

The Tensor Data Platform Towards an Al-centric Database System

Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit Sen, Carlo Curino, Jesús Camacho-Rodríguez, **Matteo Interlandi**

Al is growing...and having an impact on applications...and DBMS

Enter your favorite chart showing how AI is taking over the world

Milvus

Anatomy of next gen data-driven applications

- 1. Support for multimodal data (image, video, relational, audio, etc.)
 - Not many relational system with proper image/video/etc. support
 - Many specialized system are moving towards supporting "scalar" queries
- 2. Tight integration and interoperability with ML
 - Most systems either (partially) re-implement ML features in SQL ...
 - ... Or call external ML runtimes
- 3. Native support for hardware acceleration
 - Most systems are built on single vendor tech (CUDA)
 - Supporting other stacks (AMD, Apple, etc.) requires nontrivial engineering effort

Claim: Building a data engine with all three is hard!

Tensor Runtimes 🎷 OyTorch

- Support for multimodal data 1.
 - Thanks to the Tensor abstraction
- Native support for hardware acceleration 2.
 - Large open-source communities with HW vendors involvement
- Tight integration and interoperability with ML 3.
 - ML capabilities embedded into the system and language (e.g., autodiff)

Question: Can we build a database on top of tensor runtimes?

Al-centric Database: Outline

1. Support for multimodal data

2. Native support for hardware acceleration

3. Tight integration and interoperability with ML

Tensor data representation

Def Tensor:

A multidimensional matrix that is a cornerstone data structure in Al

Tensor data representation

Def Tensor:

A multidimensional matrix that is a cornerstone data structure in Al

Tensor data representation

Def Tensor:

A multidimensional matrix that is a cornerstone data structure in Al

We leverage torch, torchaudio, torchvideo, etc, for loading data into tensor format

We have our own custom tensor class: EncodedTensor = tensor + metadata PlainEncoding, DictionaryEncoding (data tensor + 2-d dictionary metadata tensor) ProbabilisticEncoding (data tensor + a domain dictionary)

SQL on Images Demo

Al-centric Database: Outline

1. Support for multimodal data

2. Native support for hardware acceleration

3. Tight integration and interoperability with ML

Al-centric Database: Outline

1. Support for multimodal data

2. Native support for hardware acceleration

3. Tight integration and interoperability with ML

SQL as a declarative language for Differentiable Programming

Gradients are the staple mechanism by which we *learn* in machine learning.

Tensor runtimes have a remarkable tool to compute gradients Automatic Differentiation

TDP extends SQL by taking advantage of automatic differentiation in PyTorch

Particularly, we add the following to SQL:

- 1. Trainable User Defined Functions (UDFs) and Table Valued Functions (TVFs)
- 2. Differentiable Relational Operators (e.g., Differentiable Group By, Aggregation, Filters, etc.)

Trainable SQL Queries

We can execute SQL queries that combines trainable operations with relational operators.

MNISTGrid Dataset

Digit	Size	Count
0	Small	1
0	Large	0
1	Small	1
•	Large	0
2	Small	0
-	Large	1
3	Small	0
,	Large	1
Α	Small	0
7	Large	0
5	Small	0
,	Large	1
6	Small	0
0	Large	0
7	Small	2
•	Large	0
8	Small	0
U	Large	2
9	Small	0
5	Large	0

MNISTGrid Task

Compute the grouped (Digit, Size) counts from the image.

