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Abstract

Speculation is an every day phenomenon whereby
one acts in anticipation of particular conditions
that are likely to hold in the future. Computer
science research has seen many successfull appli-
cations of speculation: modern processors, for
example, speculate on the run-time properties
of a program and decide to pre-execute instruc-
tions accordingly. We draw inspiration from these
techniques and introduce speculation to query
processing. Our approach is based on a visual
query interface that monitors the construction of
a query and takes advantage of the user ‘think
time’. In particular, based on the features of the
partial query specified at any point, the interface
prepares the database by issuing asynchronous
manipulations to it that are likely to make the
final query (or even queries further into the fu-
ture) more efficient. Furthermore, the interface
applies machine learning techniques on past user
actions and builds a user-behavior model that
guides speculation and deals with future uncer-
tainty. We formalize speculative query processing
as an optimization problem and derive algebraic
properties of the corresponding cost model that
are sufficient to address the complexities of the
particular optimization. We have implemented
our framework on top of an existing commercial
database system and have evaluated its effective-
ness experimentally, with actual user traces. Our
results show that speculation outperforms nor-
mal query processing, reducing query execution
time by an average of 35% and achieving perfor-
mance improvements of more than 90% on certain
queries.
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1 Introduction

Webster’s defines speculation as “assuming a business
risk in the hope of gain”. Under speculation, we pre-
dict the occurrence of a future event and then act in
anticipation of that event happening. This offers op-
portunities of gain: if the event indeed occurs, then
we end up being prepared for it, e.g., by having per-
formed part of the necessary work ahead of time. On
the other hand, this involves some risk as well: if the
event does not occur, then our actions may end up
being wrong, e.g., by having performed useless work.
Therefore, speculation is characterized by a trade-off
between risk and future payoff.

Pre-fetching techniques represent a very success-
ful application of speculation in computer science.
Modern operating systems, for example, pre-fetch file
blocks if there is evidence that an application performs
a sequential scan. Similarly, modern processors utilize
specialized components to speculate on the memory
access patterns of an application and pre-fetch mem-
ory blocks in the processor cache. Another example of
speculation in modern hardware platforms is branch
prediction: whenever the program counter reaches a
branch instruction (if-then-else command), the proces-
sor issues the evaluation of the branch condition but
does not wait for its completion. Instead, it speculates
on the boolean value of the condition and pre-executes
the corresponding branch of the instruction. Experi-
ence shows that, despite the risks, speculation pays off
in performance.

We draw inspiration from these techniques and use
the same underlying principles to introduce specula-
tion to query processing so that query response time
is decreased. The following example illustrates our in-
tuition.

Consider an environment where users interactively
explore the contents of a database to identify interest-
ing patterns in it. For simplicity, the database schema
contains a single relation employee with three fields:
name, age, and salary. Interaction occurs through the
simple QBE-like visual query interface shown in Fig-
ure 1: there is a tabular representation of the relation
and the user formulates a query by placing projection
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Figure 1: Query formulation

indications and selection predicates on the correspond-
ing fields. When ready, the user clicks on the “GO”
button to send the query to the database and retrieve
the results. Assume that the user has the following
query in mind:

SELECT name

FROM employee

WHERE age<30

Figure 1 shows how formulation of the query might
progress over time, with time on the x-axis. The user
places the selection predicate on age at time t1, speci-
fies a projection on name at time t2, and finally, clicks
the “GO” button at time t3. We make two observa-
tions based on this trace:

• At any point before the “GO” event, a snapshot
of the interface corresponds to a preview of the final
query. Furthermore, the closer we are to the “GO”
event, the more this preview resembles the final query.

• The user formulates the query incrementally and
may spend time in various possible activities: look
at earlier results and think of what the current query
should be; type in the next query fragment; exam-
ine the current query for correctness or completeness.
The database system is idle with respect to that user
during this time and receives work (a complete query)
only at the end.

These two observations form the basis of applying
speculation to query processing: we use the preview of
a query to speculate on its final form and take advan-
tage of the idle time to prepare the database so that
execution of the final query is more efficient. In our
example, the preview of the query at time t1 indicates
that the final query is likely to contain the predicate
age<30. Based on this, consider issuing the following
materialization to prepare the database:

SELECT *

FROM employee

WHERE age<30

INTO TABLE young_employee

This is executed asynchronously, while the user is
working on the rest of the visual query. Assuming that
the materialization completes before the user clicks

on “GO” (time t3) and that the final query retains
the predicate on age, we can use the new relation to
rewrite the final query as follows:

SELECT name

FROM young_employee

The rewritten query produces the same answer as
the original query, since the tuples of the new relation
already satisfy the predicate on age. If there are no
indices on the employee relation, both queries require
a sequential scan: the I/O cost of the original query is
|employee| blocks, while that of the rewritten query
is f×|employee| blocks, where f ≤ 1 is the selectivity
factor of the predicate. As a result, we have managed
to reduce the execution time of the query by a factor
of 1/f , which could be quite significant.

