Chemistry behind Agreement

Suyash Gupta

Mohammad Javad Amiri

Mohammad Sadoghi

SkyLab UC Berkeley <u>gupta-suyash.github.io</u>

UPenn seas.upenn.edu/~mjamiri On academic job market

ExpoLab UC Davis <u>expolab.org</u>

What is this talk about?

Agreement protocols.

• What is an agreement protocol?

Helps to reach multiple parties a common decision.

• Why agreement?

Distributed systems with multiple nodes are common.

• Any real-world application?

Every distributed database system!

Agreement Protocol Types

- Commit Protocols
 - Agreement on transaction commit or abort.
 - Two-phase commit, Three-phase commit.
- Crash Fault-Tolerant (CFT) Protocols
 - For consistent replication under crashes.
 - Paxos, Raft.
- Arbitrary Fault-Tolerant (AFT) Protocols
 - For consistent replication under arbitrary faults (e.g. malicious).
 - PBFT, PoE.


New Protocols are still in Production

- BFT Protocols
 - GeoBFT [VLDB'20], Sharper [Sigmod'21], ByShard[VLDB'21],
 RCC [ICDE'21], PoE [EDBT'22], ServerlessBFT [ICDE'23]

- Commit Protocols.
 - EasyCommit [EDBT'18], QStore [EDBT'20]


So Are we done?

Unfortunately No!

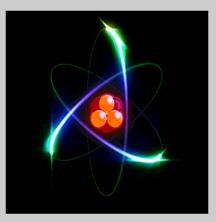
Challenges Due to Disparity

- Incompatible algorithmic designs
- Distinct schematic representations.
- Lack of common proof systems.

Disparity hurts Adoption

Exciting Prior Works

- Calvin [SIGMOD'12], Tapir [SOSP'15], and Janus [OSDI'16] combine commitment and CFT.
- **Deneva [VLDB'17]** framework helps to express different CC techniques.
- Sujaya et al. [VLDB'19] present a framework to explain a subset of commitment and CFT protocols.
- DataCalculator [SIGMOD'18] presents a unified framework for data-structures.


Our Prior Attempt: Unifying AFT Protocols

Open sourced at https://resilientdb.com/

Vision: Unified Elemental Framework

Atoms, Elements and Compounds of Agreement.

- Smallest indivisible unit of an element.
- Atoms define functional properties of an agreement protocol.

Atoms

Failure

Crash failure, unexpected restart, or malicious attack.

• Quorum Size

n-1 (2PC), f+1 (Paxos), 2f+1 (PBFT).

• Topology

star (centralized), clique (decentralized), ring (chain).

• Data Distribution

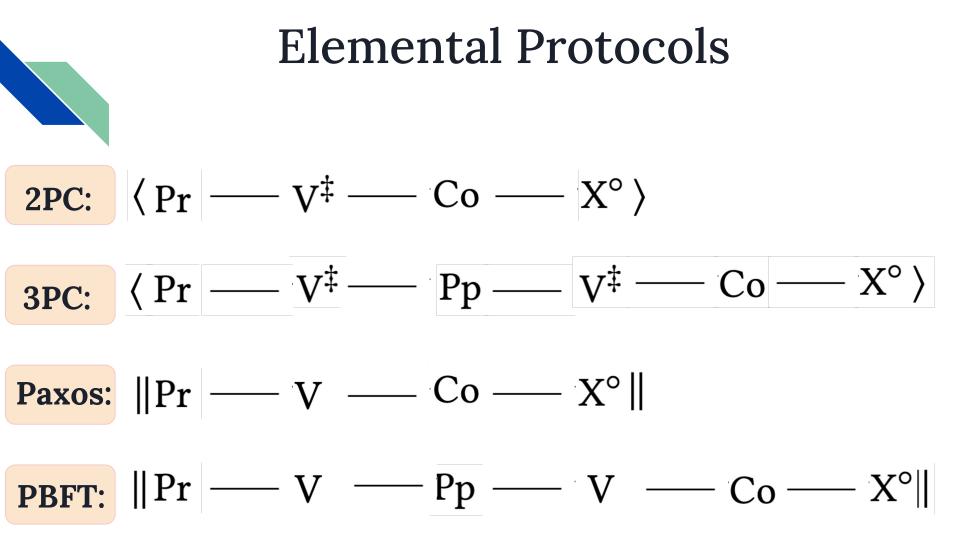
data sharding and/or replication.

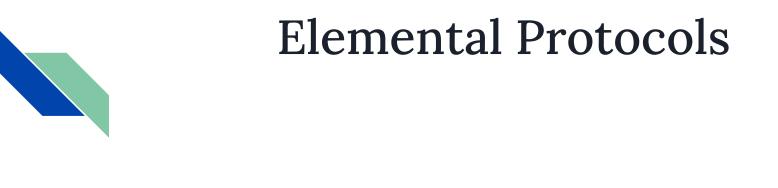
Elements

- Composed of one or more atoms.
- Represent the phases of an agreement protocol.

Elements

• Proposal (P)


- Proposal sent by a leader that includes a client transaction.
- Vote (V)
 - A node's vote on the leader's proposal.
 - Commit protocols \rightarrow abort or commit vote.
 - AFT protocols \rightarrow support for only valid proposal.
- Prepare (Pp) and Commit (Co)
 - Leader attempts to inform nodes about common decision.
 - Not all protocols require both the elements.


Elements

- Execution (X)
 - Execution of client transactions.
 - Order-then-execute vs. Execute-then-order.
- Checkpoint (Ch)
 - State exchange to ensure a common state across nodes.
- Leader Election (Le)
 - Replacement of current leader when it fails.
 - New leader is expected to help commit the current proposal.

Agreement Protocols: Compounds of Elements and Atoms

DPaxos:
$$\| \operatorname{Pr} - \operatorname{Co}^{\oplus} - \operatorname{X}^{\circ} \|$$

DPBFT:
$$\parallel \Pr - \Pr^{\oplus} - Co^{\oplus} - X^{\circ} \parallel$$

What's More?

• Reduced Phase Consensus protocols.

SpecPaxos, Zyzzyva, PoE

- Multi-Leader (parallel) consensus protocols. Mencius, RCC
- Global-scale consensus protocols.

GeoBFT, Steward, GEC, Ziziphus

• Sharded-replicated consensus protocols. Spanner, MDCC, Sharper, RingBFT, ByShard

Conclusions and Future Work

Our vision is to design a framework that unifies different agreement protocols and prevents future disparities.

- Designs untouched: deterministic protocols, asynchronous protocols, node recovery and reconfiguration, DAG-based ordering.
- Unifying framework should permit arguing about properties like totality, validity, consistency, and termination.

Thank You