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Abstract 
Partitioning within a B-tree, based on an artificial lead-
ing key column and combined with online reorganiza-
tion, can be exploited during external merge sort for 
accurate deep read-ahead and dynamic resource alloca-
tion, during index creation for a reduced delay until the 
first query can search the new index, during data load-
ing for streaming integration of new data into a fully 
indexed database, and for miscellaneous other opera-
tions. Despite improving multiple fundamental data-
base operations using a single basic mechanism, the 
proposal offers these benefits without requiring data 
structures or algorithms not yet supported in modern 
relational database management systems. While some 
of the ideas discussed here have been touched upon 
elsewhere, the focus here is on re-thinking the relation-
ship between sorting and B-trees more thoroughly, on 
exploiting this relationship to simplify and unify data 
structures and algorithms, and on gathering compre-
hensive lists of issues and benefits.  

Introduction  
Even the most advanced data models rely on very tradi-

tional data structures and algorithms for storing and man-
aging records, including efficient query and update proc-
essing. Thus, there is a continuous stream of research into 
improvements to these data structures, these algorithms, 
and their usage. Among the perpetually interesting data 
structures in database systems is the B-tree [BM 72] and 
its many variants, and among the perpetually interesting 
algorithms is external merge sort. Sorting is used to build 
B-tree indexes efficiently, and B-trees are used to avoid 
the expense of sorting and to reduce the expense of 
searching during query processing – however, the mutu-
ally beneficial relationship between sorting and B-trees 
can go substantially further than that.  

The present paper proposes not a new data structure or a 
new search algorithm but an adaptation of well-known 
algorithms and of a well-known data structure. The es-
sence of the proposal is to add an artificial leading key 

column to a B-tree index. If only a single value for this 
leading B-tree column is present, which is the usual and 
most desirable state, the B-tree index is rather like a tradi-
tional index. If multiple values are present at any one point 
in time, which usually is only a transient state, the set of 
index entries is effectively partitioned. It is rather surpris-
ing how many problems this one simple technique can 
help address in a database management product and its 
real-world usage.  

Let us briefly consider some example benefits, which 
will be explained and discussed in more detail in later sec-
tions of this paper.  

First, it permits putting all runs in an external merge sort 
into a single B-tree (with the run number as artificial lead-
ing key column), which in turn permits improvements to 
asynchronous read-ahead and to adaptive memory usage. 
Given the trend to remote disks, e.g., in SAN and NAS 
environments, hiding latency by exploiting asynchronous 
read-ahead is important, and given the continued trend to 
striped disks, forecasting multiple I/O operations is gain-
ing importance. Similarly, given the trend to extremely 
large online databases, the ability to dynamically grow and 
shrink resources dedicated to a single operation is very 
important, and the proposed changes permit doing so even 
to the extremes of pausing an operation altogether and of 
letting a single operation use a machine’s entire memory 
and entire set of processors during an otherwise idle batch 
window.  

Second, it substantially reduces by at least a factor of 
two the wait time until a newly created index is available 
for query answering. While the initial form of the index 
does not perform as well as the final, fully optimized in-
dex or a traditional index, at least it is usable by queries 
and permits replacing table scans with index searches. 
Moreover, the index can be improved incrementally from 
its initial form to its final and fully optimized form, which 
is very similar to the final form after traditional index 
creation. Thus, the final indexes are extremely similar in 
performance to indexes created offline or with traditional 
online methods; the main difference is cutting in half (or 
better) the delay between a decision to create a new index 
and its first beneficial impact on query processing.  

Third, adding a large amount of data to a very large, 
fully indexed data warehouse so far has created a dilemma 
between dropping and rebuilding all indexes or updating 
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all indexes one record at a time, implying random inser-
tions, poor performance, a large log volume, and a large 
incremental backup. The present proposal resolves this 
dilemma in most cases. Note that it does so without spe-
cial new data structures. Recently proposed approaches to 
this problem have relied on adding a special separate 
lookup structure in main memory, or on retaining records 
waiting to be pushed down within an index tree by divid-
ing each B-tree node into a segment with traditional key-
pointer pairs and another segment with waiting records. 
Special or novel data structures and algorithms can have 
enormous costs for real-world database systems, first in 
development and testing, then when installing the new 
release and reformatting large production databases, and 
finally for training staff in application development and in 
operations; all this not only for the core database system 
but also for relevant third-party add-on products for capac-
ity planning, tuning, operations, disaster preparedness and 
recovery, monitoring, etc.  

After a brief summary of related research, the remainder 
of this paper first describes precisely how to manage parti-
tions within B-trees and then discusses how this technique 
assists in the three situations outlined above, plus a few 
other ones.  

Related work  
The present proposal is orthogonal to research into 

alternative layouts of data within B-tree pages, e.g., in 
[BU 77, DR 01, GL 01, H 81]. Similarly, it is orthogonal 
to the data collection being indexed or the attribute being 
indexed, which could be a column in a traditional rela-
tional table, a hash value, a location in multi-dimensional 
space mapped to a single dimension [RMF 00], or any 
other (deterministic) function.  

Prior research and development into partitioning in par-
allel and distributed database systems are closely related, 
including [AON 96, HD 91, CAB 88]. However, none of 
the prior work specifically considers online index opera-
tions such as index creation, schema changes, etc., and 
how to exploit partitioning for those purposes. Online in-
dex construction has been considered in the past [MN 92], 
but not in the contexts of partitioning or of querying an 
index still in its construction, as proposed here. Mohan 
and Nareng [MN 92] also mention in a footnote that an 
index could be made available incrementally, but their 
description implies waiting until the complete sort opera-
tion starts to emit output, and they do not consider how a 
query processor could exploit indexes coming online in-
crementally, as the present paper does.  

Another related research direction has considered fast 
insertion into novel data structures derived from B-trees, 
both small insertions in OLTP environments and large 
insertions in bulk loading, e.g., in [JDO 99, JNS 97, 
JOY 02, MOP 98, OCG 96]. Other research has consid-
ered fast bulk deletions, either in response to user requests 

[GKK 01] or as part of data migration in partitioned data 
stores [LKO 00]. The value of the present proposal, from a 
database implementer’s point of view, is that no new data 
structures, algorithms, or quality assurance tests are re-
quired, except of course tests of truly new functionality, 
e.g., pausing and resuming a sort operation or querying an 
index still being built. Moreover, the present proposal 
provides improvements concurrently in three main areas – 
external sorting, index creation, and bulk loading – plus a 
few additional ones.  

There is, of course, a vast amount of research on sorting. 
The most relevant work is on external merge sort with 
dynamic memory management [PCL 93, ZL 97]. These 
prior algorithms adjusted the merge fan-in between merge 
steps, which might imply a long delay; the contribution 
here is the ability to vary merge fan-in and memory usage 
dramatically and quickly at any point during a merge step 
without wasting or repeating any work.  