In this paper, we study the general concept of spec-
ulative query processing in a data exploration envi-
ronment, as illustrated in the above example. More
specifically, we propose the use of a speculative pro-
cessing subsystem that operates within a visual query
interface and takes advantage of the user’s think-time
in order to issue asynchronous manipulations which
prepare the database for the upcoming queries. Our
contributions can be summarized as follows:

•We provide a formal framework for using speculation
on top of a database system, casting the problem es-
sentially as an optimization problem. We identify and
elaborate on the following parameters that determine
the effectiveness of the overall approach: (a)the alter-
native actions that the system may take to prepare it-
self for an upcoming query, (b) the search strategy for
enumerating these alternatives, and (c) the cost model
for evaluating the expected effectiveness of each action
in reducing the execution cost of the final query.

• We formulate the cost model and derive algebraic
properties for cost formulas that allow speculative ac-
tions to be evaluated locally, without direct reference
to all potential final queries, which are infinite in
number. In addition, we embed into the cost model
the ability to cache the output of speculative actions
and reuse it in future queries, which in a typical ex-
ploratory environment are expected to be similar.

• We use machine learning techniques to obtain the



profile of a user with respect to how a preview of a
query correlates to the final query (i.e., whether or
not query parts are likely to be removed before the
final query is issued) and how a query correlates to
the next.

• We present the results of a realistic experimental
evaluation of an implementation of our framework, in-
volving human subjects using a simple visual inter-
face for exploratory data analysis. These results show
that certain speculative actions may greatly reduce the
overall response times of queries, thus demonstrating
the overall potential of speculative query processing.

To the best of our knowledge, this is the first effort
that makes a strong connection between the user in-
terface of a database system and its query processor,
taking advantage of the characteristics of user interac-
tion for reducing query response time. It has similar-
ities with efforts like materialized view design based
on a given workload or on monitoring of user queries.
The key innovation is in making use of the individual
user actions during query specification. Accordingly,
the key benefit is in having the closest possible affinity
with the user’s true intentions at any one time, result-
ing in the best possible prepared database to answer
the current query efficiently.

2 Preliminaries

Our work assumes an environment of exploratory data
analysis: there is a read-only database and a user at-
tempts to discover useful and interesting information
in it. The process is interactive: the user issues a query
that involves several (selection and/or join) conditions
typically, visualizes the results with the appropriate
presentation methods, identifies an “interesting” re-
gion of data, and proceeds with a new, usually related
query. Thus, the database server receives a stream of
nontrivial queries that traces the exploration path of
the user. As implied by the example of Figure 1, the
higher the complexity of a query, the longer the query
formulation phase, and therefore the bigger the op-
portunity for speculative query processing to improve
query response time significantly.

Our work focuses on queries that are equivalent to
select-project-join queries (conjunctive queries). The
overall formulation would remain valid for general
queries as well, e.g., queries with aggregates, but some
of the details would require further elaboration. In
what follows, we use two representations for conjunc-
tive queries, depending on what needs to be empha-
sized at each point. The first is in the form of flat
SQL (select-from-where). The second is in the form
of query graphs: each relation in the query is mapped
to a unique vertex in the graph; each join between
two relations is mapped to an edge between the corre-

SELECT *
FROM R,S,W
WHERE R.a=S.a AND
      S.b=W.b AND
      R.c>10  AND
      W.d<2000d<2000c>10

⇐⇒

R S

W

Figure 2: Example query graph

sponding relation vertices; each selection on a relation
in the query is mapped to an edge between the corre-
sponding relation vertex and a new vertex containing
the operator and the constant of the selection. The
vertices and edges of a query graph are the atomic
parts of the corresponding query. Figure 2 shows an
example.

Our work assumes a visual query interface for the
user interactions with the system1. Examples include
the one implied in Figure 1, where selections are ex-
plicitly specified by users and joins are implicitly un-
derstood by the system, and one where users operate
directly on query graphs. Independent of the partic-
ulars, the user builds a query incrementally, by ex-
plicitly or implicitly inserting, removing, and updat-
ing atomic query parts, and clicks on a “GO” button
when ready to send it to the database. In the case
of conjunctive queries, the above implies a sequence
of alterations in the set of relations that participate
in a query and the set of selections and joins in its
qualification (vertices and edges of the corresponding
query graph). At each stage, the atomic parts already
specified for the query form a partial query. The user
proceeds through a sequence of partial queries, which
eventually converges to the final query submitted to
the database after the “GO” event.

3 Speculative Query Processing

3.1 System Architecture

Figure 3 shows a schematic diagram of the system ar-
chitecture that we envision. Given a database server
(DBMS) and a client interface to it, we attach a spec-
ulation subsystem that monitors user actions on the
interface and reacts to them appropriately. One could
envision such a subsystem inside the database server
as well, which would offer greater versatility and flexi-
bility but would also require modifications to existing
server code. Our general formulation is independent of
where that subsystem resides. We proceed, therefore,
having the diagram of Figure 3 in mind as it corre-
sponds to what we have implemented, and we point
out explicitly the places where the particular archi-
tecture imposes any restrictions. Independent of the

1One can envision speculation in the context of a textual

query interface, although this requires further elaboration on

certain aspects of our framework.



architecture choice, the speculation subsystem consists
of four primary components, which are described indi-
vidually below. These components are orthogonal to
each other, in the sense that choices in one of them do
not restrict choices in any of the others.
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Figure 3: System Architecture

The central component of the subsystem is the Spec-
ulator, which is essentially a query optimizer. It ac-
cepts a partial query as input and, based on its details,
it examines various alternative actions it may take to
modify the state of the database; it then chooses the
‘optimal’ such alternative based on the cost model and
sends it to the DBMS for execution.

