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What Is A Lakehouse?

Lakehouses are data management systems based on open formats 
running over low-cost cloud storage providing rich management 
functionality such as transactions, data versioning, and indexing while  
being accessible to multiple compute engines.
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Lakehouses Build on Low-Cost Data Lake Storage
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Data Lake



Lakehouse Data is Stored in Open File Formats
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Lakehouses Manage Data Stored in Data Lakes

5

Data Lake

Data Files in Open
Formats

Lakehouse Data Management Layer
(Transactions, Metadata, Indexing…)



Lakehouse Data is Accessible to Compute Engines
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Why Lakehouses?

Compared to Data Lakes:

● Lakehouses provide rich data management functionality such as 
transactions and metadata management.

Compared to Traditional Data Warehouses:

● Lakehouses make data directly accessible to any engine, for 
example BI, ML, or DS tools.
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Lakehouses are Being Widely Adopted

● Many large tech companies (Meta, Uber, Netflix) host their entire 
analytics stack on lakehouses.

● Lakehouses are increasingly offered by cloud data services 
(Redshift, EMR, Dataproc, Synapse…)

● >70% of bytes written by Databricks customers are to Delta Lake.
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Lakehouses Face Important Design Questions

● How to coordinate transactions over low-cost cloud storage? 

● Where to store metadata and how to query it in low-cost cloud 
storage?

● How to efficiently handle updates without sacrificing read 
performance?
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Talk focuses 
on these



We Designed LHBench

● New lakehouse benchmark built on TPC-DS.

● Ran on AWS EMR 6.9.0 with Spark 3.3.

● Try it out on GitHub!
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https://github.com/lhbench/lhbench

https://github.com/lhbench/lhbench


We Analyze Three Open-Source Lakehouses
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Apache Hudi

Started by Uber

Apache Iceberg

Started by Netflix

Delta Lake

Started by Databricks



LHBench Analyzes Important Aspects of 
Lakehouse Functionality

● Metadata Management

● Update Performance

● End-to-end Performance
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Metadata is Critical for Query Planning

● To plan queries over data in lakehouses, distributed processing 
engines (Spark, Presto) need fast access to table metadata.

● Example metadata: Names and sizes of all files in table, 
information on column contents in each file.

● Native data lake metadata management is slow (e.g., S3 LIST is 1K 
keys/req).
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Current Lakehouses Use Two Metadata Formats

16

Tabular Format

● Used by Delta, Hudi.

● Each table’s metadata stored in a 
separate Parquet/Avro table. 

● Query planning is distributed.
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Tabular Format

● Used by Delta, Hudi.

● Each table’s metadata stored in a 
separate Parquet/Avro table. 

● Query planning is distributed.

Hierarchical Format

● Used by Iceberg.

● Each table’s metadata stored in a 
tree of manifest files (in Avro). 

● Queries planned on a single node.



LHBench Metadata Benchmark

● We run high-selectivity queries (where query planning is the 
bottleneck) over TPC-DS data .

● We measure query planning time with different metadata 
management strategies over tables of different sizes.

● We measure performance of Delta and Iceberg with tables 
containing 1K, 10K, 100K, and 200K 10 MB files (10GB-2TB data)
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Tabular Metadata + Distributed Planning
Scales Better
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Distributed query 
planning (Delta) is 
slower for small tables 
but scales better to 
large tables.



We Analyze Four Important Aspects of 
Lakehouse Functionality

● Transaction Management

● Metadata Management

● Update Performance

● End-to-end Performance
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Lakehouses Must Efficiently Support Updates

● Lakehouse workloads typically include frequent updates, including 
point updates and upserts.

● Must balance read and write performance.
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Current Lakehouses Use Two Update Strategies
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Copy-on-Write

● Supported by all three lakehouses.

● Identify files containing records 
that need updates, then eagerly 
rewrite them.

● High write amplification, no read 
amplification.



Current Lakehouses Use Two Update Strategies
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Copy-on-Write

● Supported by all three lakehouses.

● Identify files containing records 
that need updates, then eagerly 
rewrite them.

● High write amplification, no read 
amplification.

Merge-on-Read

● Supported by Iceberg/Hudi, coming 
soon to Delta.

● Write changes to auxiliary files, 
reconcile at query time.

● Low write amplification, high read 
amplification.



LHBench Provides Two Update Benchmarks
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TPC-DS Refresh Benchmark

● 10 refresh rounds of 3% data

● TPC-DS queries after load and 
after refreshes

● See paper for details!

Merge Benchmark

● Directly compare copy-on-write to 
merge-on-read

● Scale up merge size continuously

● Compare merge and query times



LHBench Merge Benchmark
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LHBench Merge Benchmark
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Iceberg MoR is 3×
faster at the largest 
merge configuration 
(100MB)



LHBench Merge Benchmark
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At 100MBs merged 
MoR causes 10x 
query slowdown.



LHBench Refresh Benchmark
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We Analyze Four Important Aspects of 
Lakehouse Functionality

● Transaction Management

● Metadata Management

● Update Performance

● End-to-end Performance
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3TB TPC-DS

● We load 3TB of data and run all TPC-DS queries
● We measure load time
● We run each query 3 times and measure the median time
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LHBench Analyzes E2E Performance Using TPC-DS
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Hudi Loads Are Slow Due to Preprocessing
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Hudi is optimized for 
keyed upserts, does 
expensive key 
uniqueness checks + 
key redistribution on 
each update.



Query Performance Influenced by 
Implementation Differences
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Iceberg uses 
immature Spark 
Data Source v2, 
optimizes queries 
less (e.g., Q9)



Query Performance Influenced by 
Implementation Differences
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Hudi stores data in 
many files. 

Example: In Q67, 
Delta/Iceberg store 
table partitions in 1 
file, Hudi uses 22.



Summary

● Lakehouses are important and exciting but still immature: lots of 
research to do on improving their performance and functionality.

● LHBench measures key lakehouse performance characteristics in 
challenging scenarios, hopefully helpful for future researchers!
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https://github.com/lhbench/lhbench

https://github.com/lhbench/lhbench


Many Open Challenges
● How can lakehouse systems best balance read/write performance? 

● Increase QPS under concurrency for lakehouse systems.

● Support transactions across multiple tables.
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