Artificial leading key columns  
The essence of the present proposal is to maintain parti-

tions within a single B-tree, by means of an artificial lead-
ing key column, and to reorganize and optimize such a B-
tree online using, effectively, the merge step well known 
from external merge sort. This key column probably 
should be an integer of 2 or 4 bytes. By default, the same 
single value appears in all records in a B-tree, and most of 
the techniques described later rely on carefully exploiting 
multiple alternative values, temporarily in most cases and 
permanently for some few techniques. If a table or view in 
a relational database (or any equivalent concept in another 
data model) has multiple indexes, each index has its own 
artificial leading key column. The values in these columns 
are not coordinated or propagated among the indexes. In 
other words, each artificial leading key column is internal 
to a single B-tree, such that each B-tree can be reorganized 
and optimized independently of all others. If a table or 
index is horizontally partitioned and represented in multi-
ple B-trees, the artificial leading key column can be de-
fined separately for each partition or once for all partitions 
– the present paper does not consider this issue further.  

In fact, the leading artificial key column effectively de-
fines partitions within a single B-tree. The proposal differs 
from traditional horizontal partitioning using a separate B-
tree for each partition in an important way. Most advan-
tages of the present proposal depend on partitions (or dis-
tinct values in the leading artificial key column) being 
created and removed quite dynamically. In a traditional 
implementation of partitioning, each creation or removal 
of a partition is a change of the table’s schema and catalog 
entries, which requires locks on the table's schema or cata-
log entries and thus excludes concurrent or long-running 
user accesses to the table, as well as forcing recompilation 
of cached query and update plans. If, as proposed, parti-
tions are created and removed as easily as inserting and 



 

deleting rows, smooth continuous operation is relatively 
easy to achieve.  

Adding an artificial leading key column to every B-tree 
raises some obvious concerns, which will now be dis-
cussed in turn – potential benefits will be discussed in 
subsequent sections. First, the artificial leading key col-
umn increases record lengths and therefore total disk us-
age as well as required disk bandwidth while reading or 
writing the entire B-tree. However, if prefix truncation is 
used [BU 77], almost all B-tree pages, both leaves and 
internal nodes, will store only a single copy of this key 
column, since its value will be constant for all records in 
almost all pages. Note that implementations that exploit 
prefix truncation do not necessarily split pages in the mid-
dle upon page overflow, instead favoring a split point near 
the middle that permits truncating the longest possible 
prefix in both pages after the split. Thus, this artificial key 
imposes negligible new disk space and bandwidth re-
quirements.  

 

Figure 1. B-tree with partitions 

Second, searches within a page are more expensive, be-
cause each comparison must compare the entire key, start-
ing with the artificial leading key column. However, if 
prefix truncation is used, the key component that has been 
truncated because it is constant for all records in a page 
actually does not participate in comparisons; thus, only 
comparisons within pages with multiple values of the arti-
ficial key column within the page incur some cost, mean-
ing hardly any pages and thus hardly any comparisons. 
Note that prefix truncation is not really required to reduce 
the comparison cost; “dynamic prefix truncation” requires 
that comparison operations indicate where in the compari-
son arguments the first difference was found, and permits 
comparisons to skip over those leading parts in which 
lower and upper bound of the remaining search interval 
coincide [L 98].  

Third, searches in the B-tree are more complex and more 
expensive than in traditional B-tree indexes, in particular 
if multiple partitions exist. The situation is, of course, very 
similar to other B-tree indexes with low-cardinality lead-
ing columns. Each searching probe into the B-tree must 
first determine the lowest actual value for the artificial 
leading key, then search for the actual parameter of the 
probe, then search whether there is another value for the 
leading artificial key column, etc. [L 95]. The probe pat-
tern effectively interleaves two sequences: enumerating 

distinct values in the leading column (as might be useful 
in a “select distinct …” query) and searching for index 
entries matching the current query.  

Presume, for example, that the B-tree in Figure 1 is an 
index on column x, and that a user query requests items 
with x = 19. The first probe into the B-tree inspects the 
left edge of the B-tree and determines that the lowest 
value for the artificial leading key column is 0; the second 
probe finds index entries within partition 0 with x = 19. 
The third probe finds the first item beyond partition 0 and 
thus determines that the next value in the artificial leading 
key column is 3, etc., for a total of 7 probes including the 
left and right edges of the B-tree.  

Fortunately, this search can be limited at both ends by 
the use of integrity constraints, either traditional “hard” 
constraints or “soft” constraints that are observed auto-
matically by the database system and invalidated auto-
matically when a violating record is inserted into the data-
base [GSZ 01]. In Figure 1, if a constraint limits the parti-
tion number to 4 or less, the probe at the right edge can be 
omitted. If there is only one value for the artificial leading 
key column in the B-tree, and if integrity constraints for 
both ends of the B-tree exist, a probe into the proposed B-
tree is as efficient as a probe into a traditional B-tree.  

Fourth, B-tree indexes deliver sorted data streams as 
query output or as intermediate query result. In order to 
obtain the same sorted output stream, records from multi-
ple partitions of the B-tree must be merged on the fly. If 
the number of partitions is moderate, this can be achieved 
very efficiently, using well known algorithms and data 
structures used in external merge sort.  

Fifth, B-tree indexes are often used to efficiently enforce 
uniqueness constraints, and the proposed B-trees with the 
artificial leading key column substantially increase the 
expense of checking for a duplicate key value. This check 
disregards, of course, the artificial leading key column, 
and therefore must probe into the B-tree index for each 
actual value of the artificial leading key column. Again, 
when multiple values for this column are present in the B-
tree, this concern is valid; however, in most cases and at 
most times, there should be only one value present and 
this fact should be known due to hard or soft integrity con-
straints.  

Sixth, selectivity estimation, which is crucial for effec-
tive query optimization, could be hampered because the 
histogram associated with an index describes primarily or 
even exclusively the distribution of the leading key col-
umn, i.e., the artificial leading key column rather than the 
first user-chosen key column. Fortunately, most modern 
database systems separate the notions of histograms and 
indexes. While it used to make sense to link the two be-
cause both needed full data scans and sorting for efficient 
construction, modern database systems build histograms 
from sampled data and refresh them much more often than 
they rebuild B-tree indexes. Typically, a sufficient sample 
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easily fits into main memory and thus can be sorted effi-
ciently. Due to this efficiency, most database systems and 
installations support statistics for columns that are not 
indexed at all or are not leading columns in indexes, which 
is precisely the type of statistics needed here.  

Finally, a few more observations that likely are obvious 
and thus are mentioned only briefly. The proposed use of 
B-trees is entirely orthogonal to the data collection to be 
indexed. The proposed technique applies to relational da-
tabases as well as data models and other storage tech-
niques that support associative search, it applies to both 
primary (clustered) and secondary (non-clustered) in-
dexes, and it applies to indexes on traditional columns as 
well as on computed columns, including B-trees on hash 
values, Z-values (as in “universal B-trees” [RMF 00]), and 
on user-defined functions. Similarly, it applies to indexes 
on views (materialized and maintained results of queries) 
just as well as to indexes on traditional tables.  