The Manipulation Space is the component that de-
termines the set of alternatives that the Speculator
examines. In practice, this set is based on the cur-
rent partial query that is input to the Speculator and
on a small collection of available operations that can
be performed on (combinations of) the atomic parts
of the partial query. For the example of Section 1,
materializing the selection into the temporary relation
young employee is one such alternative, while building
an index on the age attribute may be another.

The Cost Model is the component that specifies the
function optimized by the Speculator. This function
represents the potential future benefits and risks of a
manipulation on the execution cost of the final query
when that is issued by the user. This is calculated at
a time when the final query is still under development
and, therefore, not known. Therefore, this function
has to capture the expected benefit of a manipulation,
calculated (in principle) over all potential final queries.
One may also conceive of a version of speculation that
examines the effects of a manipulation on several final
queries into the future. The only difference in this
case is that the optimization function has to capture
the expected cost of a sequence of final queries (up to
a certain depth).

Finally, the Learner observes users over time and
generates profiles capturing their typical query formu-
lation patterns. Given a partial query, the Learner
uses this to generate for each potential query the
probability it will indeed be the final query issued by
the user, and then feeds that probability to the Cost
Model.

There are three conventions on the system opera-
tion under this architecture that we have adopted and
are worth mentioning. First, all speculative manipula-
tions are executed asynchronously, i.e., while the user
is working on the partial query. If the user modifies
the partial query in a manner that makes the expected
benefits of a manipulation under way disappear, then
the manipulation is canceled. For the example of Sec-
tion 1, the asynchronous materialization of the selec-
tion on age will be canceled if the user removes the
predicate on age. As a special case, when the final
query is issued, any manipulation currently in progress
is canceled as well.

Second, a simple heuristic is used to perform
garbage collection: the result of a manipulation per-
sists as long as the current partial query indicates it
will be useful for the final query. For the example of
Section 1, the materialization of the selection predi-
cate will persist after the final query (time t3) as long
as the predicate remains on the partial query. In this
manner, the system takes advantage of inter-query lo-
cality.

Third, at any point the system has at most one
manipulation sent to the DBMS and still outstanding
(not completed), so that the overall system load is kept
low.

3.2 Manipulation Space

The set of alternative manipulations generated by the
Manipulation Space (Figure 3), which prepare the
database for a forthcoming query, is denoted by M.
The members of M are defined based on a small col-
lection of available operations applied, in principle, on
any part of the database, but in practice, only on (com-
binations of) the atomic parts of the current partial
query, i.e., on the sub-graphs of its query graph. In
addition, we assume that M always includes a mem-
ber m∅ that represents the null manipulation, i.e., one
that does not modify the database. In our work, we
consider five types of operations that define members
of M: data staging, histogram creation, index cre-
ation, query materialization, and query rewriting. We
define these operations below.

Data staging warms up the buffer pool by pre-
fetching and pinning the first few pages of a relation,
saving the time to read these pages from disk if the fi-
nal query accesses the relation. This technique implies
the ability to pin/unpin pages in the buffer pool on de-



mand and therefore requires an interface for low-level
access to the database. In effect, it is very difficult, if
not impossible, to implement data staging on top of
an existing DBMS (Figure 3), so we do not consider it
in our implementation.

Histogram creation improves the statistics of the
database by creating a histogram on an attribute of a
relation. If the final query includes a predicate on the
indexed field, the optimizer will produce more accurate
cost estimates for the execution plans and, therefore,
identify a more efficient one.

Index creation creates a new index on an at-
tribute of a relation, providing efficient access for
queries that contain predicates on the indexed field.

Query materialization generates and stores a
new relation that is the result of executing a query on
the database (essentially, a materialized view). Thus,
the optimizer is able to use it in any final query whose
graph contains the materialized query as a sub-graph.

Query rewriting is identical to query material-
ization, only that a materialized sub-query is always
replaced by its result relation in any final query con-
taining it. Thus, the system is forced to use the mate-
rialized relation, whereas in query materialization this
was just an option. Normally, query materialization
should be preferred over query rewriting: the specu-
lative optimizer would create materialized views and
the database optimizer would rewrite the query if it
proved beneficial. Not all database systems, however,
support materialized views and rewriting queries at
the plan level; we therefore include query rewriting as
a separate manipulation to cover these cases.

Each operation presents different trade-offs in how
effectively it can prepare the database for the upcom-
ing user query. Consider, for example, histogram cre-
ation and query materialization. Histogram creation
has a lower execution cost and is therefore more likely
to complete in time, before the final query is issued,
but query materialization offers a greater potential for
improvement since it creates a materialized view that
can rewrite the final query. On the other hand, his-
togram creation is more generic and can benefit any
query with a predicate on the covered attributes, while
query materialization can only affect the queries that
include the materialized sub-graph. In general, we can
identify three characteristics that describe the trade-
offs of each operation: cost of execution, impact on the
final query plan, and level of specificity. As we consider
the range of proposed operations, from data staging
to query rewriting, we observe a trend of (a) increased
cost of execution, (b) increased potential for perfor-
mance improvement, and (c) increased specificity. We
have verified experimentally that despite the risks, the
most aggressive manipulations, i.e., query materializa-
tion and query rewriting, are the best in terms of re-

ducing query execution time. Hence, for the remaining
descriptions of the architectural components of Fig-
ure 3 we will concentrate on the specified manipula-
tions. Some of these descriptions and formulations are
more general, but this generality is not important for
our discussion.

