
Data Pipes
Declarative Control over Data Movement

Lukas Vogel, Daniel Ritter, Danica Porobic,
 Pınar Tözün, Tianzheng Wang, Alberto Lerner



Status Quo: Data movement is a bottleneck

● Wildly different hardware at every level
○ Characteristics (latency, throughput, …)
○ Granularity (Cache line, page, block, …)
○ Access patterns (sequential, random)

2

● Applications spend a lot of time moving data
○ Explicitly: e.g., pread
○ Implicitly: e.g., CPU caches

● We’d like to utilize “shortcuts”
○ Such as DMA (I/OAT), DDIO
○ Exist between nearly any device pair
○ We call them “data movement primitives”

● Moving data is complex
○ APIs (pread, mmap, io_uring, SPDK, S3,…)
○ Protocols (NVMe/PCI, HTTP, SATA, DDR(-T))
○ Instructions (CLFLUSH(OPT), CLWB, CLDEMOTE)
○ CPU involvement

Unfortunately, data movement primitives are difficult to utilize…



Reason 1: Primitives are hard to control

● DDIO reduces data traffic
● Same command, but two paths
● Only tuning knob: global undocumented MSR

⇒ Hard to control!

pread()

DDIO

SSD

DRAM

L3 Cache

“normal”

3
Xeon Gold 6212U, 24 Cores,
~1.5 MB L3 Cache/Core,
Samsung 970 Pro (PCIe 3)



Reason 2: Primitives are hard to target

● Same sink, but two paths
● Fast path hard to develop for

⇒ Hard to use!

memcpy(pmem, dram, 4*GB)

DRAM PMem

I/OAT
(DMA)

4
Xeon Gold 6212U, 24 Cores,
192 GB DRAM, 768 GB PMem



Primitives have to be re-thought

● Problem: Hard to utilize, hard to control
○ Vendor-specific, transparent
○ Varying APIs, unconventional or not widely supported

● The culprit: implicit, bottom-up approach
○ Vendors see primitives as accelerators for specific 

use-cases
○ Breaks down when straying from the happy path

● Proposal: Declarative, top-down data movement
○ Build a unified abstraction
○ Give control to the developers
○ We call it: Data Pipes

5



Data Pipes

● “Typed” locators make data location explicit

6

● Pipes make data movement explicit
● Top-down approach is declarative and shows intentions
● Framework underneath decides on how data is actually moved

○ Employ DMA hardware capabilities
○ Software fallback



Data Pipes Example

SSDResourceLocator ssd(“file/path”);

DRAMResourceLocator dram(1 * GB);

parallel_per_core {

CacheResourceLocator cache(CACHE_SZ);

Pipe ssd_up(ssd, cache);

Pipe cache_down(cache, dram);

ssd_up.transfer(1 * MB);

sort(cache, 1 * MB);

cache_down.transfer(1 * MB);

}

Please take a look at the paper for an inversion of control and an OS-supported approach 7



Properties of Data Pipes (1/2)

Optimizable

Composable

8

Declarative



Properties of Data Pipes (2/2)

Orthogonal to existing primitives

Adaptable to new primitives 9

Configurable



Research Agenda

● Current Prototype: Data Pipes in user space (e.g., SPDK)

● Integrate Data Pipes into the OS
○ Common baseline for different libraries 
○ Reserve resources managed by the Data Pipe runtime (e.g., no swapping)
○ API with epoll: See paper!

● Cloud Infrastructure Opportunities
○ Predictability => Reduce overprovisioning (noisy neighbors!)
○ Common API helps customers to migrate to new device generations

10



Hardware Vendor Wishlist

● Give us more access to the hardware!
○ Expose state and tuning knobs of DDIO, I/OAT, …
○ More control over the caching layer

● Intel’s integrated DMA unit lacks some features
○ Lacking documentation
○ Low bandwidth for smaller data transfers
○ Limited number of channels

● Increased reach of DMA units
○ Some device pairs have no acceleration, e.g. DMA directly into the registers?

11



Conclusions

● Data movement is a bottleneck in 
data-intensive systems

● Existing data movement primitives are 
heterogeneous and hard to use

● Data Pipes: Abstraction to …
○ … present a uniform interface to the application
○ … make data movement primitives 

■ top-down,
■ declarative, 
■ and explicit.

12Thank you for your attention!



Inversion of Control approach

13

SSDResourceLocator ssd(“file/path”);

DRAMResourceLocator dram(1*GB);

PipeRuntime runtime;

runtime.fork_and_start();

vector<future> futures;

Pipe dram_down(dram, ssd, &runtime);

parallel_per_core {

promise<void> write_promise;

futures.push_back(write_promise.get_future());

// Do some computation with data in DRAM

dram_down.transfer(20 * MB, write_promise);

}

wait_all(futures).wait();

futures.clear();



OS supported approach

14

SSDResourceLocator ssd(“file/path”);

DRAMResourceLocator dram(1*GB);

int dram_downpipe_fd = create_pipe(dram, 
ssd);

int epoll_fd = epoll_create1(0);

epoll_event dram_pipe_op;

dram_pip_op.events = EPOLLTRANSFER;

dram_pip_op.fd = dram_downpipe_fd; 

epoll_ctl(epoll_fd, EPOLL_CTL_ADD, 0, 
&dram_pipe_op)

parallel_per_core {

// Wait until the pipe has capacity to transfer

epoll_event event;

epoll_wait(epoll_fd, &event, 1);

pipe_transfer(dram_downpipe_fd);

}


