Enter Once, Share Everywhere:
User Profile Management in Converged Networks

Arnaud Sahuguet Rick Hull

Daniel Lieuwen Ming Xiong

Bell Laboratories/Lucent Technologies
700 Mountain Avenue, Murray Hill, NJ 07974, USA
{sahuguet,hull,lieuwen,xiong } @research.bell-labs.com

Abstract

Interoperation between network types (telephony,
wireless, internet, etc.) is becoming increasingly
feasible, leading to the so-called “converged net-
work”, and to a broad new family of end-user fo-
cused “converged services”, that combine different
kinds of network connectivity (voice, text-based
instant and email messaging, real-time presence
and location information, and access to numerous
web-based services). A crucial but still largely un-
resolved issue is to provide easy — yet controlled —
access and sharing of end-user profile data, includ-
ing data about the user’s devices, services, billing
arrangements, address, calendar and preferences.

This paper surveys the kinds of profile data that
are currently held in the various networks and
where /how that data is stored, identifies key stan-
dards group activities working to enable profile
data sharing, and proposes a data management
framework (GUPS'®") that can be used across
and within networks and organizations, to facili-
tate sharing of profile data for converged services.
GUPSt®" combines ideas from the federated archi-
tecture for data integration and the Napster ap-
proach for peer-to-peer sharing, in order to satisfy
the high level requirements coming from standards
bodies such as 3GPP GUP. The paper describes
how the GUPSt®" framework can be supported, and
identifies key topics for future research.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 2003 CIDR Conference

1 Introduction

The mobile telephony revolution has changed the
behavior of millions. People can now reach and be
reached anywhere, anytime. First limited to tradi-
tional voice networks (wireless and Public Switched
Telephone Network, a.k.a., PSTN), this revolution
is now spreading across network boundaries to in-
clude the internet and other networks, giving rise to
so-called converged networks. WAP was a first (per-
haps unsuccessful?) way to bridge mobile telephony
with the Web. The 2.5G and 3G wireless networks
which followed already deliver email connectivity,
instant messaging, and web access.

The convergence of networks has quite naturally
given birth to a new breed of services — the so called
converged services — which try to make the most of
the network infrastructure in order to deliver value
to end users and revenue to operators. These con-
verged services revolve around providing informa-
tion to end-users, providing connections between
end-users with each other and/or with automated
systems working on behalf of enterprises, and en-
abling end-users to invoke commercial, financial or
other services outside of the network proper.

Providing these services entails the storage, shar-
ing, and use by the converged network of a broad ar-
ray of information about end-users, including, e.g.,
the correspondence between users and their devices;
awareness of presence, location, and availability of
devices and their users; and awareness of billing
models and plans (e.g., pre-paid vs. post-paid). As
network-hosted services become more complex, end-
users will insist on highly personalized renditions
of the services, which will entail the storage and
access of large amounts of personal data (e.g., de-
vice specific information, usage preferences, address
book, buddy lists, calendar, ...). This paper con-
siders the data management technologies that will
be needed to manage end-user profile information

in the context of converged services. In particu-
lar, the paper describes how and where profile data
is currently stored in the various networks, surveys
relevant industry standards groups, identifies key
requirements for profile data management, and pro-
poses a framework that fulfills these requirements.

The framework presented here, called GUPSter

is based on three central ideas. First, a standard-
ized schema for (most) user profile information will
emerge from the activities of the 3GPP Generic
User Profile (GUP) standards body [1]. Second, the
peer-to-peer paradigm pioneered by Napster [13]
will be adapted to allow profile data to continue
to reside in widely distributed networks and loca-
tions, while information about where to find the
profile data will be easily accessible, (e.g., from
a centralized meta-data manager analogous to the
Napster server). Third, federated data management
[8, 18, 25] techniques will be adapted to the special-
ized context of profile data management. Various
other technologies used in the GUPS®" framework
include technologies around XML, access control,
data replication and synchronization.

The key contribution of this paper is identify-
ing profile management for converged services as a
crucial data management problem for the coming
years, and providing a promising framework and
structure for attacking this problem. While point-
ing the way towards a solution, the paper also raises
a number of open research questions on how to flesh
out the framework. This paper is focused primar-
ily on the data management aspects arising in pro-
file data for converged services. It is beyond the
scope of this paper to provide detailed considera-
tion of other technologies needed to support con-
verged services, such as preference and policy man-
agement; workflow and collaborative systems; dis-
tributed systems; secure data transmission; stan-
dards for sharing information and control across
networks and devices; new forms of call models and
session management; and continued work on natu-
ral language interfaces.

This paper is organized as follows. Section 2 de-
scribes requirements for profile data management in
support of converged services, by describing moti-
vating examples and then listing the high-level re-
quirements. Section 3 overviews the current state of
the art in terms of data management for user pro-
file in the various domains/network and gives an
overview of the 3GPP GUP (Generic User Profile)
initiative. Section 4 presents a high-level descrip-
tion of the GUPSt®" framework, and Section 5 gives
variations of the basic framework, more detail, and
a discussion of how GUPSt®" fulfills the requirements

given in Section 2. We present some related work
and open issues (Section 6) before we offer some
future work and our conclusion in Section 7.

2 Converged Services:

Examples & Requirements
This section overviews the requirements that a pro-
file data management framework for converged ser-
vices should satisfy. We present two illustrative ex-
amples, and then provide a listing of essential re-
quirements.

2.1 Example 1: Roaming Profile

Consider a corporate employee Alice working for
Lucent. She owns a SprintPCS cell phone that she
uses for both business and personal matters. She
stores her phone book and phone preferences (e.g.,
ring tones, speed keys) on the phone. Alice’s Sprint-
PCS contract offers WAP capabilities, and she can
store WAP bookmarks on her phone. When she
travels abroad she also carries a GSM mobile phone
operated by Vodafone. The SIM card she puts in-
side the phone contains her “European” phone book
and phone preferences. Alice also owns a personal
data assistant. Her personal address book and cal-
endar information are synchronized with her Yahoo!
account. Her corporate address book and calendar
are securely hosted by Lucent.