3.3 Cost Model

Let Q be the set of all possible (final) queries that the
user may formulate. In principle, this set is infinite.
Furthermore, with some straightforward conventions,
any partial query may be considered as a complete
query as well, so Q includes all the intermediate steps
a user may go through during query specification. Fi-
nally, for notational convenience, let q be used to indi-
cate both a query and its query graph. Since a query
graph is a set of edges (and associated vertices), this
implies that ⊆, ∪, and ∩ are valid relationships and
operators for queries with the natural semantics on the
corresponding sets of edges and vertices.

Recall that M has been restricted to materializa-
tions only, so for every manipulation m ∈M, there is
a query qm that is being materialized in the database.
Also, m∅ ∈ M represents the materialization of noth-
ing. For q ∈ Q and m ∈ M, let cost(q, m) be the
(optimal) execution cost of query q on a database after
manipulation m has been applied to it. The Speculator
selects the manipulation m ∈ M that minimizes the
expected execution cost over all possible final queries,
i.e., the expected value of cost(q, m) over all q ∈ Q.
Furthermore, this expected value weighs the cost of
each query q according to its probability f(q) to be
the final query. Hence, if Cost(m) is the function min-
imized, it is

Cost(m) =
�
q∈Q

f(q) × cost(q, m) (1)

Unfortunately, evaluation of Cost(m) requires enumer-
ating Q, an infinite set, and calculating a cost and
a probability for each q ∈ Q. To make the opti-
mization problem manageable, the Speculator assumes
that function cost(q, m) has the following two algebraic
properties:

P1 [Containment Dependence]: If a query does
not contain a materialized query, its execution
cost remains unaffected by the materialization.
Formally, for query q and query-rewriting manip-
ulation m, the following holds:

cost(q, m) = cost(q, m∅) if qm � q.

P2 [Linearity]: If a query consists of the union of
two disjoint sub-queries, its execution cost is equal
to the sum of the individual costs. Formally, for
queries q, q1, q2 and query-rewriting manipulation



m, the following holds:

cost(q, m) = cost(q1, m) + cost(q2, m)

if q = q1 ∪ q2 and q1 ∩ q2 = ∅.

Although not always valid, these properties are ap-
proximately true in many cases and have proved to be
sufficient for the level of accuracy needed in the Spec-
ulator’s optimization. More to the point, they lead to
the following result:

Theorem 3.1 Let f⊆(q) denote the probability that a
query q will be contained in the final query. If function
cost(q, m) satisfies properties P1 and P2, then min-
imization of Cost(m) defined in (1) is equivalent to
minimization of Cost⊆(m) defined as follows:

Cost
⊆(m) = f

⊆(qm) × (cost(qm, m)-cost(qm, m∅)) . (2)

Based on this theorem, the Speculator needs to min-
imize a function that is independent of the universe
Q of all possible queries. For a given manipulation
m, the function depends on two quantities: (a) the
probability that the corresponding query qm, a subset
of the current partial query, will remain in the final
query, which is much simpler to learn than f(q); (b)
the difference of the cost to scan a materialized qm

from the cost to generate it from scratch, which can be
computed based on standard database cost formulas.
Clearly, Theorem 3.1 leads to efficiently computable
cost formulas and is thus crucial in making specula-
tion affordable.

The proof of the theorem is omitted due to lack
of space. Given its critical importance, however, we
present the essence of its proof through a simple exam-
ple. Consider Q containing three queries: query q1 ≡

σθ(R), query q2 ≡ R � � S, and query q3 ≡ σθ(R) � � S.
Further, considerM containing two manipulations: a
materialization m1 of (say, the current partial) query
q1 ≡ σθ(R), and manipulation m∅ that does not mod-
ify the database. The Speculator needs to identify the
sign of the following difference:

Cost(m1)-Cost(m∅) = [f(q1) × cost(q1, m1) +

f(q2) × cost(q2, m1) + f(q3) × cost(q3, m1)] −

[f(q1) × cost(q1, m∅) +

f(q2) × cost(q2, m∅) + f(q3) × cost(q3, m∅)]

= f(q1) × (cost(q1, m1)-cost(q1, m∅)) +

f(q2) × (cost(q2, m1)-cost(q2, m∅)) +

f(q3) × (cost(q3, m1)-cost(q3, m∅))

If the difference is negative, then m1 is advantageous;
otherwise, it is not. Note that we can express q3 as the
union q1 ∪ q2. By property P2, the original expression
can then be transformed into the following:

Cost(m1)-Cost(m∅) =

(f(q1) + f(q3)) × (cost(q1, m1)-cost(q1, m∅)) +

(f(q2) + f(q3)) × (cost(q2, m1)-cost(q2, m∅))

Note that q2 does not contain q1 as a sub-query
and thus, by property P1, the second difference can
be removed. Furthermore, in this simple example,
f(q1)+f(q3) = f⊆(q1) as q1 and q3 are the only queries
in Q that contain q1. Hence, the above expression be-
comes

Cost(m1)-Cost(m∅) = f
⊆(q1) × (cost(q1, m1)-cost(q1, m∅))

= Cost
⊆(m1) = Cost

⊆(m1) − Cost
⊆(m∅)

The last equality is from formula (2), which gives
Cost⊆(m∅) = 0. Clearly, the original problem has
been reduced to a comparison of the values of function
Cost⊆(m) for m1 and m∅, as Theorem 3.1 indicates.
In this example, this corresponds to a comparison of
the cost of performing the selection on R (cost(q1, m1))
to the cost of accessing the materialized result of the
selection (cost(q1, m∅)), which is quite intuitive.

