
sap
.co

m
#s

ap

SAP SE

HEX : SAP’s new HANA
Execution Engine

Daniel Ritter
Cloud Database Architect & Member of HANA Research Campus at SAP SE

Sponsor talk, Conference on Innovative Data Systems Research (CIDR), 1/2023

sap
.co

m
#s

ap

SAP SE

SQL Optimizer

HANA Core Engines and
Stores

SQL / SQL Script

Join
Engine

…
Row

Engine
OLAP
Engine

Column TableStorage

Processing

Modular,
disconnected

• Färber, Franz, et al. "The SAP HANA Database - An Architecture Overview." IEEE Data Eng. Bull. 35.1 (2012): 28-33.
• Sherkat, Reza, et al. “Native Store Extension for SAP HANA" Proceedings of the VLDB Endowment 12.12 (2019): 2047-2058.
• Translytical Data Platforms, Forrester, Q4/2022: https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/

Row Table

op
t

op
t

op
t-

r

HANA

In-memory + disk (cf.
NSE), HTAP (cf.
Translytical Data Platform)

… and many more: e.g. Calculation
engine (calculation views, star joins), MDS
engine (multi-dimensional queries incl.
aggregation, transformation, calculation),
…

sap
.co

m
#s

ap

SAP SE

HEX

SQL / SQL Script

Join
Engine

Operators
…

Row
Engine

Operators

OLAP
Engine

Operators

Column TableStorage

Processing Composed into pipelines

7

Row Table

HEX
Modular, new physical operators
out of previous engines

SQL Optimizer

op
t-

r

op
t

op
t

Central, cross-optimizations

sap
.co

m
#s

ap

SAP SE

Overview HEX State-of-the-art engine for HTAP (see table)
 Workloads: transactional applications (e.g., S4/HANA),

analytical queries (e.g., Data Warehouse Cloud)
 Data chunks
 JIT-L pipelined

 Data-centric code generation in L (LLVM convenience
layer)
 L used also for, e.g., stored procedures
 Supportability: debugging, profiling L programs on tooling

level; portability

 Extensible: New physical operators can be added to
HEX (e.g., application- / service-specific)

 TCO, Price / Performance
 Reduce memory footprint: pipelining and streaming, fewer

engines (reduce intermediate result materialization)
 More CPU-efficient due to JIT compilation
 Performance same or slightly better

 Distributed query processing (send, receive)
 Intra pipeline parallelization (dynamic)

Engine Proc.
Model

Data flow
model

Level of
Parallelism

Workload

DuckDB Vectorized Pull
(“Vector

Vulcano”)

Intra
(pipeline)

OLAP

HyPer /
Umbra

JIT-LLVM /
Pipelined

Push Intra
(pipeline),

Inter?

HTAP

Hyrise Materialized
(lazy)

Push Intra
(pipeline)

OLAP

Redshift JIT-C++ /
Pipelined +
Vectorized?

Push Intra
(pipeline)

HTAP

HANA /
HEX

JIT-L /
Pipelined

Push Intra
(pipeline)

HTAP

• Code generation based on Neumann, Thomas. "Efficiently compiling efficient query plans for modern hardware." Proceedings of the VLDB Endowment 4.9 (2011): 539-550.

• Leis, Viktor, et al. "Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age." Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 2014.

• Raasveldt, Mark, and Mühleisen, Hannes. "DuckDB: an embeddable analytical database." Proceedings of the 2019 International Conference on Management of Data. 2019.

sap
.co

m
#s

ap

SAP SE

Execution Phases In practice
Works well / no issues for OLTP queries with plan

caching
 JIT compilation times challenging for large and

complex analytical queries during cold start
 Mitigate JIT compilation times
 Start interpreted / uncompiled, compile in

background per query / L program (fragment)
 Switch to compilation after third execution

P
ar

se
r

Optimizer

Executable plan
generation

Execution
Framework

Executable
Plan / Pipeline

Plan
Cache

Executable
Plan / Pipeline

Runtime
Parameters

Query
Result

1. Preparation 2. Execution

Code
Generation

L-Infra-
structure

Expressions,
Predicates, …

Store-specific (Table/IndexScan, …), Custom L / C++, …

Compiler, Runtime, …

Pipeline, Data
Chunks, …

Start compilation
early

Less aggressive
initial JITting

Start interpreted
and switch during
execution

sap
.co

m
#s

ap

SAP SE

Project
“A + B * 7”

Example
SELECT A, A + B * 7 from X;

Table
Scan

Read VIDs
for A, B

Read values
from dictionaries

Send
result

Precompiled
Operator

Generated Operator Data Chunk

Table
Scan

Read VIDs
for A, B

DocId
1
2
3

VID A
5
8
2

VID B
1
3
8

Generated Operator

for Row in InputChunk
{

vidA = row.column[0]
vidB = row.column[1]

valueA = dictA[vidA]
valueB = dictB[vidB]

expr = valueA + valueB * 7

outRow = …
}

A
100
200
300

Expr
100
207
349

Send
result

Framework
Generated Code

Expression

Fusion of operators

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data determining task size

complicated: fixed task size skewed workload
 Parallelization requires (expensive) scheduling bigger tasks sizes

preferrable, BUT due to skewed workloads fine-grained tasks

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data determining task size

complicated: fixed task size skewed workload
 Parallelization requires (expensive) scheduling bigger tasks sizes

preferrable, BUT due to skewed workloads fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task less job creation overhead

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data determining task size

complicated: fixed task size skewed workload
 Parallelization requires (expensive) scheduling bigger tasks sizes

preferrable, BUT due to skewed workloads fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task less job creation overhead

 Address workload skew: sampling / re-parallelization
 Worker Manager checks the Queue Manager regularly to calculate

progress and creates more workers, if needed > #workers dynamic
 Sampling phase decides if parallelization is needed + size of tasks
 Intermediate scheduling operators measure elapsed time to execute

remaining pipeline (e.g., after selective / expanding joins, selective
table scans) + find new, good task size

 Sampling not for free due to scheduling points
 Are sync. points > too many lead to fluctuations between runs
 Break operator fusion

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Challenges and
Opportunities

9

Multi-Model engines in
HEX, nested file formats,

…

…

Remove old engines “in-flight”
without disruptions: no

functional or performance
regressions

State-of-the-art, compiled,
pipelined query engine with

extensible architecture

Multimodel Data Platforms, Forrester, Q3 2021: https://www.sap.com/cmp/dg/forresterwave-mmdp/index.html

sap
.co

m
#s

ap

SAP SE

Join us later at CIDR:
• Tuesday 4:50 pm: Data Pipes: Declarative Control over Data Movement Lukas Vogel

(Technische Universität München); Daniel Ritter (SAP); Danica Porobic (Oracle); Pinar Tozun
(IT University of Copenhagen)*; Tianzheng Wang (Simon Fraser University); Alberto Lerner
(University of Fribourg)

• Wednesday 11:10 am: DASH: Asynchronous Hardware Data Processing Services Norman
May (SAP SE)*; Daniel Ritter (SAP); Andre Dossinger (SAP SE); Christian Faerber (Intel
Corporation); Suleyman Demirsoy (Intel Corporation)

Special thanks go to our academic and industrial
collaboration partners as part of the SAP HANA

Research Campus!

Ph.D. position
available!

sap
.co

m
#s

ap

SAP SE

Thank you!

Contact information:

Daniel Ritter
E-Mail: daniel.ritter@sap.com
HEX-Blog: https://blogs.sap.com/2023/01/05/faster-query-execution-using-lesser-memory-in-sap-hana-cloud/