As shown above, data is spread all over the place,
in different networks. With existing technology, Al-
ice’s access to data is quite restricted, making it dif-
ficult or impossible for her to access her corporate
calendar when she is traveling in Europe, share her
address and phone book among SprintPCS, Voda-
fone and Yahoo!, etc. A framework for profile data
management should enable easy and efficient access,
sharing, update, and synchronization of this data.

2.2 Example 2: Selective reach-me

Mobile telephony makes it possible to contact peo-
ple anytime, anywhere. This reach-me service can
be customized in many ways. First, a callee can
make (or program) the decision of accepting a call
or not. Operators already offer basic call screening
capabilities based on caller ID. Second, a callee can
define the best way(s) to contact her.

In a converged network situation (see previous
example), a user usually has more than one way
to be reached. At work for instance, Alice can be
reached (1) on her office phone (and voice mail if
she is not in), (2) via email, (3) via instant mes-
saging, (4) via VoIP (if she runs a soft phone like
MSN messenger), etc. At home, she can be reached
on her home phone. Potentially she can be reached
anywhere on her cell phone, depending on the cov-
erage. When she is near a WiFi hot-spot she can be

reached on her laptop via email, IM, and VoIP. De-
pending on Alice’s location, the choice of the best
communication medium varies: quality, price, na-
ture of the communication, etc.

The selective reach-me service permits the net-
work to optimally route a call (taken in its broadest
sense) to reach Alice. To do so, the service needs
to aggregate information for all the networks Alice
is in contact with.

2.3 A Listing of the Essential Requirements
This subsection lists requirements that should be
satisfied by a profile management framework for
converged networks. To set the stage, we note that
in the converged network, both profile data and ser-
vices will be widely distributed. We now list the
key requirements on a profile management frame-
work. These are based on requirements identified
by key standards bodies, and on experience at Bell
Labs in providing support for existing and emerging
converged services.

Common Data Model: Profile data should be ac-
cessible through a common data model, regardless
of where or how it is physically stored or generated.

Data Richness: End-user profile information will
become increasingly rich and varied as the services
being supported become increasingly rich and var-
ied. In particular, data may be deeply nested, in-
volve complex integrity constraints, and for each
end-user have different statistical characteristics.
Data Transformation: Data sources on the vari-
ous networks have radically different structures and
data models. Sharing data across these repositories,
and also between network and terminal devices, will
require efficient data transformation capabilities.

Data Placement: The placement of data will be
dictated by end-user desires (the end-user may not
trust some entities to hold profile data) and by opti-
mization needs. In many cases, profile data will be
stored redundantly (e.g., telephone book may be
stored in the end-user’s phone, a “primary” copy
held by an internet portal, and a cached copy held
by a wireless service provider). Transformations
may be used between redundant copies of data.

Data Integration: Many converged services will
use profile data about a single end-user that is
spread across multiple sources. Because the pro-
file data may be distributed in different ways for
each end-user, common tools should be provided to
perform needed data integration. We expect data
integration of profile data to be simpler than in the
traditional setting, because profile-related queries
do not typically require exotic joins: most of them

are lookup queries like “retrieve presence informa-
tion for Alice”, “retrieve Alice’s appointments for
today”, etc.

Data Reconciliation: Profile management must
include mechanisms for reconciliation of slightly
inconsistent data (e.g., for synchronizing address
book on phone with address book in network, or
merging of address books from disparate places).
End-users should be able to provision the policies
used to reconcile profile data.

Data Synchronization: As indicated above, pro-
file data will be cached, which implies the need for
convenient synchronization mechanisms, and trig-
gers to indicate when data has become stale.

Access to Meta-data: Because profile data will
continue to be widely distributed, there must be
mechanisms available for discovering where relevant
profile data can be found.

Access Control: The end-user should be in con-
trol of what, when, how, and to whom profile data is
shared. Mechanisms must be provided so that end-
users can specify (possibly intricate) policies about
access control (e.g., presence data is revealed to co-
workers only when the end-user is “at work”).

Security: Data transmission should be secure. Au-
thorization mechanisms need to be supported.

Data Provisioning: As the network-hosted profile
data becomes richer and more voluminous for each
end-user, it is increasingly important that end-users
can provision (i.e., insert, change, or delete) their
profile data at will (self-provisioning). The provi-
sioning should be accessible through a variety of in-
terfaces, including large-screen web browser, hand-
held wireless device, and even voice. Provisioning
interfaces should be automatically generated and
should provide some guarantees (e.g., constraint
checking). Users should have the impression of “en-
ter once, use everywhere”, i.e., the distribution and
heterogeneity of the actual profile data should be
transparent, except in connection with privacy of
the data and trust in the organizations holding the
data and/or meta-data.

Reliability: Telecommunication services must be
responsive and simply cannot go down; wireline
telephony is near real-time and 99.999% uptime is
the norm. By merging telephony networks (PSTN
and wireless) with other networks, users’ expecta-
tion is to find the same quality of service with more
features.

Scalability and Performance: Converged ser-
vices have to be scalable to support millions of sub-

scribers. Therefore, data has to be partitioned and
stored at different sites. Converged services have to
be engineered based on the fact that the weakest
link(s) will be part of the non-managed networks
(e.g., Internet). Many telecommunication services
require real-time performance, e.g.,, in case of call
delivery, response time of a transaction has to be
within hundreds of milliseconds. Various optimiza-
tion techniques will have to be used to overcome
these limitations (e.g., query optimization, caching,
pre-fetching)

3 Profile Management in Converged
Networks

This section gives an overview of the environment
within which a profile management framework must
reside. In 3.1 we discuss where profile data is found
in the various networks today. In 3.2, we briefly dis-
cuss the activities of 3GPP GUP, the primary stan-
dards body currently working in the area of profile
data. Perhaps the most important idea in this sec-
tion is that we expect the 3GPP GUP standards
group to be successful in creating and promoting
a standardized schema that captures a substantial
amount of end-user profile data; this standardized
schema will become a key component of any future
framework for profile management.