It is possible to extend the cost model so that it
takes into account the effect of a manipulation on the
next n user queries (n ≥ 1), thus allowing for deeper-
looking speculation. This is an important point in vi-
sual exploration environments, where consecutive user
queries are similar and therefore manipulations can be
re-used across multiple queries. In the full version of
this paper [11], we present an extended cost formula
that operates on sequences of future queries, instead
of a single query, and we prove the equivalent of The-
orem 3.1 for the extended case. Overall, we show that
speculation on a sequence of future queries is feasible,
as it requires only local references to the sub-queries
corresponding to the materializations under consider-
ation.

3.4 Learner
The Learner observes the user’s on-screen actions and
builds a profile that characterizes the behavior of the
user during query formulation. This profile is ulti-
mately used to provide estimates for the probability
terms that appear in the cost formulas. The profile is
continuously updated with information on the most re-
cent actions of the user and is based on several learner
components. Each learner captures one specific aspect
of the user’s querying behavior and approximates a
specific probability term in the cost model. The com-
plete details on the machine learning methods used
and the training of the learners can be found in the
full version of this paper [11].

3.5 Speculator
The main task of the Speculator is to enumerate the
manipulations of M generated by the Manipulation
Space, so that it can choose the one with the least
value of Cost() based on the details supplied by the
Cost Model. As mentioned earlier, we only consider
query materialization and query rewriting manipula-
tions, since we have verified experimentally that they



are the most effective in reducing query execution
time. The enumeration of all possible materializations,
however, can be prohibitively expensive and can even
become intractable in certain cases. As a result, we
have made the following choices regarding the algo-
rithm for generating possible manipulations:

• We consider materializations on sub-graphs of the
current partial query only. We do not examine ma-
terialization of queries that are not compatible to the
current partial query, since it is not likely to pay off:
the partial query is highly likely to be contained in the
final query and speculation on the remaining structure
of the final query is rather fruitless.

• We consider materializations of individual selection
edges or materializations of individual join edges en-
hanced with all selection edges attached to the join
edge. We do not generate materializations on arbitrary
sub-queries of the current partial query since examin-
ing all the sub-queries of a large partial query would
be expensive and, furthermore, not all sub-queries cor-
respond to useful materializations.

Overall, the Speculator enumerates materializations
on selections and on two-way joins with all relevant
selections attached. In addition, the enumeration al-
gorithm takes into account previous materializations
that have completed and that are relevant to the cur-
rent partial query. Consider, for example, the partial
query σθ(R) � � S and assume that R � � S has already
been materialized in a relation T . The enumeration
algorithm will produce two materializations for σθ(R):
T1 ← σθ(T ), which uses the already completed mate-
rialization T , and T2 ← σθ(R) � � S, which re-executes
the join. The two materializations have the same result
but require different database operations, and the cost
model will eventually select the one with the lowest
execution cost. The complete details for the Specu-
lator component, along with the pseudo-code for the
enumeration strategy, can be found in the full version
of this paper [11].

4 Experimental Evaluation

We have implemented a prototype speculative query
processor based on the architecture of Figure 3. The
database server is Oracle 8i while the client is a visual
query interface that we have developed. We have con-
ducted several experiments with this prototype. Their
details are given in the following subsections and their
results in the next two sections.

4.1 Experimental Methodology
In order to create a realistic simulation of our target
environment in our experiments, we used real traces
of human subjects exploring a dataset. We collected
the traces with a simple data exploration experiment:
we presented a particular dataset to fifteen users and

posed five questions to them. Each question was
phrased in English and was formulated at an abstract
level, e.g., “Find three suppliers that are expensive,
and the items they supply are either not popular or
can be located by other suppliers at a lower cost”. For
each question, the user was free to explore the dataset
and pose an arbitrary number of ad hoc queries to find
a suitable response. Furthermore, we had generated a
skewed dataset with certain trends and patterns, so
that the users would discover meaningful answers.

The users formulated queries on the SQUID visual
interface (http://www.cs.wisc.edu/∼alkis/squid).
SQUID employs a paradigm similar to QBE: the user
places projection and selection annotations on the
visual schema, and the visual query is then translated
to a SQL query and executed against a relational
DBMS. We used a modified version of the interface
that recorded the timing and actions of each user in
a separate trace file, which was then used to replay
the user session on demand. For each experimental
setup (see below), each trace was replayed twice,
once for normal processing and once for speculative
processing. For each replay, we measured the elapsed
execution time for any query set QI of interest and
then evaluated the performance of speculative pro-
cessing as a percentage of improvement over normal
processing as follows:

improvement = 1−

∑

q∈QI

timespec(q)

∑

q∈QI

timenormal(q)

A positive improvement represents a reduction in
query execution time, while a negative value repre-
sents an increase in query execution time (compared
to normal processing).