To summarize, adding an artificial column to each B-
tree index raises several obvious possible concerns, but all 
of them can be mitigated to a negligible level. Having 
considered these concerns, let us now discuss the benefits.  

Sorting  
Virtually all database systems use external merge sort 

for large inputs, with a variety of algorithms used for in-
ternal sorting and run generation. One important design 
issue is how to store intermediate runs on disk such that 
can be read efficiently in sort order. Many database serv-
ers use roughly ten times more disk drives than CPUs; in 
some case, however, the number of disk arms is effec-
tively unknown to the database management system since 
an entire disk farm or network attached storage is shared 
by many users and even multiple servers, including multi-
ple database servers. In order to keep all disk arms use-
fully busy and in order to hide all I/O latencies, asynchro-
nous I/O is needed while writing initial runs and while 
reading and writing runs during merge steps. Asynchro-
nous writing is relatively easy since it is always clear 
which pages should be written and since the CPU process 
does not need to wait for completion of the I/O. Asyn-
chronous reading in merge steps requires more attention 
for two reasons. First, if a required page is not yet in 
memory, the sorting program must wait, thus relinquish-
ing not only the CPU but also the CPU cache. Second, the 
very nature of merging implies that many inputs are read, 
and it is necessary to determine which of the inputs must 
be read next, commonly known as forecasting [K 73].  

Note that double buffering [S 89a] for all input runs does 
not truly solve the problem. On one hand, it reduces the 
merge fan-in to half, whereas good forecasting reduces the 
fan-in only by a relatively small fixed number. Useful 
values are the number of disk drives if known or simply 
ten, based on the rule of thumb that there are roughly ten 
times more disks than CPUs in a balanced server. On the 

other hand, when merging runs of very different sizes, 
substantially more read operations will pertain to the large 
input runs – a typical situation occurs when merging some 
initial runs (which are about the size of memory) and 
some intermediate merge results (which are larger than the 
initial runs by a factor equal to the merge fan-in, e.g., 
100). Moreover, if the key distribution in the input is 
skewed, i.e., if there is any form of correlation between 
input order and output order, even input runs of similar 
sizes might require different amounts of read-ahead at 
different times during a merge step.  

In both cases, deep forecasting is required, i.e., forecast-
ing that reaches beyond one asynchronous read operation 
and beyond finding the lowest one among the highest keys 
on each page currently consumed by the merge logic 
[K 73]. Other researchers have considered technique for 
planning the “page consumption sequence” ahead of a 
merge step [ZL 98] or as the merge progresses [S 94]. In 
both efforts, a separate data structure was designed to re-
tain the highest keys in each data page. In commercial 
reality, however, every new data structure requires new 
development and, maybe more importantly and more ex-
pensively, testing, which is why neither of these designs 
has been transferred into real products.  

Retaining all runs in a single B-tree, using the run num-
ber as the artificial leading key column, addresses several 
issues without introducing the need for a new data struc-
ture. Most immediately, the parent level about the B-tree’s 
leaves is a natural storage container for precisely the keys 
needed for accurate deep forecasting. In fact, it is possible 
to forecast arbitrarily deeply, and to do so dynamically 
while merging progresses, i.e., adapt the forecasting depth 
to the current I/O delay as well as add or drop runs from 
the forecasting logic. Moreover, a scan over the leaves’ 
immediate parent nodes is already implemented in some 
database systems because it is also required for multi-page 
read-ahead in an ordered key range retrieval, e.g., a large 
“between” predicate.  

The space and I/O overhead for using a B-tree for runs is 
negligible: internal B-tree nodes of 8 KB have a fan-out of 
at least 100, meaning that about 99% of all pages in the B-
tree are leaves. A B-tree fan-out of 100 is very conserva-
tive if prefix and suffix truncation are used and if the 
space utilization is 100%, which is possible because the B-
tree is loaded sequentially by the merge step. Thus, a B-
tree fan-out of 400 seems realistic in many cases, meaning 
about 0.25% of all pages are not leaves. Actually, since 
the leaves’ immediate parents are equivalent to any other 
data structure that captures the consumption sequence of 
pages in merge input runs, only 1% of 1% of all pages (or 
0.25% of 0.25%) in the B-tree is overhead due to using a 
B-tree to store all runs.  

Another benefit of using a B-tree to store all runs is that 
parallel threads can be added or removed from the sort 
effort at any time. A new thread can be put to good use 



 

simply by choosing and assigning a set of runs to merge 
and a key range within those runs. Even in an external sort 
with a single merge step, the final merge can be parallel. 
Inversely, a thread can stop its work at any time – the re-
maining B-tree is still a valid and consistent collection of 
runs. No work already performed is wasted and no work is 
performed twice. The operation to delete an entire key 
range within a merge input run is precisely the same one 
that deletes an entire run, and is already implemented in 
B-tree implementations used in data warehousing, where 
entire date ranges are regularly added and removed. Simi-
larly, memory can be added and removed from a sort op-
eration at any time, without loss in I/O efficiency, i.e., 
without the need to shrink the units of data transfer. The 
merge process can add or drop runs at any time. In the 
extreme case, a merge process can drop all its runs, mean-
ing that the entire sort operation is paused. With appropri-
ate transaction support, sort operations can be resumed 
even after server restart. Note that it is quite straightfor-
ward to drop runs from the current merge step; adding a 
run requires finding in an existing run precisely the right 
key that matches the current merge progress. This search 
is obvious and easy with runs in a B-tree, due to B-trees’ 
inherent support for “between” predicates, whereas it re-
quires expensive searching in traditional “flat” run files.  

The resulting runs with partial key ranges enable optimi-
zations traditionally conceived for partially pre-sorted 
inputs [H 77]. Two runs with disjoint key ranges can be 
thought of as a single run, and can together, one after an-
other, serve as a single input in a future merge step, a 
technique called “virtual concatenation” here. In addition 
to the traditional use of this technique, a B-tree even per-
mits to rearrange key ranges within runs. Instead of merg-
ing or concatenating entire runs, fractions of runs defined 
by key ranges could be merged or concatenated. When 
reaching a given pre-planned key, one or multiple merge 
inputs are removed from the merge logic and other runs 
added. For example, consider an external merge sort with 
memory for a fan-in of 10, and 18 runs remaining to be 
merged with 1,000 records each. The keys are strings 
starting with a character in the range ‘a’ to ‘z’. Presume 
both these keys occur in all runs, so traditional virtual 
concatenation does not apply. However, presume that in 9 
of these 18 runs, the key ‘m’ appears in the 100th record; 
while in the other runs, it appears in the 900th record. The 
final merge step in all merge strategies will process all 
18,000 records, with no savings possible. The required 
intermediate merge step in the standard merge strategy 
first chooses the smallest 9 runs (or 9 random runs, since 
they all contain 1,000 records), and merge those at a cost 
of 9,000 records read, merged, and written. The total 
merge effort is 9,000 + 18,000 = 27,000 records. The al-
ternative strategy proposed here merges key ranges. In the 
first merge step, 9 times 100 records with keys ‘a’ to ‘m’ 
are merged followed by 9 times 100 records with keys ‘m’ 

to ‘z’; all 1,800 records into a single output run. The final 
merge step merges these 1,800 records with 9 times 900 
records with keys ‘a’ to ‘m’ followed by another 9 times 
900 records with keys ‘m’ to ‘z’. Thus, the total merge 
effort is 19,800 records – a savings of about 25% in this 
(artificial) example. Starting a merge at such a “given” 
key within a run on disk is very inefficient with traditional 
runs, but is no problem if runs are stored in a B-tree.  