3.1 Overview of Profile Data in the Differ-
ent Networks

PSTN networks: The Public Switched Telephone
Network is the collection of interconnected pub-
lic telephone networks, based on circuit-switching.
To avoid a fully-meshed architecture, switches are
used to connect together end-points. The role of
the switch is to take care of the call control sig-
naling, the media transmission and the logic. In
current PSTN deployed architectures, the switch is
a multi-purpose box (e.g., Lucent 5ESS, the emerg-
ing softswitches) which encapsulates all these func-
tionalities. User profile information is stored inside
the switch itself, which makes it hard to access and
extend. User profile information stored in switches
depends on the nature of the services supported by
the switch itself: call forwarding number, call bar-
ring numbers, caller id flag, 800-number resolution
(when the user is a company), etc.

Wireless networks: Devices are connected to the
network by a Radio Access Network. Subscriber in-
formation is stored by the Home Location Register
(HLR), maintained by the subscriber home carrier.
The HLR contains permanent subscriber informa-
tion and the relevant temporary information of all
subscribers permanently registered in the HLR. For
each subscriber, its subscriber profile, location and

authentication information are stored in HLR. Sub-
scriber profile contains identity information, tele-
phone numbers, and mobile user preferences related
to services, such as call forwarding, barring, roam-
ing, etc. A Visitor Location Register (VLR) main-
tains temporary subscriber information (snapshot
of the master copy stored in the HLR) in order to
handle requests from subscribers who are covered by
the VLR. When a user moves from one cell (man-
aged by a RAN) to another, a different VLR may
be used.

Voice-over-IP (VoIP) Networks: VoIP net-
works — as the name implies — deliver voice using
the Internet protocol (IP). The delivery of voice
is initiated using a signaling protocol like SIP or
H.323. Endpoints are IP phones or softphones (all
software) which can talk the signaling protocol and
process digitized voice using codecs. VoIP net-
works can be connected to other networks (mainly
PSTN) using gateways that (1) perform the en-
coding/decoding of voice and (2) translate SIP ad-
dresses into phone numbers. Much of the “intelli-
gence” (and therefore profile information) in VoIP
networks is stored at the end-point. For instance,
IP phones (soft or hard) usually store address book,
call logs, forwarding preferences, etc. Some profile
data is found in the network, however. In the case of
SIP, network components consist almost exclusively
of SIP registrars or SIP proxies. SIP registrars sim-
ply store a mapping between a SIP address (a VoIP
phone number) and the corresponding IP address
of the endpoint. SIP proxies are used for message
routing and may store some user information.

Web: The Internet consists of machines connected
via the IP protocols, some of them are servers, some
of them are clients. We can distinguish between the
public Internet (the Web) and the private Internet
(the numerous intranets managed by corporations),
usually isolated from the Internet by firewalls.

A broad variety of profile data is stored in the
machines that form the internet, e.g., bookmarks,
address book, computer preferences, calendar infor-
mation (iCal, vCal, Exchange), e-commerce profile
data (shipping addresses, wish lists, buying pat-
terns, etc.), employee information stored in direc-
tory servers, presence information (e.g. instant mes-
saging client, connection to DHCP servers, etc.),
web site log files, edge-router caching and routing
policies, cross network info: ISP info about a user
being connected or not and its IP address and call-
ing phone number (in the case of a modem), etc.

Note that solutions to unify web-accessible pro-
file data have been proposed. Netscape roaming

Packet
Data serving
Network

#

=
sIP
e Endpoints

SIP Enabled
IP Network

“”|||||| Class 4
,,;:” Switch i
Class ||||||| Class 5 Center
Switc Switch
|||||||||| e ||||| Il 7 g
|||||||||| Transport ||||| ||| K
E Radi; Access Network

5\ A
%8 HLR 02N\
Vs g K s1p 5

SIP Registrar

=

PSTN to SIP
\IIHHH Gateway

A Access .
g Proxy

Endpoints
Radio Access Network

g

Figure 1: Converged Networks: PSTN (left), Wireless (center) and VoIP (right)

profiles are based on (1) a schema describing a
limited set of user profile information and (2) a
client/server protocol (LDAP or HTTP). Roaming
profiles make it possible for a user to store her pref-
erences (address book, bookmarks, cookies, brows-
ing history) in a central server and have access to
it from any client.

In this section we have seen that user profile in-
formation is spread across many machines and or-
ganizations on the various networks (see Figure 2).

[[Network | Locations of Profile Data I

PSTN Class 5 switches, billing systems
Wireless | HLR, VLR, MSC, billing systems
VoIP end-user device, SIP registrar/proxy, AAA

Web end-user device, ISP, portal,
e-merchant, enterprise, edge-router, ...

Figure 2: Where profile data is stored

3.2 Overview of 3GPP GUP Goals

Several standards bodies and consortiums address
the issue of profile data. Some view preference in-
formation as a kind of data that should be main-
tained alongside profile information. We focus here
primarily on GUP. Other efforts will be presented
as part of related work (Section 6).

3.2.1 3GPP Generic User Profile (GUP)
The 3rd Generation Partnership Project (3GPP) is
a collaboration agreement that was established in
December 1998. The scope of 3GPP is to produce
Technical Specifications and Technical Reports for
a 3rd Generation Mobile System based on evolved
GSM core networks and the radio access technolo-
gies that they support. As part of its numerous
efforts, 3GGP has started the Generic User Profile
effort as a way to standardize the management of
user profile information.

3.2.2 GUP vision
The GUP vision starts by looking at the current
problems:

Great quantities of data, spread all over: As
mentioned previously on this section, data is stored
in many entities (e.g., network components, IT in-
formation systems, user devices). Numerous and
incompatible schemas and models are used to rep-
resent and store the data. Moreover, data is not
often reused — requiring redundant storage, which
leads to inconsistencies and wasteful re-entry.