4.2 Experimental Setup

Our setup consisted of a dual Pentium-II machine with
1GB of physical memory, running Redhat Linux 6.2.
Both the interface client and the database server run
on the same machine. For the experiments, we re-
played each trace with a cold buffer pool and with no
other user entering the system.

The schema used for the dataset was a subset of the
schema of the TPC-H [13] benchmark. It involved six
tables (orders, customer, lineitem, partsupp, supplier,
part) mutually connected through various foreign keys.
It was populated with data of varying size for differ-
ent experiments, and of high skew in fields that were
likely to appear in selections in user queries. Finally, it
was supported by indices and histograms on all skewed
fields and foreign key fields so that the database was
fully prepared for the experiment queries.

As mentioned in Section 3.2, we verified experimen-
tally that query materialization and query rewriting



outperform histogram and index creation in terms of
reducing query execution time. Furthermore, we fo-
cused entirely on query rewriting as query material-
ization would have complicated significantly the im-
plementation of our system due to the unorthodox
way the particular DBMS that we used treats non-join
views.

5 User Querying Behavior

In this section, we discuss the querying behavior
of users observed during the experiment. The fif-
teen users that participated covered a wide range of
database expertise: they were one database professor,
nine database graduate students and five other grad-
uate students. None of the users was aware of what
we were trying to measure or had any particular fa-
miliarity with the schema or data. In what follows, we
present the main characteristics of an “average” user
profile, based on a number of useful statistics. A more
extended analysis can be found in the full version of
this paper [11].

Query Structure: On the average, each trace
generated 42 SQL queries and each query contained
1-2 selection predicates and referenced 4 relations in
the FROM clause; user queries, therefore, had enough
complexity to make speculation worth while. Once
inserted into the partial query, a selection predicate
remained unmodified for three consecutive queries on
the average and a join predicate for ten; hence, reusing
speculative materializations across queries increased
their amortized benefit.

Query Formulation: Query formulation starts
with the first modification of the visual query and ends
when the user clicks on the “GO” event. During this
interval, the user is idle with respect to the database
and the speculative framework issues the asynchronous
manipulations that will prepare the database for the
upcoming query. The duration of this interval, which
is indicative of the user’s think-time, determines the
feasibility of applying speculation on query process-
ing. The following table shows the minimum, average,
maximum, and three percentiles (25%, 50%, 75%) for
the duration (in seconds) of query formulation in the
collected traces:

min avg max 25% 50% 75%

Duration 1 28 680 4 11 29

Overall, the results show that the users’ think-time
is large enough for asynchronous manipulations to be
issued and complete in time.

6 Results

We have experimented with three dataset sizes:
100MB, 500MB and 1GB. Throughout our experi-

ments, we have consistently observed that the distribu-
tion of query execution time is skewed towards “short”
queries: in general, users issue a few general “long”
queries and then explore more thoroughly a smaller
subset of the data. Based on the above observation, we
have focused our attention on the initial time ranges
that include the great majority of queries. We present
our results in the form of a barchart: we group queries
in buckets according to their execution time under nor-
mal processing and we calculate the performance met-
ric (Section 4.1) for the queries in each bucket. Fur-
thermore, we ensure that each bucket contains at least
5 queries so that the computed metric is statistically
robust and unaffected from the effects of outliers. For
the three dataset sizes, we have therefore identified the
following intervals: 3-13 second for the 100MB dataset,
15-65 seconds for the 500MB dataset and 30-140 sec-
onds for the 1GB dataset. These intervals contain the
majority of queries and are used for the entire pre-
sentation. The remaining, long queries are very few to
base any statistically valid results on them (fewer than
5 queries in each buckeet). Even so, their behavior is
similar qualitatively to the ones discussed.

6.1 Sensitivities to Environment

Figure 4 shows the relative performance of specu-
lation for the three different sizes of the database
mentioned above. We observe that speculation con-
sistently improves query execution time significantly
for all datasets: for the 100MB, 500MB, and 1GB
datasets, it reduces query execution time by 42%, 28%,
and 20% on the average, respectively (that is, normal
processing is 74%, 39%, and 26% more expensive, re-
spectively). The trend is clearly for decreasing im-
provement as the database size grows. Part of the
reason is that, in our experiment, a materialization
needs on the average 6 seconds on the 100MB dataset,
9 seconds on the 500MB dataset and 10 seconds on
the 1GB dataset. As a result, the percent of manip-
ulations that do not complete in time grows with the
size of the dataset: 17% for 100MB, 25% for 500MB
and 30% for the 1GB dataset. At the same time, how-
ever, completed manipulations have a greater effect on
query execution time and thus speculation still per-
forms well due to the increased savings in execution
time.