Given all these adaptive mechanisms1, one important de-
sign issue is management of information about runs, how 
to determine efficiently and at any time which runs cur-
rently exist, their sizes and their key ranges. In an index 
with only a few partitions, it is possible to enumerate the 
partitions at the expense of one root-to-leaf probe per par-
tition, possibly saving the first and the last probe through 
constraints on the artificial leading key column. In a large 
external merge sort, one can determine the set of runs in 
the same way. Even some of the interesting properties of 
runs, e.g., run sizes, can be estimated quite accurately be-
cause all leaves and all interior nodes of the B-tree are 
filled 100%. It is probably more efficient, however, to 
employ a separate table with information about runs. De-
pending on the detail captured, e.g., information about 
entire runs only or information about key distributions 
within runs for virtual concatenation of key ranges, this 
table might need to be stored on disk. One design allocates 
a small amount of memory to run management, e.g., two 
pages, and overflows all further run descriptors to disk. 
Merge planning is based on those two pages, and only 
when the number of runs has shrunk such that their de-
scriptors fit on one page, another page of run descriptors is 
loaded. In an alternative design also using a small amount 
of memory, intermediate merge steps are forced when the 
number of runs exceeds a given threshold. Note that for 
such forced intermediate merge steps, merge planning 
should attempt to merge runs with the most similar sizes 
rather than the smallest runs, which is the usual optimiza-
tion heuristic for merge planning.  

To summarize this section on sorting, capturing runs in 
an external merge sort opens new opportunities, princi-
pally in two directions. First, it enables more efficient sort-
ing due to accurate deep forecasting and to virtual con-
catenation of key ranges. Second, it enables mechanisms 
that enable large sort operations to adapt to the current 
system load quickly and over a wide range of resource 
levels. In other words, it enables mechanisms required in 
self-tuning database management systems.  

                                                           
1 For memory adjustment during run generation, Zhang and Lar-
son proposed a method that is both adaptive and cache-efficient 
[ZL 97]: Sort each incoming data page into a mini-run, and 
merge mini-runs (and remove records from memory) as required 
to free space for incoming data pages or competing memory 
users. Techniques from [LG 98] can be adapted to manage space 
for individual records, including variable-length records.  



 

Index operations  
Database system use sorting for many purposes, not the 

least among them is efficient construction of B-tree in-
dexes. All the sorting techniques discussed above apply to 
index creation operations, including pause and resume 
without loosing or wasting work, e.g., after a load spike or 
server shutdown. In addition, online index creation can 
exploit B-tree indexes with an artificial leading key col-
umn in an interesting way, as follows. At the end of the 
run generation phase, a single B-tree contains all future 
index records, albeit not yet in the final order. Nonethe-
less, the records are already sufficiently organized to per-
mit reasonably efficient searches. Thus, concurrent queries 
may start exploiting the new index after only a single pass 
over the data, even before the start of the merge phase. If 
the index creation requires only a single merge step (the 
usual case nowadays), this means that the index is avail-
able for querying in half the time of traditional index crea-
tion. For a very large index, the reduction in latency might 
even be a factor 3 (for a two-level merge sort).  

When searching indexes that are not fully merged and 
optimized yet, there is a compromise in search efficiency 
but, unless the initial runs are very small, it is faster to 
probe into each run using a root-to-leaf B-tree traversal 
than to scan the new B-tree in its entirety. For example, 
presume that all nodes above the leaves or at least above 
the leaves’ immediate parent nodes will fit in the buffer 
and therefore will not incur I/O during a probe. Thus, each 
root-to-leaf traversal will incur at most two random I/Os, 
which takes about 12 ms using contemporary fast disks. 
Recall that two root-to-leaf passes may be required for 
each run or partition within the B-tree, or about 24 ms per 
distinct value in the artificial leading key column. During 
that time, today’s fast disk drives can deliver about 8 MB 
at their nominal (ideal) speed of 320 MB/s. Thus, if the 
average initial run is longer than 8 MB, queries will per-
form better by probing the new index than by scanning the 
old storage structures. Note that a file scan at full speed 
puts much more load on the system’s CPUs, memory, and 
bus than repeated index probes; thus, index probes are 
even more preferable in a multi-user environment.  

For correct transactional behavior, the transaction creat-
ing the index should commit after the initial runs are com-
plete. Concurrent transactions should not query the new 
index when its creation might still roll back; in fact, the 
query optimizer should not create execution plans that 
search an index whose existence is not yet committed. 
After the initial index is committed, subsequent merge 
steps may be part of the original statement execution but 
should not be part of the original transaction. Instead, 
since they only modify the internal index structure but not 
database or index contents, they can be system transac-
tions that commit independently, rather similar to system 
transactions used routinely today, for example during a 
node split in a B-tree index. While concurrent queries 

search and update the index, concurrent merge steps 
should have excellent online behavior. Specifically, when 
conflicting with a lock held or requested by a concurrent 
user transaction, the merge step should let the concurrent 
transaction proceed. Fortunately, as discussed in the sec-
tion above on sorting, small ranges can be merged indi-
vidually, even concurrently by multiple independent 
threads, and a merge step can commit and terminate at any 
time, and resume later without any work being wasted.  

For correct durability after a new index has been com-
mitted in its initial format, all further modifications of the 
index must be fully logged, including the merge actions. 
Changes may be logged per page in order to avoid per-
record overheads, and it may be possible to combine log 
records for page deletion (in the merge input) and page 
creation (in the merge output). The initial data transfer 
(prior to committing the initial index) may omit data log-
ging, similar to today’s techniques that require flushing 
the new index to disk and capturing the index contents 
when backing up the log, as optional in [MS 98]. Further 
reductions in logging volume may be possible but require 
further research, and they may introduce new tradeoffs 
and compromises, e.g., retaining rather than reclaiming 
data pages of merge input runs.  