Terminal management: A key focus of GUP is to
make the management of end user terminals (pro-
visioning and synchronization) easier. GUP has al-
ready identified SyncML [19] as the protocol for syn-
chronization.

Customer care: End user problems must be able
to be diagnosed and fixed via the network.

Multiple protocols: There is a need to support
protocols for communication between network com-
ponents, between network components and termi-
nals, and between terminals (e.g., phone < laptop).

Incompatibilities across domains: Various do-
mains often use incompatible data models, schemas,
and protocols. Requirements are also radically dif-
ferent (e.g., real-time, reliability, security, etc.).

3.2.3 GUP requirements

Even though GUP is still in its early stage, the fol-
lowing requirements for GUP have been identified:
harmonized query/update interface, common trans-
port mechanism, common security protocols, and
privacy. Also needed is a harmonized data descrip-
tion providing an extensible, common data model
that is compatible with GUP information model.
(The information model consider a user profile as
a collection of profile components. A component is

used as a unit of storage and access control. Compo-
nents are linked together by the identity they refer
to.) Although not a formal requirement of GUP, it
is very likely that the GUP group will adopt XML as
the underlying format for the common data model
and for data exchange. It should be clear that the
requirements we have listed in Section 2 are a natu-
ral generalization of the GUP requirements to sup-
port services across the converged network, not just
across the 3G wireless network. At present, the
GUP group has not specified a reference architec-
ture that can be used to provide simple and focused
access to profile information.

4 GUPS*" in a nutshell

This section introduces the high-level GUPSt®" vi-
sion, in its most basic form. The following section
presents a variety of extensions and alternative for-
mulations.

4.1 Napster + GUP = GUPster

To summarize in one sentence what GUPSt®" is all
about, we can say that GUPSt®" is to user profile
components what Napster was to music files. In
Napster, users willing to share music files join the
Napster community by registering their files on the
Napster central server. The server stores meta-data
about files and users. When a user wants to retrieve
a given file, it sends a request to the Napster server
and gets back list of peers (other users) who have
registered this very file. The user can then ask for
the file directly from the peers. In GUPS®' data
stores willing to share user profile components join
the GUPSY®" community by registering their com-
ponents on the GUPSt®" server. The server stores
meta-data about data stores and components (e.g.,
location, access control, etc.). When an application
(e.g., client application, data store, etc.) wants to
retrieve a given component, it sends a request to
GUPSt®" and gets back a list of data-stores which
have registered this very component. The applica-
tion can then ask for the component directly.

4.2 Overview of the GUPSt®" architecture
The GUPSt®" architecture is presented in Figure ??
and consists of client applications, GUP-enabled
data-stores and the GUPSte" server.

Client applications are applications which need
to access user profile information for both query and
update. Selective reach-me presented in Section 2.2
is a good example.

Data-stores are components which store and
manage user profile information, such as HLRs,
presence servers, portal sites, etc. Data stores must
be GUP-enabled participate in the GUP commu-
nity. Concretely, this means that an adapter is put

on top of the data store to offer a GUP-compliant
interface (protocol and data model)!.

The GUPSt®" server is the central repository
of meta-data regarding user profile components.
Among other things, it stores coverage (how the
GUP schema is mapped onto existing data stores)
and access control information. Note that “cen-
tral repository” has to be understood from a log-
ical point of view and may be implemented as a
constellation of connected servers. In the simplified
context, of this section, we envision GUPSt®" being
supported in a manner similar to the UDDI registry
[21], i.e. a family of mirrored servers hosted by a
consortium of enterprises and freely available to all
users.

4.3 GUPSt®" in action

We assume that the we have some data stores will-
ing to share user profile components and that these
components support the GUP interface. (Figure 3
shows an example of GUPSt®" integrating data from
multiple data stores.) We now present a simplified
scenario for GUPSt®" in action. Later, we will dis-
cuss the access control aspect.

Like for Napster, the first step is for a data store
to register to GUPS®" the components it is willing to
share. For instance, Yahoo! will tell GUPSt®" that it
stores the address book of Arnaud and the address
book and game scores of Rick. Sprint PCS will
inform GUPSt®" that it stores Arnaud’s address book
and game scores. Data stores can also unregister
components. For each user, GUPSt®" maintains the
coverage of profile components by data stores. In
the case of Arnaud, the coverage would look like 2:

Coverage
O /user[@id=’arnaud’]/address-book +—

{ gup.yahoo.com, gup.spcs.com }
O /user[@id=’arnaud’]/presence —

{ gup.spcs.com }
O /user[@id=’arnaud’]/buddy-list —

{ gup.spcs.com }
O /user[@id=’arnaud’]/payment —
{ gup.citibank.com }

A coverage is a mapping between sub-trees of the
GUP schema (expressed as XPath expressions) and
data-stores. Note that a given profile component
can be mapped to multiple data-stores.

When a client application wants to retrieve or
update a profile component, it needs to send the

L As of this writing, the details of the interface have not
been finalized yet. The data model will be XML-based and
the protocol will probably be SOAP or HTTP.

2We assume that the GUP schema is defined with ele-
ments such as user, address-book, presence, buddy-list,
etc.

Applications
5

GUP data store

GUP=t*r server

GUP adapter

Server
Location -
Server
Calendar|

Other GUP data stores

Legacy data store

Figure 3: GUPSt®" top-level architecture

request to GUPSY®" . For instance, Arnaud wants to
synchronize the address book on his cell-phone. The
cell phone (through an application running on the
cell phone) will send a request to GUPSter. GUPSter
will rewrite the request and send it back to the
client. In our example, GUPSt®" will return to the
client application something like:

Referral from GUPSter
gup.yahoo.com/user [@id=’arnaud’]/address-book ||
gup.spcs.com/user[@id=’arnaud’]/address-book

where || has to be understood as a choice [16].
GUPSt®" does not return any data, just a referral
to be used by the client application. The client ap-
plication will then use the referral (one of them, or
both) to get the data directly from the GUP data
stores.