Trainable Query

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Anatomy of a Trainable Query

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Anatomy of a Trainable Query

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Anatomy of a Trainable Query

Trainable UDF

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

digit_parser = CNN(out_classes=10).to(device)
size_parser = CNN(out_classes=2).to(device)

@tdp_udf("Digit float, Size float")

def parseMNISTGrid(x: torch.Tensor) -> torch.Tensor: # Break up grid into a batch of 9 images grid = rearrange(x[0], "(h1 h2) (w1 w2) -> (h1 w1) 1 h2 w2", h1=3, w1=3)

Parse digits from images
parsed_digits = digit_parser(grid)
digit_domain = np.arange(10)
encoded_digits = ProbabilisticEncoding.encode(parsed_digits, digit_domain)

Parse size from images
parsed_sizes = size_parser(grid)
size_domain = np.arange(2)
encoded_sizes = ProbabilisticEncoding.from_encoded_data(parsed_sizes, size_domain)

return encoded_digits, encoded_sizes

Trainable UDF

Differentiable Relational Operators

The query combines neural and relational operators and is end-to-end differentiable

The alternative: pure Deep Learning

The standard way to tackle this problem would be to pose it as a multiple regression problem with a single monolithic neural network

Disadvantages:

- 1. Entanglement of tasks (cannot separate digit classification from size classification or aggregation)
- 2. Cannot generalize to other tasks
- 3. Needs to learn from scratch what it means to group and count

Trainable Query vs pure Deep Learning

- Datasets:
 - MNISTGrid Train/Test: 5000/1000 Grids
- Training Hyperparameters (Fixed):
 - Learning Rate = 0.0001
 - Training Iterations = 40,000 iterations
- Architecture (Varied):
 - TDP Trainable Query (860K Parameters)
 - Pure Deep Learning CNN-Small (850K Parameters)
 - Resnet-18 (11.1M Parameters)
- 5 runs per architecture

Our approach trains significantly faster than a purely deep learning model

Our SQL can declaratively express Neurosymbolic [1] systems that are end-to-end trainable

Summary

The space of AI-powered databases is heating up

- Al-centric Database could be a leap forward. Free-ride on:
 - 1. \$B of HW/SW investments for AI
 - 2. Multimodal support
 - 3. Seamless integration with latest and biggest ML models
 - 4. Novel querying paradigms such as trainable queries
- Exciting future directions
 - 1. TensorFrame API
 - 2. Expressing some ML tasks in a more natural way
 - Learning from Label Proportions

Thank you!

https://aka.ms/gsl

© Copyright Microsoft Corporation. All rights reserved.

ML-first user experience

ML within SQL: UDF-based programming model

- We use UDF to access the tensor API
- Still end-to-end on HW accelerators

SELECT images
FROM Attachments
WHERE image_text_similarity("dog", images) > 0.80

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

@tdp_udf("float")

```
def image_text_similarity(query: str, images: torch.Tensor) -> torch.Tensor:
    inputs = processor(text=[query], images=images, return_tensors="pt", padding=True)
    inputs.to(device)
    outputs = model(**inputs)
    scores = outputs.logits_per_image.flatten() / 30
    return scores
```


ML-first user experience

ML within SQL: UDF-based programming model

- We use UDF to access the tensor API
- Still end-to-end on HW accelerators

SQL within ML: Embedding queries into PyTorch programs

- Use the right tool for the right task
- Thanks to trainable SQL queries

```
SELECT images
FROM Attachments
WHERE image_text_similarity("dog", images) > 0.80
```

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

@tdp_udf("float")

```
def image_text_similarity(query: str, images: torch.Tensor) -> torch.Tensor:
    inputs = processor(text=[query], images=images, return_tensors="pt", padding=True)
    inputs.to(device)
    outputs = model(**inputs)
    scores = outputs.logits_per_image.flatten() / 30
    return scores
```

def train(compiled_query, num_iterations, optimizer, mnist_grids, target_counts):
 for i in range(num_iterations):
 optimizer.zero_grad()

```
# Register MNISTGrid and perform inference with the query
tqp.sql.register_tensor(mnist_grids[i], "MNIST_Grid")
predicted_counts = compiled_query.run()
```

```
# Compute loss. Here we use MSE between the counts.
loss = ((predicted_counts - target_counts[i])**2).mean()
```

```
# Backpropagate and perform optimization step
loss.backward()
optimizer.step()
```

TQP

100% Python

TQP supports the full TPCH benchmark

Performance highlights

TQP Scalability Comparison

Microsoft

Let's see how we might make the "Group By + Aggregation" operation differentiable.