If concurrent transactions update the indexed table 
(view, etc.) while the initial runs are created, these updates 
must be applied to the future index before it may be que-
ried or updated. There are two well-known methods to do 
so [MN 92]: either a log-driven “catch up” phase applies 
these updates to the index after the index builder com-
pletes, or the concurrent transactions apply their updates 
immediately to the index, which in the present proposal 
consists of initial runs. Given that the recovery log typi-
cally cannot be searched by key value, the latter technique 
is more interesting here. Thus, a new index must be tagged 
“in construction” such that updates but not queries con-
sider the index. Deletions of records not yet in the index 
insert some special markers or “anti-matter” that will be 
applied and cleared out later by the index builder. Trans-
actions searching the index before the merge phase com-
pletes must search not only for valid records but also for 
anti-matter, very similar to searching in a differential file 
[SL 76]. Fortunately, all insertions, deletions, and anti-
matter insertions by concurrent transactions can be col-
lected in a single partition, i.e., a single, constant, well-
known value for the artificial leading key column. Assum-
ing record-level or key value locking, the level of lock 
contention among concurrent transactions should not be 
greater than lock contention will be in the final index, and 
thus may be presumed to be acceptable. In order to reduce 
lock and latch contention between concurrent transactions 
and run generation within the index builder, it is advanta-
geous to separate this B-tree partition from the runs, e.g., 
use value 0 in the artificial leading key column for inser-



 

tions and deletions by concurrent transactions and start run 
generation with run number 1.  

The possibility of creating a new index in a single pass 
over the data, to the point of making the index usable to 
retrieval queries even if it is not immediately optimal, can 
be extended even further. If the data source during the 
index creation is ordered, e.g., if it is a primary index, key 
ranges in the source will approximately correspond to ini-
tial runs in the index being built. Specifically, if run gen-
eration repeats read-sort-write cycles (as many sort im-
plementations based on quicksort do), initial runs in the 
new index will precisely correspond to key ranges in the 
old index. If run generation streams data from the input to 
the initial runs (as many sort implementation based on 
replacement selection do), the steady pipeline can be inter-
rupted and flushed every now and then, or at least the as-
signment of run numbers to records entering the priority 
heap in replacement selection can be modified to flush 
input records into the new index. After all records with 
key values in the old index within a certain range have 
been flushed into the new index (albeit in multiple runs), 
the set of records already captured in the new index can be 
described with simple range predicates in both the data 
source and the new index being built. In the scanned data 
source, the predicate uses the search key of that index, and 
in the new index, the predicate uses the run number, i.e., 
the artificial leading key column. Such simple range 
predicates are, of course, fully supported in all implemen-
tations of indexed (materialized) views; thus, even such a 
partial index [S 89b] can be made available to the opti-
mizer, very similar to an index on a (materialized) selec-
tion view.  

For views of this type, optimizers can construct dynamic 
execution plans with two branches for each table access, 
one branch exploiting the new index for a query predicate 
subsumed by the predicate describing the range of rows 
already indexed, and one branch to process the query 
without the new index. Note that some query executions 
may employ both the old and the new indexes, relying on 
two mutually exclusive range predicates for the two in-
dexes to find each qualifying row exactly once. Thus, a 
new B-tree index can be considered by the query opti-
mizer immediately after index creation begins, and it be-
comes more and more useful for query processing as index 
constructions proceeds, both during initial run generation 
(range by range) and during the subsequent merge phase 
(fewer and fewer partitions or runs within the new B-tree). 
In the extreme case, a new index can be committed in-
stantly without moving any data at all and independently 
of the size of the data source and of the new index. In 
other words, the initial user transaction verifies schema 
and permissions, reserves sufficient disk space for the 
entire future index, creates initial catalog entries including 
a boundary predicate and a boundary not satisfied by any 
data currently in the database, and then commits and re-

ports success to the user. Thus, it leaves all data move-
ment and sort work to asynchronous system transactions 
that will run later. The price of this flexibility is that even 
the initial data insertions must be fully logged, like all data 
movement after the existence of the index has been com-
mitted, although further research may be able to reduce 
the logging volume.  

An index can be populated not only for one continuous 
range, as proposed above, but for multiple ranges that may 
or may not be contiguous, called “inclusion ranges” else-
where [SS 95]. These ranges are maintained in a control 
table very similar to control tables (also called “tables of 
contents”) commonly used today for selective replication 
or caching. Despite describing the contents of an index, 
these control tables are data, not meta data. Therefore, a 
change in a control table does not trigger plan invalidation 
or query recompilation. Note that a single control table 
may suffice for an entire database with all its tables and 
indexes if normalized keys are used, i.e., in some sense all 
indexes only have one search column, which is a binary 
string. While an additional range is being populated, con-
current updates (by concurrent transactions) must be ap-
plied to the new index, including anti-matter, as discussed 
above for online index creation without ranges. Thus, in-
dividual ranges must be tagged as “fully operational” or 
“in construction,” and branch selection in dynamic execu-
tion plans for updating a table are controlled slightly dif-
ferently than in dynamic plans for selecting from a table.  

Partial indexes also open a door for another promising 
technique. If the query optimizer cannot find a suitable 
index for a query and must thus plan a table scan, it can 
determine the most useful possible index and then prepare 
a dynamic plan with two alternative branches. One branch 
exploits this index if it already exists; the other branch 
performs the table scan but leaves behind a B-tree that 
contains the initial runs for this index, leaving it to an 
asynchronous utility operation to optimize this index by 
merging those runs into a single traditional B-tree. Actu-
ally, there must be three branches in the query plan, the 
third one simply performing the table scan without leaving 
anything behind, to be used if the empty initial index can-
not be created when the query plan needs to start, e.g., due 
to space constraints or due to locks held by concurrent 
transactions. Note that run generation using a replacement 
selection does not substantially alter the flow behavior of 
the file scan. One of the issues that need to be resolved is 
how the file scan produces records for two different trans-
action contexts, the user query and the index builder. For-
tunately, using “insert” and “delete” tags familiar from 
maintenance plans for indexed (materialized) views can 
readily be adapted for this purpose.  

Unique indexes, or indexes built for efficient mainte-
nance of uniqueness constraints, pose an additional chal-
lenge for online index creation. The traditional approach 
has been to fail concurrent transactions or the index 



 

builder when a uniqueness violation is detected [MN 92]. 
Thus, index creation may be aborted hours or even days 
after it starts and minutes before it completes due to a sin-
gle committed insertion by a concurrent transaction, even 
if another concurrent transaction is about to delete one of 
the duplicate keys and commit it before the index builder 
will complete. Fortunately, a useful technique exists that 
also extends “soft constraints” [GSZ 01] from single-row 
“check” constraints to uniqueness and key constraints. Its 
essence is to maintain a counter of uniqueness violations 
for each possibly desirable uniqueness constraint, in the 
minimal case only one but in the maximal case for all pre-
fixes of the B-tree’s search key. Thus, whenever a B-tree 
entry is inserted or deleted, it must be compared with one 
or both of its neighbors, and counters must be incremented 
or decremented appropriately. It is important to maintain 
these counters accurately and with correct transaction se-
mantics. While escrow locks [O 86] might prove helpful 
for such counters, some systems maintain such counters 
apparently without them [CAB 93], possibly by using 
transaction-internal counters made globally visible only 
during commit processing. When a counter for a specific 
prefix is zero, this set of leading columns is unique and a 
uniqueness constraint can be enabled instantly without 
further validation. If such counters are maintained during 
index construction, neither concurrent transactions nor the 
index builder must be aborted due to uniqueness viola-
tions, and the index structure may be retained even if the 
uniqueness constraint is not satisfied at the time the index 
builder completes. Note that this separation of indexes and 
uniqueness is entirely consistent with the physical nature 
of indexes (they are an issue of database representation, 
not of database contents) and the logical nature of con-
straints (which limit and describe the database contents, 
not the data representation), and is also reflected appropri-
ately in the SQL standards, which include syntax and se-
mantics for constraints but not for indexes.  

