
1

Pipeline Group Optimization on 
Disaggregated Systems
Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

CIDR – January 10, 2023



2

State-of-the-Art Execution Model in DBMS

SQL Queries
▪ are transformed into 

pipeline-based query execution plans

Pipeline Properties
▪ each pipeline consists of multiple
pipeline-friendly operators with a 
pipeline-breaking (sub-)operator at 
the end

▪ input data of a pipeline is partitioned 
into chunks, so that the chunks can 
be processed in parallel

▪ One pipeline after the other
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Hardware Shifts to Disaggregation

Traditional Scale-Up
▪ Hard-wired setup
▪ Predictable latencies
▪ Elasticity

- Very minimal on hardware level
- Based on VM-level

Disaggregated Hardware
▪ Software composable system
▪ Altering hardware live
▪ Latency depending on physical distance

CPU CPU

CPU CPU

CacheCache

Cache CacheRAM

RAM

RAM

RAM

QPI

Q
PI

Q
PI

QPI

QP
I

QPI

Compute Pool
Memory Pool

Storage Pool



4

Pipelines on Disaggregated Hardware
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push-down

State of the Art Approach
▪ Operator push-down
▪ Existing systems like Farview [1]
▪ Limited applicability due to limited compute power of Smart-NIC

[1] Korolija et. Al.: Farview: Disaggregated Memory with Operator Off-loading for Database Engines; 2022
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Pipelines on Disaggregated Hardware
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data request

Our Approach
▪ Shipping data to compute
▪ Multiple queries may lead to redundant data transfer
▪ Limited Operator Push-Down possible
Ø Idea: similar to group commits [2] à grouped data access

data

[2] Hagmann; Reimplementing the Cedar File System Using Logging and Group Commit; 1987
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Pipeline Groups
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Building Pipeline Groups

Pipeline Groups
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Analyze 

Data Need

Compute Pool
Memory Pool

Storage Pool
Building Pipeline Groups
▪ Batch and translate incoming queries
▪ Analyze resulting pipelines 
▪ Group according to largest data overlap
▪ Schedule pipeline groups à transfer needed data once
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Pipeline Execution on Disaggregated Hardware
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Proof of Concept
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RDMA simulated disaggregation
▪ 2 monolithic servers connected via InfiniBand
▪ Mellanox ConnectX-4 (up to 12.5 GB/s)
▪ CN: 384GB Memory; 4 Intel Xeon Gold 6130
▪ MN: 384GB Memory; 4 Intel Xeon Gold 5130

Experimental Setup
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RDMA Benchmarks

Take Away Message
▪ Our RDMA implementation comes close to the theoretical hardware performance of up to 12.5 GB/s
Ø Validation for evaluating pipeline group approach on this network implementation

Consume Benchmark
▪ Sending data from MN to CN with operator on CN
▪ More realistic than throughput
Ø Close to throughput performance

Throughput Benchmark
▪ Sending data from MN to CN without using it
Ø Best possible performance for our RDMA 

implementation

Code available on GitHub: https://github.com/alexKrauseTUD/memoRDMA
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RDMA simulated disaggregation
▪ 2 monolithic servers connected via InfiniBand
▪ Mellanox ConnectX-4 (up to 12.5 GB/s)
▪ CN: 384GB Memory; 4 Intel Xeon Gold 6130
▪ MN: 384GB Memory; 4 Intel Xeon Gold 5130

Data:
▪ Different columns, one column 1.5GB size
▪ Integer values between 0 and 100

Selectivity:
▪ Values for n: 1, 25, 50, 75, 100

Experimental Setup

Query Template

SELECT SUM(col2 * col3)
FROM data
WHERE col1 < n

Pipeline Groups
▪ Different queries of the same template
▪ Varying overlap of required columns
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Heatmap
▪ Find best performing chunk and buffer sizes
▪ Showing time [s] for processing of pipeline
▪ Transfer asynchronous + interleaved with compute
Ø Both values with significant impact

Pipeline Group Execution Benchmark
Data Overlap

▪ 512KiB Buffer and 4MiB Chunk size
▪ 4 pipelines executed fully parallel
▪ Overlap à how many of the needed 3 columns 

are shared between all 4 pipelines

Sharing opportunities allow for efficient latency hiding.

Code available on GitHub: https://github.com/alexKrauseTUD/dataProvider
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Future Work

1. Evaluate batching strategies

2. Test grouping strategies

3. Implement work and data placement and 
scheduling

4. Integrate additional technologies (CXL)
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