The extreme effects of speculation are also interest-
ing. Figure 5 shows the maximum performance im-
provement and the maximum penalty for each bucket
of queries. Overall, speculation may offer substantial
improvements and may reduce query execution time by
almost 100% for certain queries. In the 1GB dataset,
for example, speculation can yield sub-second response
time for a query that needs 40 seconds under normal
processing. Maximum penalties, on the other hand,
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Figure 4: Average relative performance of speculation under different dataset sizes
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Figure 5: Maximum performance improvement/declination under different dataset sizes

are much smaller than the improvement benefits and
become significant in few cases only; even then, they
mostly involve “short” queries and therefore the abso-
lute time penalty is not dominant. The source of such
negative performance is almost invariably the creation
and use of a materialized relation without an index in
place of an existing relation that is sorted or has an
efficient index on it. Although the Cost Model takes
all these issues into account, occasionally its estimates
lead to wrong decisions.

We have also performed several experiments with
memory-resident databases, which we do not present
here due to lack of space. Overall, our results show
that materializations can reduce execution time signif-
icantly even if they do not reduce I/O cost, and thus
speculation continues to outperform normal query pro-
cessing when the database is memory resident.

6.2 Speculation vs. Materialized Views
In this section, we evaluate the performance of spec-
ulation relative to materialized views. View materi-
alization is a popular precomputation technique and,
as such, it represents an alternative to speculation.
On the other hand, the two approaches are mutually
orthogonal, in the sense that speculation can be ap-

plied on both databases with materialized views and
databases without such views. In order to explore all
possibilities, we have experimented with three sepa-
rate runs of the traces: the first uses speculative query
processing on top of no materialized views (same runs
as before); the second uses normal query processing on
top of materialized views; and the third uses specula-
tive query processing on top of materialized views. In
our experiments, we have materialized the join of each
possible subset of the database relations, keeping all
their attributes. This configuration represents an ex-
treme case in favor of materialized views, as the DBMS
can answer any query by scanning the appropriate
view and possibly applying selections only, without
accessing the base relations or performing any joins.
Normally, storage constraints would limit the number
of created views and several queries would not be able
to benefit from any view.

Figure 6 shows the performance of the three ap-
proaches as an improvement over normal process-
ing without materialized views (Section 4.1). Over-
all, speculation offers more improvement for shorter
queries, while materialized views tend to perform bet-
ter as queries become more costly. These queries in-
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Figure 6: Average relative performance of speculation vs. materialized views vs. their combination

volve large table joins and speculative processing can
only complete a limited number of the relevant manip-
ulations; on the other hand, materialized views allow
the system to answer the query with a single scan in-
stead of executing the join. The combination of the
two techniques, however, seems to be the winner in all
but a few cases, sometimes decisively so, demonstrat-
ing the “universal” value of speculation. In the few
cases where the combination loses to pure materialized
views, the reason is identical to that mentioned in the
previous section for the case where speculation loses
to normal processing. Also, in the few cases where
the combination loses to pure speculation, the reason
is invariably misjudgement on the part of the DBMS
optimizer and use of a materialized view that is not
as efficient as using the original relations. The same
reason holds for the few cases where pure materialized
views lose to normal processing.

In the current formulation of our framework, the
speculative optimizer is ignorant of the existence of
pre-materialized views and issues the same manipu-
lations as in the previous experiments. A promis-
ing direction would be to make the speculative op-
timizer aware of the existing pre-materialized views.
With a modified cost model and manipulation space,
it could create new materializations on top of the exist-
ing views, allowing the database optimizer to rewrite
the final query even more efficiently. We plan to ex-
plore this option in our future work.

6.3 Multi-user Experiments

In the previous experiments, we have evaluated perfor-
mance in a single-user environment: we have replayed
each trace individually when no other users are access-
ing the database. We now present the results of a lim-
ited set of experiments that evaluates speculation in a
multi-user setting. The cost model remains as is, not
evaluating the impact of speculative manipulations on
speculative or even regular query processing by other
concurrent users. In any other case, the cost model

would have become extremely complicated, requiring
information on all users of the system, and could very
quickly make speculative query processing not worth
while. Despite the lack of global knowledge by the cost
model, however, our results show that speculation con-
tinues to outperform normal processing.

We evaluate the performance of speculation in a
multi-user environment by replaying simultaneously
three different user traces. In order to reduce the inter-
ference of speculative manipulations on the queries of
other users, we have employed a modified enumeration
strategy (Section 3.5) that generates materializations
of selection predicates only. In this manner, we execute
simpler manipulations and thus reduce the additional
load on the system. We assign 96MB to the buffer
pool, which represents a scale-up proportional to the
number of users.

Figure 7 shows the performance of speculation in a
multi-user setting. We have modified the time ranges
on the x-axis compared to the single user case, in
order to account for the different execution time of
queries. The results show that, again, speculation im-
proves query performance for most queries, especially
in the 100MB and 500MB datasets, although as ex-
pected, less so than in the single-user case. We also
observe some nontrivial penalties for several queries in
the 1GB dataset: in these cases, the server is already
under a very high load during normal query processing
and the additional overhead of asynchronous manipu-
lations results in significant penalties. Still, the perfor-
mance improvements are a rather promising indication
of the effectiveness of speculation in a multi-user envi-
ronment.

Speculation gives promising results in a multi-user
setting, even if the cost model does not account for
other concurrent users. In general, we expect that
speculation will become increasingly less effective as
the number of users grows. A natural solution would
be to suspend speculative processing when the server
is busy, and resume it when the load falls below a



96MB Buffer Pool
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Figure 7: Average relative performance for three simultaneous users

threshold. We plan to explore this option plus others
in our future work.

