
1

Pipeline Group Optimization on 
Disaggregated Systems
Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

CIDR – January 10, 2023



2

State-of-the-Art Execution Model in DBMS

SQL Queries
▪ are transformed into 

pipeline-based query execution plans

Pipeline Properties
▪ each pipeline consists of multiple
pipeline-friendly operators with a 
pipeline-breaking (sub-)operator at 
the end

▪ input data of a pipeline is partitioned 
into chunks, so that the chunks can 
be processed in parallel

▪ One pipeline after the other

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size



3

Hardware Shifts to Disaggregation

Traditional Scale-Up
▪ Hard-wired setup
▪ Predictable latencies
▪ Elasticity

- Very minimal on hardware level
- Based on VM-level

Disaggregated Hardware
▪ Software composable system
▪ Altering hardware live
▪ Latency depending on physical distance

CPU CPU

CPU CPU

CacheCache

Cache CacheRAM

RAM

RAM

RAM

QPI

Q
PI

Q
PI

QPI

QP
I

QPI

Compute Pool
Memory Pool

Storage Pool



4

Pipelines on Disaggregated Hardware

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

push-down

State of the Art Approach
▪ Operator push-down
▪ Existing systems like Farview [1]
▪ Limited applicability due to limited compute power of Smart-NIC

[1] Korolija et. Al.: Farview: Disaggregated Memory with Operator Off-loading for Database Engines; 2022

Compute Pool
Memory Pool

Storage Pool



5

Pipelines on Disaggregated Hardware
Compute Pool

Memory Pool

Storage Pool

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

data request

Our Approach
▪ Shipping data to compute
▪ Multiple queries may lead to redundant data transfer
▪ Limited Operator Push-Down possible
Ø Idea: similar to group commits [2] à grouped data access

data

[2] Hagmann; Reimplementing the Cedar File System Using Logging and Group Commit; 1987



6

Pipeline Groups



7

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

Legend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

Building Pipeline Groups

Pipeline Groups

PG 1

PG 2

…

PG nLegend

Pipeline-based Query Execution Plan Pipeline Dependency Graph

Table B Table C

!!.#$%
!&.'$(

Γ);+,-(!./)

⋈!1234(!.)) ⋈56789(&.:)

⋈56789(&.8)

Table A

!;.<$=

⋈!1234(;.>)

$

P1

P2

P3

P4

Pipeline

!5694 Filter-Operator

Γ Group-Operator

⋈ Join-Operator
Dependencies

Hash-Join

Hash-Join

⋈!.#$%.&

⋈'.($%.)

Operator 

P1

P2P3P4

SQL Query

select *
from A, C,

(select B.z, sum(B.v) 
from B
where B.y=3
group by R.z) B

where A.x=7 and
C.w=8 and
A.a = C.b and
B.z = C.c

P2

P3

P1 P4

Pipeline 

50 Pipeline Size

Analyze 

Data Need

Compute Pool
Memory Pool

Storage Pool
Building Pipeline Groups
▪ Batch and translate incoming queries
▪ Analyze resulting pipelines 
▪ Group according to largest data overlap
▪ Schedule pipeline groups à transfer needed data once



8

Pipeline Execution on Disaggregated Hardware

Compute Pool Memory Pool

PUPUPU

PUPUPU PUPUPU

Memory
Memory

Data 
Transfer 
Manager

Pipeline Group Executor

Pipeline 
Grouper

Query 
Batcher

Scheduler Parameter 
Server

Data 
Transfer

Q1

Q2

Q3

Optimizer 
Goals

Query 
Optimizer

Query

Batch

Pipelines



9

Proof of Concept



10

RDMA simulated disaggregation
▪ 2 monolithic servers connected via InfiniBand
▪ Mellanox ConnectX-4 (up to 12.5 GB/s)
▪ CN: 384GB Memory; 4 Intel Xeon Gold 6130
▪ MN: 384GB Memory; 4 Intel Xeon Gold 5130

Experimental Setup



11

RDMA Benchmarks

Take Away Message
▪ Our RDMA implementation comes close to the theoretical hardware performance of up to 12.5 GB/s
Ø Validation for evaluating pipeline group approach on this network implementation

Consume Benchmark
▪ Sending data from MN to CN with operator on CN
▪ More realistic than throughput
Ø Close to throughput performance

Throughput Benchmark
▪ Sending data from MN to CN without using it
Ø Best possible performance for our RDMA 

implementation

Code available on GitHub: https://github.com/alexKrauseTUD/memoRDMA



12

RDMA simulated disaggregation
▪ 2 monolithic servers connected via InfiniBand
▪ Mellanox ConnectX-4 (up to 12.5 GB/s)
▪ CN: 384GB Memory; 4 Intel Xeon Gold 6130
▪ MN: 384GB Memory; 4 Intel Xeon Gold 5130

Data:
▪ Different columns, one column 1.5GB size
▪ Integer values between 0 and 100

Selectivity:
▪ Values for n: 1, 25, 50, 75, 100

Experimental Setup

Query Template

SELECT SUM(col2 * col3)
FROM data
WHERE col1 < n

Pipeline Groups
▪ Different queries of the same template
▪ Varying overlap of required columns



13

Heatmap
▪ Find best performing chunk and buffer sizes
▪ Showing time [s] for processing of pipeline
▪ Transfer asynchronous + interleaved with compute
Ø Both values with significant impact

Pipeline Group Execution Benchmark
Data Overlap

▪ 512KiB Buffer and 4MiB Chunk size
▪ 4 pipelines executed fully parallel
▪ Overlap à how many of the needed 3 columns 

are shared between all 4 pipelines

Sharing opportunities allow for efficient latency hiding.

Code available on GitHub: https://github.com/alexKrauseTUD/dataProvider



14

Future Work

1. Evaluate batching strategies

2. Test grouping strategies

3. Implement work and data placement and 
scheduling

4. Integrate additional technologies (CXL)

1

2
3

4

Compute Pool Memory Pool

PUPUPU

PUPUPU PUPUPU

Memory
Memory

Data 
Transfer 
Manager

Pipeline Group Executor

Pipeline 
Grouper

Query 
Batcher

Scheduler Parameter 
Server

Data 
Transfer

Q1

Q2

Q3

Optimizer 
Goals

Query 
Optimizer

Query

Batch

Pipelines



15

Pipeline Group Optimization on 
Disaggregated Systems
Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner
Firstname.Lastname@tu-dresden.de

CIDR - January 10, 2023