4.4 Schema management

A key aspect of GUPSt®" is to integrate profile com-
ponents from a large number of data stores living
in different networks. As we already noted, since
the kind of queries we plan to support are not join-
based, the “local as view” and “global as view” ap-
proaches essentially converge in this context. We as-
sume that a global schema will be defined and main-
tained by a standard body (e.g., 3GPP, W3C). The
responsibility of the GUPSt®" server and the various
data stores is to make sure that the latest version
of the schema is the one being used. Note that by
design, the schema can be made more tolerant (or
not) to evolutions (e.g., using optional elements or
attributes).

Here is a possible top-level schema for user pro-
files. The exact definition (and extensions) of the
schema, will be the responsibility of a standard body.

A possible schema for GUP
TMyProfi1e>

GUPster
Ric Bhara
i I ok S
Orange CitiBank Yahoo! SprintPCS

AN\

Figure 4: Schema coverage

+-- <MySelf> (identity, address, etc.)

+-- <MyDevices (phone, PDA, laptop, etc.)

+-- <MyContacts> (<adress-book>, etc.)

+-- <MyLocations> (places where I may be reached)
+-- <MyEvents> (<calendar>, etc.)

+-- <MyWallet> (<banking-information>)

+-- <MyApplications>

+-- <Gaming>

4.5 Schema coverage

The schema coverage is a mapping between sub-
trees of the GUP schema and user profile compo-
nents available at the data-stores (see Figure 4).
We assume that a profile component can always be
defined as a sub-tree of the GUP schema. We ex-
clude cases where, for instance, two profile compo-
nents could not be defined as sub-trees but their join
could be. The language we use to define coverage
is a subset of XPath [24] with child- and attribute-
axis only and limited predicates, in order to have a
canonical way to navigate the tree.

For a given user, the GUPS!®" server will store
a list of mappings between a sub-tree of the GUP
schema and one or more data stores. We have al-
ready presented some examples of coverage in the
previous section.

Figure 5 has a more interesting example where
Arnaud’s address book is split between his cor-
porate and personal address books. A request
for /user[@id=’arnaud’]/address-book should
return a referral to both data stores as well as a
way to merge two XML fragments. We will discuss
this issue in Section 6.

4.6 Access control
A critical aspect of the sharing of user profile com-
ponents is privacy: users are willing to grant ac-

A more complex coverage
O /user[@id=’arnaud’]/address-book/item[@type=’personal’] +> { gup.yahoo.com }
O /user[@id=’arnaud’]/address-book/item[@type=’corporate’] +— { gup.lucent.com }

Figure 5: GUPSte" representation of address book split across two sites

cess to their profile information (“enter once, use
everywhere”), provided they remain in control of
who can access this information and when. Access
control raises two issues: (i) how can the user spec-
ify her privacy shield, i.e. the set of access control
rules/policies for her profile information; (ii) how
are these policies being enforced.

4.6.1 Privacy shield

Conceptually the idea of a privacy shield is quite
simple: should a given request be granted access to
the data it asks for? The problem is to define what
we mean by a request. The privacy is defined in
terms of policies to be applied whenever some user
profile is requested through GUPSte’,

As part of his privacy shield, for example, a cor-
porate user may want to establish the following poli-
cles: any co-worker can access my presence infor-
mation during working-hours; my boss and my fam-
ily can access my presence information at any time;
my family can access my personal address book and
calendar.

In GUPSt" | 3 request consists of two facets: a
context and a path. The path defines what com-
ponents of the user profile are asked for. The con-
text provides some information about the context
of the request, i.e. identity of the requester (e.g.,
third party application, end user, etc.), purpose of
the request (e.g., plain request, caching request,
subscription-based request, etc.), etc. We envision
the context to be an XML document as well, defined
using a request context schema. The path can be de-
fined as an XPath expression (returning nodes) over
an instance of the GUP schema. The context can
also be defined as an XPath expression (returning
a boolean) over an instance of the request context
schema.

We plan to reuse as much as we can from the
emerging XACML [14] (XML Access Control Meta
Language) standard. Unfortunately, the notion of
request context in XACML is too limited (restricted
to principals) to define a sufficiently rich privacy
shield. As mentioned above, we will need to define
an XML schema, for the context information as well.

4.6.2 Policy infrastructure

Defining policies is one point; evaluating them and
enforcing them is another. Issues to be solved are:
who stores the policies, who evaluates them, and

who enforces them

¢ policy repository: in charge of storing policies

e policy administration point: in charge of pro-
visioning the rules (i.e. letting the user access
and modify the rules that define her privacy
shield) and other administrative tasks (e.g.,
checking that the rules are valid)

e policy decision point: in charge of rendering a
decision based on a rule set and a context. The
decision point only returns a decision and has
absolutely no side-effect on the environment

e policy enforcement point: in charge of asking
for a decision and enforcing it (i.e. taking the
required actions). Note that in some cases,
the enforcement point uses a policy execution
point.

Applied to our architecture, we envision the fol-
lowing distribution of roles (in the next section we
will present variations where the roles can be as-
signed slightly differently). GUPS" will be at the
same time the administration point (allowing end-
users to provision their policies), the policy reposi-
tory (storing policies), the decision point (comput-
ing the decision) and the enforcement point (ap-
plying the decision, i.e., sending or not a referral
to the client). The data stores will be execution
points. For 3rd party application, the policy infras-
tructure will be transparent: the application will
send a request to GUPS'™®" and get back (or not) a
referral.

5 GUPSt" Unleashed

In the previous section, we have presented the basic
GUPSt®" where all meta-data is stored in a central-
ized way and where the server only returns refer-
rals. We now motivate and explore some variations
of this architecture.