It might seem that an artificial leading key column inhib-
its using this technique. Indeed, while there are multiple 
distinct values for this column, it is impossible to activate 
a uniqueness constraint instantly. Instead, the existing 
partitions of the index B-tree must be merged to verify 
uniqueness. The result of this merge step can be material-
ized, in which case this merge step is precisely the final 
step of sorting or of index creation. Alternatively, the 
merge result can be ignored, leaving the final optimization 
of the index to a subsequent online reorganization. Notice, 
however, as mentioned earlier, that enforcing a uniqueness 
constraint using an index with multiple partitions is more 
expensive than using one with only a single partition. 
Thus, finalizing the B-tree index before activating a 
uniqueness constraint based on the new index seems like 
the right approach in general. Nonetheless, there are also 
situations in which multiple partitions in persistent in-
dexes are extremely useful, e.g., when importing large 

amounts of data into a pre-existing large and fully indexed 
database.  

To summarize this section, a new index can be available 
for queries substantially earlier than in traditional methods 
if initial sort runs are collected in a single B-tree, and 
online index construction can even be incremental. More-
over, self-tuning query plans as briefly outlined here 
would represent a great step forward compared to the tun-
ing capabilities found in most database systems today; 
maybe B-tree indexes with an artificial leading key col-
umn will turn out an important step in this direction due to 
the single-pass construction of the initial index. Rather 
than relying on “wizards” or “advisors” that run outside 
the query processor [ACN 00, VZZ 00], creating and 
populating useful indexes can become a native and inte-
gral part of query optimization and query execution. Inci-
dentally, query optimizers routinely decide on index crea-
tion and have the query execution plan populate such in-
dexes; the main difference is that those temporary indexes 
today are created, populated, used, and destroyed within a 
single query plan and transaction context rather than main-
tained during database updates and then amortized over 
multiple invocations of the same (possibly parameterized) 
query.  

B-tree loading  
While we may hope that indexed (materialized) views 

substantially alleviate the response time in relational 
OLAP (online analytical processing), one issue that will 
remain is importing new data into existing large, popu-
lated, and indexed data warehouses. In a very common 
scenario, at the end of every month, another month’s 
worth of data is added to the detail data. The key difficulty 
is that the largest table typically has multiple indexes, all 
on different columns, and only one index on time. Tradi-
tional solutions have been to keep separate tables and their 
indexes for each time period, equivalent solutions using 
partitioning and “local” indexes (i.e., secondary indexes 
are partitioned precisely like the primary index or the base 
table), dropping all indexes during data import and re-
building them afterwards, or special “update execution 
plans” that merge an ordered scan of the old index with a 
sorted set of index insertions into an entirely new index. It 
appears that partitioning with local indexes has shown the 
most desirable properties, namely fast data import and 
short delay until queries can exploit new indexes on the 
new data. The unfortunate aspect of partitioning is that 
many individual partitions must be managed for each in-
dex, with additional catalog tables, catalog entries, catalog 
look-ups, etc.; the other very unfortunate aspect is, of 
course, that each partition must be searched when the 
query predicate does not restrict the query to a single time 
period.  

B-tree indexes with an artificial leading key column of-
fer an attractive combination of features in these situa-



 

tions. In effect, the artificial leading key column defines 
partitions; however, it does so within the structure of a 
single index, single B-tree, and single partition as far as 
the catalogs and the query optimizer are concerned. More-
over, the partitions within the B-tree are temporary, to be 
removed by online reorganization at the earliest conven-
ient time. This perspective, using the artificial leading key 
column as a form of partitioning, immediately leads to a 
very efficient bulk insert strategy: let each large insert 
define a new partition, and then let incremental index re-
organization re-optimize the B-tree structure at a conven-
ient time. In the best case, this reorganization is incre-
mental, online, and responsive to the current system load. 
Note that multiple batches of bulk insertions can be in-
serted into a B-tree before reorganization takes place, that 
reorganization may proceed incrementally range by range, 
that a reorganization step does not necessarily affect all 
existing partitions, and that reorganization can proceed 
even while another batch is being imported. Note also that 
multiple batches can be inserted concurrently, even by 
multiple users; contention for locks and latches should be 
negligible if page splits optimize the key distribution for 
maximal prefix truncation [BU 77] rather than assign pre-
cisely half the data to each resulting page.  

Letting each large insert operation create a single new 
partition implies that the insert operation pre-sorts the new 
data appropriately for each index. Following the discus-
sion earlier in the paper, this sort operation might employ 
a B-tree to hold intermediate runs. Rather than using a 
separate, temporary B-tree, however, the bulk import op-
eration can immediately use the import target. Thus, when 
importing into a B-tree index, the incoming data is proc-
essed into runs, and runs are added immediately as indi-
vidual partitions to the permanent B-tree. When importing 
data into a table with multiple B-tree indexes, each of 
those forms its own new partitions, which are independent 
of the new partitions in the other B-trees. Thus, runs for all 
B-trees can be formed concurrently, such that incoming 
data is never written to any temporary structures, meaning 
that it is processed in memory only once before it can be-
come available for retrieval queries. Both load-sort-store 
and replacement selection can be used for run generation. 
The expected size of the runs relative to the memory size 
depends on the choice of algorithms, but runs should be at 
least as large as the allocated memory in all cases. As dis-
cussed for index creation, parts of the data can be commit-
ted and made available for queries at any time; of course, 
in this case, all participating indexes must be flushed in 
order to ensure transactional consistency among them.  

It might be interesting to compare the effort in a tradi-
tional bulk insert with the effort in the scheme proposed 
here, i.e., the combined effort of appending partitions and 
merging them into the main partition. The traditional bulk 
insert strategy for a single large batch sorts its entire insert 
set and then merges the sorted set into the B-tree [MS 98, 

GKK 01]. Sorting the insert batch typically relies on an 
external merge sort. If there are multiple batches, each of 
them is sorted and each of them requires updating many or 
even all leaf pages in the index. The proposed method, on 
the other hand, works efficiently independent of the num-
ber and size of batches, unless batches are much smaller 
than the memory that can be dedicated to run generation. 
Runs are formed and merged using the same amount of 
memory and effort in the traditional and in the proposed 
strategies; the main difference is that the merge strategy 
can be optimized ignoring which batch generated which 
runs.  