7 DBMS Support for Speculation

Up to this point, we have focused on an “external”
implementation of our speculative framework, as a
middle-ware module between the interface and the
database system. Throughout our experiments, how-
ever, we have observed several opportunities where a
tighter integration, between the speculator and the
database, could yield increased performance. In what
follows, we describe the type of functionality that a
DBMS could provide, in order to better support spec-
ulative query processing.

Current database systems do not provide any feed-
back on the remaining time for a running material-
ization. As a result, the Speculator follows a conser-
vative approach and cancels all incomplete manipula-
tions when the final query becomes known, instead of
waiting for their completion and then using their re-
sults to rewrite the final query plan. If the DBMS
could provide an estimate on the remaining time to
completion for pending manipulations, the Speculator
could evaluate the benefit of delaying the execution of
the final query until certain materializations complete.

An alternative approach would be for the DBMS to
use the partial results of incomplete materializations
in the final query plan. Consider, for example, an in-
complete materialization of a join R � � S into a new
relation T and assume that R � � S is contained in the
final query q. It might be more efficient if the execu-
tion plan uses T to scan the initial part of R � � S and
then evaluates the remaining part from the base rela-
tions. Overall, this solution suggests a different model
of speculative processing, where the speculator essen-
tially builds partial execution plans and the database
system “stitches” them together when the final query
is issued.

Finally, the DBMS could provide functionality that

would make speculation more efficient in a multi-user
environment. In order to help the Speculator re-
duce the overhead of asynchronous manipulations, the
database could provide information on the current sys-
tem load and available resources, so that materializa-
tions are issued when the system is not busy. An-
other approach would be to provide support for query
scheduling based on priorities, so that manipulations
are issued with lower priority compared to normal user
queries. In this manner, materializations run only
when there are available resources and are suspended
when user queries need to be executed.

8 Related Work

Query caching and self-tuning systems represent appli-
cations of speculation in database systems. In query
caching [3, 9, 12], the database uses the results of pre-
vious queries to answer efficiently similar subsequent
queries; in essense, this technique speculates that the
next query of the user will resemble the previous ones.
Self-tuning systems [2, 4, 14] operate in a similar fash-
ion: they monitor the incoming queries and use the
collected information as the basis for speculating on
the properties of the workload. Based on the specu-
lated properties, they tune the database accordingly
by creating the appropriate indices and materialized
views [1, 7], pre-fetching data pages [10], or modifying
operating parameters [5].

The key difference between our approach and the
two mentioned above is that they operate at the final
query level and do not consider the individual actions
of the user during query formulation. In query caching
and self-tuning systems, speculation occurs once the fi-
nal query becomes known; in effect, speculation does
not take in account the actions of the user in between
and good performance depends on the final queries
providing a sufficiently representative workload. Our
technique, on the other hand, operates at a much finer
level and targets explicitly the stage of query formu-



lation. Speculation occurs whenever the partial query
is modified and is based both on the previous queries
and the current state of the query under development.
As a result, speculation should be able to make better
informed decisions on the structure of the final query,
based on the most recent and most highly-correlated
information there can be: parts of the query itself al-
ready specified (even if tentatively). Another charac-
teristic feature of our approach is that it incorporates
user-interface aspects into speculation: based on the
particular, exploratory style of human-DBMS interac-
tion, speculative query processing takes advantage of
a user’s “think”/idle time to precompute and prepare
the database. We are not aware of any other work that
has linked database user interfaces with query process-
ing in such beneficial fashion. Finally, the Learner
trains on the query formulation actions of the user
and builds a profile that feeds into the necessary prob-
abilities of possible final queries. Again, we are not
familiar with any other work on profiling users at such
a fine level of behavioral detail.

Online Query Processing [8] represents another ex-
ample of employing user interface interaction to af-
fect query execution. In online processing, the user
visualizes the partial results of a running query and
desires different levels of detail over certain regions of
the data. The system then attempts to guide query ex-
ecution so that it refines faster the partial results over
the interesting regions. Online processing, therefore,
considers user-interaction during query processing (the
final query is already known), whereas our technique
operates during query formulation (the final query is
not yet known). The two techniques are in fact or-
thogonal and can be used in combination. This also
raises the opportunity of using speculative processing
in order to facilitate online processing, e.g., by mate-
rializing ripple joins [6]. We plan to investigate this
direction in our future work.

9 Conclusions

In this paper, we have introduced the concept of spec-
ulative query processing. We have presented a frame-
work that operates within a visual query interface and
issues asynchronous actions to prepare a database for
future user queries. We have formulated speculation
as an optimization problem and we have presented a
cost model that deals with uncertainty and abstracts
the lack of knowledge for the final query over a set
of possible queries along with a probability for each
query. Although the general formulation of the prob-
lem is intractable, we have derived cost expressions
that are efficient to compute and have proposed the
use of machine learning techniques to estimate the
needed probabilities. We have presented an evalua-
tion of our prototype implementation, using simulation

traces that we collected from real exploratory sessions
with human subjects. Our results have shown that
speculation outperforms normal query processing un-
der various database configurations, improving query
performance by an average of 35% and in some cases
even by 90%. We have also presented a limited number
of multi-user experiments and showed that speculation
continues to outperform normal processing in many
cases even if it does not deal explicitly with multiple
concurrent users.
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