5.1 Architectural Variations

Maintaining and managing the profile meta-data is
a central component of the GUPS®" paradigm. In
the previous section, we described one architectural
approach for how and where the meta-data might
be managed, namely, a centralized meta-data man-
ager. That approach was inspired directly from
Napster, and assumes a UDDI-like universally avail-
able, mirrored meta-data store.

The primary reason to examine architectural al-
ternatives is that two things are unpredictable at

present: (i) the degree of privacy about meta-data
that end-users and enterprises will insist on, and (ii)
the business model around meta-data management
that will emerge.

With regards to privacy, consider for a moment
Microsoft’s Hailstorm initiative, which proposed a
framework whereby end-user profile data could be
stored at a central location by a single organiza-
tion (MSN in this case) and could be shared on
a selective basis with e-merchants at the “click of
a button”. This initiative was dropped because
consumers were not willing to have a substantial
amount of their profile controlled by MSN.

Many factors will be involved in the emergence of
a business model (or models) that will arise to sup-
port a GUPSt _style framework. A key question, of
course, is how the organizations that provide meta-
data management will be funded. Various alterna-
tives exist, ranging from the end-user or the data
requester paying for each use of the services explic-
itly (through a billing mechanism similar to current
phone usage), to having the service bundled with
other services (with the costs thereby “hidden” from
the end-user), e.g., as part of an internet portal or
part of wireless phone service.

A simple variation of the centralized architecture
is to assume that different end-users will want their
meta-data managed by different organizations, per-
haps their wireless or internet service provider, their
bank, an internet portal, their employer, or even
their home computer.

A further refinement is to allow the meta-data
management for each user to be distributed. For
example, a user might specify his primary meta-
data manager to be their wireless service provider,
but have meta-data about his credit card and other
banking information be stored by a bank, and his
meta-data about internet games be stored by an
internet portal.

This suggests that there will not be a “one
size fits all” implementation of GUPSt®" nodes, but
rather a handful of general implementations, and
then several more narrowly targeted implementa-
tions.

5.2 Query Processing Variations

In the proposed architecture, GUPSt®" is not doing
any query processing only query rewriting. Its role
is to combine coverage information and access con-
trol information to rewrite a client’s request accord-
ingly. GUPSt" does not return any data, only refer-
rals. This means that a GUPSt®" server is easier to
implement and can serve more client concurrently.

But there might be some situations where having
GUPSter do some query processing would be useful.
In the case of a client application with very limited
capabilities (e.g., a cell phone), the client may not
be able to perform some required data transforma-
tion (like our address book example where the data
is split among two stores and requires a merge).
Offering a larger variety of distributed query pat-
terns [16] like chaining, referral, recruiting (where
the request is actually migrated to a different node)
will be needed. GUPS®" should probably also of-
fer some caching to make the access to user pro-
file component faster. Another important dimen-
sion concerns subscriptions. In the current archi-
tecture, GUPS'®" is a reactive (pull-based) not pro-
active (push-based) system. It is always possible to
push-enable a pull-based system using polling, but
this may not be very efficient. In our case, every
polling request needs to be checked to enforce the
end-user’s privacy shield. Having the subscription
handled by GUPSt®" internally would save this extra
work.

These variations can always be hard-coded into
the various nodes of the system (the GUPS" server
and the various data stores). But it seems that a
notion of mobile query process (as proposed in [16])
needs to be defined in order to capture the full range
of query processing that may be needed to deploy
such a distributed architecture.

5.3 How GUPSt" addresses the GUP re-
quirements
We now revisit the requirements presented in Sec-

tion 2.3 and show how they are being addressed by
Gupster,

Data richness: Just like Napster has a built-in
schema to “talk” about music files, GUPSt®" main-
tains the schema which defines the structure of the
various user profile components and their relation-
ships. The structure of the GUP schema is defined
using XML as the underlying data-model. Data
stores willing to join the GUPSt®" community need
to export (virtually or physically) user profile com-
ponents as XML, according to the GUP schema.

Data transformation: When the structure of the
data hosted on the data store is not directly compat-
ible with the GUP schema, we assume the existence
of some wrappers/mediators in charge of transform-
ing the data into the right structure. The transfor-
mation can be virtual or physical. In some extreme
cases (e.g., end user terminals with very limited
query capabilities), we could imagine GUPSt®" it-
self (or a component part of it) doing some further
transformation if needed.

Data placement: We need to distinguish here be-
tween (i) placement decisions made by users (based
on trust concerns) and (ii) placement decisions
made by the infrastructure (based on performance
concerns). For (i), the placement is dictated by
the registration of components by data stores. For
instance a user will instruct Yahoo! that it is re-
sponsible for storing its address book. Yahoo! will
in turn register this component to GUPSter:
/user[@id=’Arnaud’]/AddressBook =>
www.yahoo.com For (ii), we can imagine that
data stores operated by a given operator will be
replicated, transparently for the rest of the network.
Yahoo! for instance will store address book informa-
tion in multiple servers (e.g., us-east.yahoo.com,
us-west.yahoo. com, www.yahoo.co.uk, etc.) and
requests sent to www.yahoo.com will be routed to
the closest Yahoo! store available. GUPSt®’ can
also offer some caching services.

Data integration and Reconciliation: Data
integration is provided by using adaptors to con-
vert profile data from multiple repositories into a
common format. Reconciliation can be handled
by prioritizing sites or by some more sophisticated
method when GUPSte" data, is requested.

Data synchronization: The GUP working group
has already agreed to use SyncML as the synchro-
nization protocol. But this is only one aspect of the
problem because SyncML [19] is only a transport
protocol. Issues like synchronization semantics need
to be addressed. GUPSt®" does not provide specific
solution for this yet.