<u>Inventory</u>

Fruit	Vegetable	Price
apple	carrot	4.0
banana	carrot	2.0
apple	carrot	4.0
banana	potato	3.5

Query SELECT Fruit, Vegetable, COUNT(*) FROM Inventory GROUP BY Fruit, Vegetable

Query Answer

Fruit	Vegetable	Count
apple	carrot	2
apple	potato	0
banana	carrot	1
banana	potato	1

Let's see how we might make the "Group By + Aggregation" operation differentiable.

Fruit	Vegetable	Price
apple	carrot	4.0
banana	carrot	2.0
apple	carrot	4.0
banana	potato	3.5

<u>Inventory</u>

Query SELECT Fruit, Vegetable, COUNT(*) FROM Inventory GROUP BY Fruit, Vegetable

We can do this in three steps:

- 1. Relax discrete data to continuous representation.
- 2. Create masks corresponding to each group.
- 3. Perform aggregation using the mask and data.

Let's see how we might make the "Group By + Aggregation" operation differentiable.

Fruit	Vegetable	Price
apple	carrot	4.0
banana	carrot	2.0
apple	carrot	4.0
banana	potato	3.5

<u>Inventory</u>

Query SELECT Fruit, Vegetable, COUNT(*) FROM Inventory GROUP BY Fruit, Vegetable

We can do this in three steps:

- 1. Relax discrete data to continuous representation. (Assume data is pre-encoded)
- 2. Create masks corresponding to each group. (Needs to be differentiable)
- 3. Perform aggregation using the mask and data. (Needs to be differentiable)

Step 1: Relax discrete data to continuous representation.

Fruit	Vegetable	Price
apple	carrot	4.0
banana	carrot	2.0
apple	carrot	4.0
banana	potato	3.5

l	n	Ve	en	tc	<u>)</u> r	Y	

		<u></u>	<u>.o.y</u>	
Fr	uit	Vege	table	Price
1.	0.	1.	0.	4.0
0.	1.	1.	0.	2.0
1.	0.	1.	0.	4.0
0.	1.	0.	1.	3.5
apple	banana	carrot	potato	

Inventory

We can use One Hot Encoding (OHE) for categorical columns.

We assume data is pre-encoded to this format before being fed into our differentiable operator.

Step 2: Create masks corresponding to each group.

Fr	uit	Vege	etable	Price	
1.	0.	1.	0.	4.0	
0.	1.	1.	0.	2.0	
1.	0.	1.	0.	4.0	
0.	1.	0.	1.	3.5	
apple	banana		Potato		

<u>Inventory</u>

Mask for Group: (apple, carrot)

With the OHE strategy of categorical data representation, creating a group mask requires only element-wise product (which is differentiable).

Step 3: Perform aggregation using the mask and data.

Differentiable Grouped Aggregation (GROUP BY + COUNT)

Step 3: Perform aggregation using the mask and data.

Differentiable Grouped Aggregation (GROUP BY + SUM)

Step 3: Perform aggregation using the mask and data.

Differentiable Grouped Aggregation (GROUP BY + MAX)

Step 3: Perform aggregation using the mask and data.

<u>Inventory</u>

Differentiable Filtered Aggregation (WHERE + SUM)

Case Study: Multimodal Email Search

MAIDAP has been working with MSAI to explore multimodal search capabilities for outlook.

An example of relevant data analysis:

What is the count of the different types of image attachments in outlook emails?

Regular Images

Receipts

Surakav's multimodal support makes it easy to answer such queries.

Tensors are the de facto data structure for multimodal computation

The tensor data structure has been used to represent numerous rich entities.

Surakav can exploit tensors for multimodal query support.