
• Fix: No universally acceptable solution

• What can research do?
• Automatic analysis is a very promising path
• New abstractions to convey concurrency bugs and incorporate user input