Security and access control: GUPS" does not
plan to innovate in the field of security but will
try to reuse the best existing solutions. An inter-
esting issue is where the access control should be
performed. We think that GUPS®" should be in
charge of access control because it offers a single
point of access. Having access control at the level
of the data-stores would require keeping access con-
trol policies in sync. Here is a possible way to en-
force access control. When an application sends a
request to GUPSt®" for a given component, GUPSte"
checks whether or not access is granted. It rewrites
the query accordingly (for instance only a subset of
the information asked for can be returned) and signs
it, including a timestamp. The application can send
the rewritten and signed query to the corresponding
data store(s). The store will check the time-stamp
and the signature and eventually return the data.
We assume that data store will only accept queries
which have been signed by GUPSter,

Reliability: Reliability will be achieved by having

the logical single entry point be implemented by a
constellation of GUPSte" servers.

Scalability and performance: As the logical sin-
gle point of entry, before forwarding the queries,
GUPSt®" is able to filter out spurious ones (e.g.,
queries which do not fit with the GUP schema,
queries which do not satisfy the access control re-
quirements). Since GUPS" does not store any data,
GUPSte" does not require a heavy duty database.
GUPS" needs to rewrite queries using coverage and
access control information. By putting these func-
tion at the level of GUPSY® we can keep the data
stores as is (except for the GUP adapter on top of
any data store) and expect very little overhead be-
cause of GUPSt"3_ The use of multiple distributed
query patterns (e.g., chaining, referral, recruiting)
will permit minimizing the transport cost of result
information. The Napster analogy can give us some
useful insights about scalability and performance.
At its peak, Napster had more than 50m users with
more than a few millions connected simultaneously.

6 Related Work

Profile Management efforts: There is a lot of
on-going efforts in the area of user profile man-
agement. Both Sun (pushing for Liberty Al-
liance [11]) and Microsoft (pushing for Passport
aka TrustBridge aka MyServices aka Hailstorm) are
fighting over the next standard for network iden-
tity. Both initiatives are currently focusing more
on the authentication aspect (single sign-on) than
on the issue of data management. Liberty Al-
liance — as of this writing — has not proposed any
data model and schema for user profile informa-
tion. Microsoft’s user profile only consists of the
traditional user information stored by an ISP. A
few years back, the DEN initiative [4] proposed a
suite of schemas to describe network components
and devices. Netscape roaming profiles are a di-
rect extension of those. W3C Composite Capa-
bility /Preference Profiles (CC/PP) [23] initiative
started in 1999 aims at creating “a general, yet ex-
tensible framework for describing user preferences
and device capabilities”. The framework is based
on RDF but does not seem to have received much
support so far.

Personalization through policies: Person-
alization of converged services requires more than
providing simple ways to input and access profile
data; it requires the ability to specify and enforce a

3The GUPSTer architecture does not preclude network
components from communicating with each other the way
they used to. For instance, the presence component can re-
trieve location information from the HLR through GU pster
or directly from the HLR.

broad range of preferences. Technology for storing
and sharing preferences and their associated policies
can build on the GUPster framework described in
this paper. But considerable research is still needed
in terms of how to provision and process prefer-
ences.

Standards bodies (e.g., Parlay policy manage-
ment API [7], OPES [10]) and research activities
are developing approaches to support the specifica-
tion and enforcement of such elaborate preferences,
typically through the use of rules engines. Various
rules semantics might be used for different applica-
tion areas, including systems with no chaining and
systems that support production system style se-
mantics [9].

XML integration: A lot of work has been
done in the domain of XML data integration.
Silkroute [6] enables the applications to specify vir-
tual XML views over a relational database, and al-
lows these views to be queried using XQuery. The
IBM Xperanto [17] project and the Enosys XML In-
tegration Platform [15] further allow the application
to define and query XML views on data spanning
multiple data sources.

As mentioned earlier (Section 2.3), query-
oriented data integration of profile data is simpler
because profile queries typically do not involve joins.
As such, with respect to querying, these systems
seem to offer more than GUPSt®". However, query-
ing is just one aspect of data integration as sup-
ported in GUPSte": apart from being queried, the
data across the different data sources in GUPSte
needs to be updated (provisioned) in an integrated
manner. None of the systems mentioned above han-
dles integrated updates. Furthermore, GUPSt" also
handles data placement (including caching) and rec-
onciliation aspects (see Section 2.3) that are not ad-
dressed in any prior framework to the best of our
knowledge.

The notion of coverage in GUPSt®" requires some

algorithms to decide query containment of XPath
expressions (or subset of XPath), as studied in [5].
Some recent work on keys for XML [2] can also be
applied to define coverage. New operators for merg-
ing XML components are also relevant (like Deep
Union [3] or Merge [20]).

Security and access control: There has been
a lot of work on security and access control in gen-
eral. For XML, we already mention the emerging
XACML proposal [14] and some of its limitations.
XACML has a very restricted notion of request con-
text. In GUPSt" the quality of the privacy shield
will depend on the context information the user can

use to define her requirements. Moreover, XACML
policies are expressed using some simple rules (no
forward chaining) which are not suitable for com-
plex access control policies. Offering an expressive
framework with good enough performance is clearly
a challenge. Another key issue is the provisioning
interface that end users will use in order to express
their preferences. An elegant solution for condi-
tional access to XML (based on encryption) data
has been presented in [12]. Some efficient algo-
rithms for XML access control have been proposed
in [27]. GUPS'®" will be compliant with whatever
standard gets accepted for network identity (e.g.,
Liberty Alliance [11]).

7 Conclusion

This paper identifies a new and challenging di-
rection in data management, namely to support
easy (but controlled) access and sharing of profile
data in support of converged services. These ser-
vices often involve real-time, interactive communi-
cation between a user and other users and/or mul-
tiple network-hosted applications, and the associ-
ated profile data is typically spread across mul-
tiple networks and organizations. Additional as-
pects/requirements in this application area include
the expectation that a single data schema will
emerge for (most) profile data, that privacy and
access controls are highly relevant, and the current
lack of clarity on business models for managing pro-
file data will be resolved. In addition to describ-
ing these directions in general terms, this paper de-
scribes the key kinds of profile data that need to be
accessed in support of converged services, and also
how and where that data is currently stored in the
various networks.

