
Analyzing and Comparing
Lakehouse Storage Systems

Paras Jain*, Peter Kraft*, Conor Power*,
Tathagata Das, Ion Stoica, Matei Zaharia

* Denotes equal contribution

What Is A Lakehouse?

Lakehouses are data management systems based on open formats
running over low-cost cloud storage providing rich management
functionality such as transactions, data versioning, and indexing while
being accessible to multiple compute engines.

2

Lakehouses Build on Low-Cost Data Lake Storage

3

Data Lake

Lakehouse Data is Stored in Open File Formats

4

Data Lake

Data Files in Open
Formats

Lakehouses Manage Data Stored in Data Lakes

5

Data Lake

Data Files in Open
Formats

Lakehouse Data Management Layer
(Transactions, Metadata, Indexing…)

Lakehouse Data is Accessible to Compute Engines

6

Data Lake

Data Files in Open
Formats

Lakehouse Data Management Layer
(Transactions, Metadata, Indexing…)

SQL
Engine

ML Engine BI, Data
Science, etc…

Why Lakehouses?

Compared to Data Lakes:

● Lakehouses provide rich data management functionality such as
transactions and metadata management.

Compared to Traditional Data Warehouses:

● Lakehouses make data directly accessible to any engine, for
example BI, ML, or DS tools.

7

Lakehouses are Being Widely Adopted

● Many large tech companies (Meta, Uber, Netflix) host their entire
analytics stack on lakehouses.

● Lakehouses are increasingly offered by cloud data services
(Redshift, EMR, Dataproc, Synapse…)

● >70% of bytes written by Databricks customers are to Delta Lake.

8

Lakehouses Face Important Design Questions

● How to coordinate transactions over low-cost cloud storage?

● Where to store metadata and how to query it in low-cost cloud
storage?

● How to efficiently handle updates without sacrificing read
performance?

9

Lakehouses Face Important Design Questions

● How to coordinate transactions over low-cost cloud storage?

● Where to store metadata and how to query it in low-cost cloud
storage?

● How to efficiently handle updates without sacrificing read
performance?

10

Talk focuses
on these

We Designed LHBench

● New lakehouse benchmark built on TPC-DS.

● Ran on AWS EMR 6.9.0 with Spark 3.3.

● Try it out on GitHub!

11

https://github.com/lhbench/lhbench

https://github.com/lhbench/lhbench

We Analyze Three Open-Source Lakehouses

12

Apache Hudi

Started by Uber

Apache Iceberg

Started by Netflix

Delta Lake

Started by Databricks

LHBench Analyzes Important Aspects of
Lakehouse Functionality

● Metadata Management

● Update Performance

● End-to-end Performance

13

LHBench Analyzes Important Aspects of
Lakehouse Functionality

● Metadata Management

● Update Performance

● End-to-end Performance

14

Metadata is Critical for Query Planning

● To plan queries over data in lakehouses, distributed processing
engines (Spark, Presto) need fast access to table metadata.

● Example metadata: Names and sizes of all files in table,
information on column contents in each file.

● Native data lake metadata management is slow (e.g., S3 LIST is 1K
keys/req).

15

Current Lakehouses Use Two Metadata Formats

16

Tabular Format

● Used by Delta, Hudi.

● Each table’s metadata stored in a
separate Parquet/Avro table.

● Query planning is distributed.

Current Lakehouses Use Two Metadata Formats

17

Tabular Format

● Used by Delta, Hudi.

● Each table’s metadata stored in a
separate Parquet/Avro table.

● Query planning is distributed.

Hierarchical Format

● Used by Iceberg.

● Each table’s metadata stored in a
tree of manifest files (in Avro).

● Queries planned on a single node.

LHBench Metadata Benchmark

● We run high-selectivity queries (where query planning is the
bottleneck) over TPC-DS data .

● We measure query planning time with different metadata
management strategies over tables of different sizes.

● We measure performance of Delta and Iceberg with tables
containing 1K, 10K, 100K, and 200K 10 MB files (10GB-2TB data)

18

Tabular Metadata + Distributed Planning
Scales Better

19

Distributed query
planning (Delta) is
slower for small tables
but scales better to
large tables.

We Analyze Four Important Aspects of
Lakehouse Functionality

● Transaction Management

● Metadata Management

● Update Performance

● End-to-end Performance

20

Lakehouses Must Efficiently Support Updates

● Lakehouse workloads typically include frequent updates, including
point updates and upserts.

● Must balance read and write performance.

21

Current Lakehouses Use Two Update Strategies

22

Copy-on-Write

● Supported by all three lakehouses.

● Identify files containing records
that need updates, then eagerly
rewrite them.

● High write amplification, no read
amplification.

Current Lakehouses Use Two Update Strategies

23

Copy-on-Write

● Supported by all three lakehouses.

● Identify files containing records
that need updates, then eagerly
rewrite them.

● High write amplification, no read
amplification.

Merge-on-Read

● Supported by Iceberg/Hudi, coming
soon to Delta.

● Write changes to auxiliary files,
reconcile at query time.

● Low write amplification, high read
amplification.

LHBench Provides Two Update Benchmarks

24

TPC-DS Refresh Benchmark

● 10 refresh rounds of 3% data

● TPC-DS queries after load and
after refreshes

● See paper for details!

Merge Benchmark

● Directly compare copy-on-write to
merge-on-read

● Scale up merge size continuously

● Compare merge and query times

LHBench Merge Benchmark

25

LHBench Merge Benchmark

26

Iceberg MoR is 3×
faster at the largest
merge configuration
(100MB)

LHBench Merge Benchmark

27

At 100MBs merged
MoR causes 10x
query slowdown.

LHBench Refresh Benchmark

28

We Analyze Four Important Aspects of
Lakehouse Functionality

● Transaction Management

● Metadata Management

● Update Performance

● End-to-end Performance

29

3TB TPC-DS

● We load 3TB of data and run all TPC-DS queries
● We measure load time
● We run each query 3 times and measure the median time

30

LHBench Analyzes E2E Performance Using TPC-DS

31

Hudi Loads Are Slow Due to Preprocessing

32

Hudi is optimized for
keyed upserts, does
expensive key
uniqueness checks +
key redistribution on
each update.

Query Performance Influenced by
Implementation Differences

33

Iceberg uses
immature Spark
Data Source v2,
optimizes queries
less (e.g., Q9)

Query Performance Influenced by
Implementation Differences

34

Hudi stores data in
many files.

Example: In Q67,
Delta/Iceberg store
table partitions in 1
file, Hudi uses 22.

Summary

● Lakehouses are important and exciting but still immature: lots of
research to do on improving their performance and functionality.

● LHBench measures key lakehouse performance characteristics in
challenging scenarios, hopefully helpful for future researchers!

35

https://github.com/lhbench/lhbench

https://github.com/lhbench/lhbench

Many Open Challenges
● How can lakehouse systems best balance read/write performance?

● Increase QPS under concurrency for lakehouse systems.

● Support transactions across multiple tables.

36

https://github.com/lhbench/lhbench

https://github.com/lhbench/lhbench