The proposed bulk insert strategy offers further benefits. 
Maybe most importantly, newly imported data are avail-
able for queries much faster than in traditional strategies, 
even if multiple indexes need to be maintained. Thus, the 
proposed strategy is suitable for indexing and querying 
continuous data streams. Moreover, the proposed algo-
rithm reduces the number of index pages that are modified 
and thus will participate in a transaction rollback (should 
that be necessary) or in an incremental backup immedi-
ately following the data import. In addition, this strategy 
effectively eliminates lock conflicts between the import 
transaction and any concurrent transactions. Finally, many 
fewer log records are required during bulk insertion be-
cause each actual log record can describe an entire new 
page, rather than an individual record insertion. Note that 
index entries in secondary indexes are often much smaller 
than the fixed space overhead for log records, including 
previous LSN, next undo LSN, etc. [MHL 92]. An index 
entry of 20 bytes might result in a log record of 80 bytes – 
thus, paying the overhead of a log record once per page 
rather than per index entry substantially reduces the log 
volume during the insert operation. If, on the other hand, 
bulk insertions are not logged but only flushed to disk at 
the end of the insert operation, to be made truly durable 
only by a backup, partitioning within a B-tree substantially 
reduces both the flush effort and the backup volume.  

Unfortunately, there are also some concerns during data 
loading. If enforcement of a uniqueness constraint relies 
on a B-tree index, duplicate search keys may be located 
not only in immediately neighboring B-tree entries but 
also in other partitions. In other words, if it is truly im-
perative that the B-tree at no time and under no circum-
stances contain duplicate entries, bulk loading has to 
search in all partitions for all search keys. Note that each 
such search can be leveraged for multiple new records; the 
resulting algorithm resembles a merge join with each prior 
partition (actually a merge-based anti-semi-join). If, on the 
other hand, it is sufficient that the uniqueness constraint 
holds only for the B-tree entries in the default partition 
(say value 0 for the artificial leading key column), bulk 
insert into other partitions can proceed at full speed, and 
verification of the uniqueness constraint can be left to the 
B-tree reorganization performed later. For example, the 



 

reorganization might simply skip over duplicate keys; 
when reorganization is complete, only duplicate keys are 
left in those partitions. In fact, most implementers and 
administrators of data warehouses prefer a tolerant data 
loading process, because typically only a small minority of 
records violates any constraints and it is not worthwhile to 
disrupt a high-speed loading process for a few violations 
that can be identified and resolved later.  

A related issue is the generation of “uniquifiers” in pri-
mary indexes. One design lets entries in secondary indexes 
“point” to entries in the primary index by means of search 
keys – the advantage of this design is that page splits in 
the primary index do not affect the secondary indexes 
[O 93]. If the search keys in the primary index are not 
unique, an artificial uniquifier column is added as a trail-
ing column to each clustering key. (In efficient implemen-
tations, one instance per unique search key may have a 
NULL uniquifier value, which like other NULL values is 
stored very compressed in the primary index and in any 
secondary index.) If multiple partitions may hide actual 
duplicate search keys in the primary index, either the as-
signment of uniquifiers must search all partitions or the 
“pointer” from a secondary index into the primary index 
must include the value of the artificial leading key column 
in the primary index. Moreover, any reorganization of the 
primary index may need to assign new uniquifier values 
and thus require expensive updates in all secondary in-
dexes.  

Perhaps a better design that requires less reorganization 
of secondary indexes adopts an additional artificial trailing 
key column in the primary index, and a slowly increasing 
boundary value indicating which values for the artificial 
leading key column have already been used and reorgan-
ized into the main part of the primary index. If a value for 
the artificial leading column is found in an entry in a sec-
ondary index that is higher than this boundary value, it is 
interpreted as the artificial leading key column in the pri-
mary index as described above. If, however, a value is 
found that is lower than the boundary value, the pointer 
into the secondary index is dereferenced using the default 
value for the artificial leading key column in the primary 
index and the old low partition number is interpreted as 
the value for the new trailing key column. Thus, a table’s 
row and all its representations in the primary and all sec-
ondary indexes will retain the initial partition number for-
ever, but the interpretation of that number changes over 
time when the primary index is reorganized.  

To summarize this section, B-tree indexes with parti-
tions defined by an artificial leading key column transfer 
the advantages of partitioning without some of the 
disadvantages. In particular, a large data insert operation 
or bulk insert can append runs or partitions to all B-tree 
indexes in a table, whether or not the load file and the in-
dexes are sorted on the same columns, and it does so 
without lock conflicts and with minimal log volume. It is 

even possible to append runs to multiple indexes, which is 
particularly attractive for capturing and indexing non-
repeatable data streams.  

Other applications  
B-tree indexes with artificial leading key columns can 

improve not only large inserts but also small ones. Other 
researchers have proposed constructing multiple coordi-
nated structures, e.g., the log-structured adaptations of B-
trees [MOP 98, OCG 96], or employing new structures 
with new algorithms, tuning parameters, etc., e.g., buffer 
trees [A 95, V 01] or the Y-tree [JDO 99]. Instead, a single 
traditional B-tree can be used, with multiple partitions 
based on an artificial leading key column, with one parti-
tion small enough to fit in memory. Inserts are directed to 
this partition, and online reorganization in the background 
merges its records into the main partition of the B-tree. 
Note that this idea works for both updates and retrievals. If 
certain values are searched more often than others, those 
can be gathered into one small partition, such that those 
searches can be performed always entirely within the 
buffer pool. In a way, this design creates a self-organizing 
search structure.  

Large deletions, on the other hand, can greatly benefit 
from a preparatory online reorganization. First, all index 
entries to be deleted are assigned to a single B-tree parti-
tion, i.e., are assigned a new value of the artificial leading 
key column. When this is complete, a large and efficient 
range deletion can remove all those entries from the B-
trees very efficiently. The reorganization is about as fast 
as the bulk deletion techniques described in [GKK 01], 
whereas the actual deletion should be an order of magni-
tude faster. A special application of this technique is data 
migration in a parallel database or any other partitioned 
data store, e.g., when adjusting the boundary between two 
partitions: first prepare all source indexes for a large dele-
tion using small online steps, then move data using the 
bulk delete and bulk insertion strategies proposed in this 
paper, and finally optimize the destination indexes in 
small online steps. Note that the transactions performing 
the initial and final reorganizations are local transactions; 
therefore, multi-node commit processing is needed only 
for the actual data movement.  

Another promising application combining insertions and 
deletions is capturing and holding a window within a con-
tinuous stream of incoming data, e.g., sensor data. The 
insertions may be grouped, sorted, and inserted as a batch 
similar to traditional bulk data import; or random inser-
tions can always focus on the latest, smallest, most active, 
and therefore memory-resident partition. If only a window 
of recent data is to be retained and items older than a pre-
set threshold are to be deleted, e.g., in order to analyze 
auto-correlations or periodic phenomena within a stream, 
deletions can similarly either be batched or focused within 
a single, small and thus memory-resident partition.  



 

Incremental index maintenance over continuous input 
streams also enables a symmetric dataflow join that mir-
rors the benefits of earlier proposals [DST 02, WA 91] – 
two indexes are built on the two join inputs, input from 
either join input is accepted at any time and matched 
against the currently existing index on the other input. 
This strategy closely mirrors earlier prototypes of symmet-
ric hash join; the difference is that the in-memory hash 
table and hash table overflow are replaced by a B-tree and 
the standard buffer manager support for B-tree indexes.  