The paper proposed a high-level framework for
supporting access and sharing of profile data, which
satisfies the requirements agreed upon to date by
the 3GPP GUP standards body, and also follows
the spirit of the Liberty Alliance consortium. This
GUPS framework is fundamentally a combination
of two things: the federated database paradigm and
a peer-to-peer, Napster-inspired approach for or-
ganizing meta-data information. The fundamental
technology challenges of GUPSt®" are how to man-
age and control access to profile meta-data and the
associated data, and how to provide efficient, scal-
able, and reliable support for sharing of the profile
data.

While the GUPSte" proposal provides a sound ba-
sis for developing technologies for sharing profile
data in support of converged services, it raises many
challenges. We mention three of the most funda-
mental challenges here.

The core challenge is to continue work on meta-
data management itself — what is the right concep-
tual model for meta-data (in the context of manag-
ing profile data), what are the efficient ways to store
and access meta-data, what integrity constraints are
relevant and how can they be enforced, is XPath
sufficient for expressing the partitioning of meta-
data and/or data that will be managed by dis-
parate organizations, how should XACML [14] be
adapted or extended, how should the Schema Ad-
junct Framework [22] be applied to capture these as-
pects, and what is a systematic framework for sup-
porting the extension of the global profile schema
(for both local and global extensions)?

A second challenge concerns efficient, scalable,
reliable implementation. Although we presented
some approaches in this direction, the area requires
much more detailed consideration, including anal-
ysis of performance requirements, development of
testbeds and benchmarks, and ultimately develop-
ment of self-adapting implementations for data ac-
cess, transformation, distribution, caching, etc.

The third core challenge involves data prove-
nance [3], that is, the tracking of where data (and
meta-data) have come from, and where they have
been used. In e-commerce, when a user buys some-
thing, she gives her credit card number and the mer-
chant gives a confirmation number for that specific
purchase. The user trusts that the merchant won’t
use the credit card number beyond the purchases
that the user authorizes. This illustrates just one
example of the many kinds of tracking mechanisms
that will be needed around access to profile data and
meta-data. A special case of the data provenance
challenge, in a different direction, concerns man-
agement of overlapping sets of profile data, e.g., a
user’s personal and enterprise address books might
be held by different organizations but hold over-
lapping data. What are systematic ways to sup-
port data reconciliation, to identify a single data
source that holds all the data needed for a specific
application, and to avoid distribution of data from
one source that violates access controls given for
another source?

Acknowledgements: the authors would like to
thank Vinod Anupam, Bharat Kumar and Prasan
Roy for comments and discussions about ideas pre-
sented in this paper.

References

[1] 3GPP. Generic
http://www.3gpp.org.

[2] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. In WWW10, May 2001.

User Profile, 2001.

(3]

P. Buneman, A. Deutsch, and W. Tan. A deter-
ministic model for semistructured data. In Work-
shop on Query Processing for Semistructured Data and
Non-Standard Data Formats, 1998. Available from
http://db.cis.upenn.edu/DL/icdt.ps.gz.

DEN, 2002. http://www.dmtf.org/spec/denh.html.

A. Deutsch and V. Tannen. Containment and Integrity
Constraints for XPath Fragments. In KRDB 2001,
2001.

M. Fernandez, A. Morishima, D. Suciu, and W. Tan.
Publishing Relational Data in XML: the SilkRoute Ap-
proach. IEEE Data Engineering Bulletin, 24(2), 2001.
Parlay 3.0 Management Speci-
fication, 2002. Available as the file
Spec3_ParlayPolicyManagementDocuments1_0.ZIP

at http://www.parlay.org/docs/.

D. Heimbigner and D. McLeod. A federated architecture
for information management. T'OIS, 1985.

R. Hull, B. Kumar, A. Sahuguet, and M. Xiong. Have
It Your Way: Personalization of Network-Hosted Ser-
vices. In Advances in Databases, 19th British National
Conference on Databases, 2002.

IETF. Open Pluggable Edge Services (OPES).
http://www.ietf-opes.org.

Policy

Liberty Alliance. http://www.projectliberty.org.

G. Miklau and D. Suciu. Cryptographically Enforced
Conditional Access for XML. In Proceedings of WebDB,
2002.

Napster. http://www.napster.com.

OASIS. eXtensible Access Control Markup
Language. Available from http://www.oasis-
open.org/committees/xacml/.

Y. Papakonstantinou and V. Vassalos. Architecture and
Implementation of an XQuery-based Information Inte-
gration Platform. IEEE Data Engineering Bulletin,
25(1):18-26, 2002.

A. Sahuguet. ubQL: a Distributed Query Language to
Program Distributed Query Systems. PhD thesis, Uni-
versity of Pennsylvania, Department of Computer and
Information Science, 2002.

J. Shanmugasundaram, J. Kiernan, E. Shekita, and
C. Funderburk. Querying XML Views of Relational
Data. In VLDB, 2001.

A. Sheth. Federated database systems for managing
distributed, heterogeneous, and autonomous databases.
In Proc. VLDB, page 489, 1991.

SyncML. http://www.syncml.org.

K. Tufte and D. Maijer. Aggregation and Accumula-
tion of XML Data. IEEE Data Engineering Bulletin,
24(2):34-39, 2001.

Universal Description, Discovery and Integration
(UDDI) project. http://www.uddi.org.

S. Vorthmann and L. Buck. Schema Adjunct Frame-
work. Draft Specification 24 February 2000.

W3C. Composite Capability /Preference Profiles
(CC/PP). http://www.w3.org/TR/NOTE-CCPP/.

W3C. XML Path Language (XPath). Available from
http://www.w3.org/ TR /xpath.

G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 1992.

J. Wilcox. Survey: Passport required—not appealing.
CNET, April 2002. http://news.com.com/2100-1001-
884730.html.

T. Yu, D. Srivastava, L. Lakshmanan, and H. Jagadish.

Compressed Accessibility Map: Efficient Access Control
for XML. In VLDB, 2002.