Presuming incremental online index reorganization is 
available, the techniques discussed above for creating B-
tree indexes can be extended to other index operations, 
e.g., changing the schema of the records stored and in-
dexed. A typical example is changing an existing col-
umn’s type, length, or precision, e.g., from an integer or a 
decimal numeric to a floating point type. If all records in 
the index are modified immediately as part of the change 
statement, such a simple statement may run a long time, 
typically with an exclusive lock on the entire index or 
even the entire table. Incremental online reorganization is 
an attractive alternative, although it implies that the index 
contains both old and new records for a while, and that the 
index must support both queries and updates for this mix-
ture of record formats, which introduces new complexity. 
If records and their keys are not normalized, records of old 
and new formats can be compared correctly, albeit quite 
expensively – every single comparison must consider the 
formats of the two records currently being compared. If 
records and keys are normalized, and in particular if the 
normalized form is compressed, normalization of the old 
and new record formats might not permit correct compari-
sons. In that case, defining two partitions within a B-tree 
index is a simple and effective solution, with different 
normalizations in the separate partitions. It permits instant 
completion of the user’s request as well as efficient nor-
malization and incremental online reorganization.  

Not only different schemas and their normalization but 
also different validity status can be assigned to different 
partitions. For example, online index creation “without 
side file” [MN 92] requires that concurrent transactions 
insert a deletion marker (“anti matter”) into an index if 
they cannot delete an entry because the index builder has 
not inserted it yet. If, for some reason, it is desirable to 
keep a large part of an index stable, e.g., in order to limit 
the size of incremental backups, insertions and deletions 
may all be inserted into a separate partition, using anti 
matter to represent deletions. Of course, this is very simi-
lar to differential files [SL 76], but applied specifically 
within B-tree indexes in database systems. In a variation 
of this technique, if insertions and deletions are marked 
with time stamps, multiple partitions can serve as main B-
tree and its associated version store in multi-version con-
currency control and snapshot isolation. The required 
query execution techniques are very similar to those re-

quired in some execution plans for large updates, namely 
those that merge a pre-existing index with the delta stream 
into an entirely new index. The only difference is that the 
merge result is not stored in a new index structure but 
pipelined to the next operation in the query evaluation 
plan.  

To summarize, there seems to be a large variety of situa-
tions in which partitioned B-tree indexes using an artificial 
leading key column can enable or at least simplify imple-
mentation of online changes of schema and data in large 
databases.  

Implementation notes  
B-tree indexes with artificial leading key columns can be 

implemented at two levels. If B-tree indexes with artificial 
leading key columns are not a native feature in a database 
management system, a database administrator can create 
those columns, one per index, and adjust various com-
mands to take advantage of the resulting flexibility. For 
example, bulk insert commands must assign suitable val-
ues to these columns, constraints must restrict these col-
umns to a single constant value at most times, and histo-
grams must exist for the columns beyond the artificial 
leading key column. Online index reorganization can be 
achieved using scripts that search for indexes with multi-
ple values in the artificial leading key column and, when 
found, assign new values to some rows selected by ranges 
of the trailing index columns. While this method is more 
cumbersome and less efficient than a native implementa-
tion, it achieves many of the desired benefits.  

If, on the other hand, the vendor deems the advantages 
discussed so far important enough, the artificial leading 
key column can be a hidden implementation feature of B-
tree indexes. Whether a customer wants them or not, they 
are always there. Prefix truncation ensures that their space 
usage and their overhead in individual comparisons are 
negligible, soft constraints ensure that they do not intro-
duce additional root-to-leaf B-tree searches (i.e., in most 
cases the optimizer can exploit that there is only a single 
value), and a suitable histogram implementation ensures 
that the artificial leading key column does not confuse 
selectivity estimation in the query optimizer. Online index 
reorganization is a great advantage in this implementation 
strategy.  

In order to ensure correct transaction semantics, tradi-
tional locking mechanisms suffice. For example, index 
reorganization today employs many small system transac-
tions – these transactions do not change database contents, 
only data representation, and therefore can commit even if 
the invoking transaction might roll back, and they can 
commit without forcing the commit record to stable stor-
age. If system transactions are small, e.g., B-tree page 
splits or small reorganizations, a “no steal” buffer policy 
permits omitting “undo” log records [HR 83]. Commercial 
database management systems already employ various 



 

techniques to avoid “redo” log records for index creation. 
During run generation in online index creation, each trans-
action scans a range of input data, produces as many runs 
as necessary, inserts run descriptors into the auxiliary ta-
ble, updates the boundary value in the predicate describing 
the coverage of the new index, and then commits. Concur-
rent user transactions retain ordinary locks in the auxiliary 
table and thus prevent runs from vanishing during a user 
transaction; this is the reason why concurrent user transac-
tions should be small and short, and one of the ways in 
which large concurrent transactions reduce the efficiency 
of online index creation.  

Summary and conclusions  
The purpose of this paper has been to re-think tech-

niques that might have seemed completely understood. It 
turns out that a fairly simple and maybe surprising tech-
nique can substantially increase the performance and ca-
pabilities of sorting and indexing, in particular in the in-
creasingly important aspects of self-tuning and self-
management as well as online operations for continuous 
availability. Levels of resource allocation in a multi-user 
server must adapt fast to be truly useful, and online index 
operations are an important feature for both low-end and 
high-end database installations: At the high end, online 
operations improve service availability, and at the low 
end, they are a crucial enabler of automatic index tuning, 
because automatically dropping and creating an index is 
only acceptable and is only invisible if all applications and 
all data remain available at all times without “random” 
interruptions of service due to automatically initiated tun-
ing or maintenance.  

The central idea of this paper is to employ ordinary B-
trees in a slightly unusual way, namely by introducing an 
artificial leading key column and thus, effectively, 
partitioning within a single B-tree. Earlier sections 
reviewed possible concerns and overheads, most of which 
can be overcome or reduced to a truly negligible level, as 
well as the many benefits of the proposed change. 
Supporting multiple partitions in a single B-tree index is 
an extraordinarily powerful concept, in particular if 
combined with incremental online reorganization using 
the merge logic well known from external sorting. It 
permits using a single B-tree to store all runs in an 
external merge sort, which in turn enables relatively 
straightforward implementations of important dynamic 
sorting techniques, including deep forecasting when 
merging runs from many disk drives as well as dynamic 
memory management even to the extremes of running 
multiple merge steps for separate ranges concurrently and 
of pausing a merge step at any point to resume it later 
without wasting any work. Partitioning within a single B-
tree also enables practically useful advances in online in-
dex operations, e.g., index creation or schema modifica-
tion. The most exciting among those is that a new index 
can be made available to queries in half the time of the 

the time of the traditional method, and even less if partial 
indexes are exploited by the query optimizer. Finally, par-
titioning within a single B-tree can be exploited for speed-
ier updates and retrievals, most importantly bulk insertion, 
which can proceed with the speed of index creation even 
when adding new records within the preexisting key 
ranges of multiple populated B-tree indexes.  
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