
Capacity Bound-free Web Warehouse

Yahiko Kambayashi, Kai Cheng

Graduate School of Informatics, Kyoto University
Sakyo Yoshida Homachi, Kyoto 606-8501, JAPAN

fyahiko,chengkg@db.soc.i.kyoto-u.ac.jp

Abstract

Web cache technologies have been developed as
an extension of CPU cache, by modifying LRU
(Least Recently Used) algorithms. Actually in
web cache systems, we can use disks and tertiary
storages since access time of disks (or even online
tapes) is still shorter than time required for retriev-
ing web pages from origin severs. Thus, we can
remove the restriction of cache size that has been
the most severe condition for designing cache al-
gorithms. We still need to determine the priority
of data for efficient processing. In this paper, the
concept of Capacity Bound-free Web Warehouse
(CBFWW) will be introduced. There are the fol-
lowing assumptions in conventional web cache
systems. (1) Priority of each object correspond-
ing to web contents is simply determined by using
queue. (2) Each object is independent. (3) Trans-
parency of cache is assumed, where a user cannot
know the contents.

As the communication speed of the web is very
slow, we can use complicated algorithms to de-
termine the priority. Priority of newly retrieved
documents is determined by computing their sim-
ilarities to the documents with known priorities.
Although objects with high priority are usually
stored in fast access storage, we will discuss how
to handle large objects. In conventional database
systems, usage information like priority is hidden
to the users. As in web-based applications, only a
small fraction of data becomes hot spot and hot
spots are changing very rapidly, self-organizing
property using dynamically changing priority is
important. As web data are very much compli-
cated, we have to handle mutually related data
objects. Links and structures of documents are

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2003 CIDR Conference

also factors to determine the priority. As a large
amount of data is stored, we should use the con-
tents like database systems, not like conventional
cache systems. Therefore transparency is not as-
sumed. We need mining functions to analyze the
usage patterns. We can retrieve objects with usage
data which were not possible by cache or database
system. The whole systems should have functions
of cache, databases and data warehouses. We can
further add useful functions.

1 Introduction

This work is motivated by the following observation: with
the significant advances in storage technology, storage ca-
pacity is currently not an important limiting factor for disk-
resident caches such as web caches. Under such environ-
ment, we will discuss the following two problems: (1) How
to organize a web cache with a little restriction of the ca-
pacity bound. (2) What kinds of new functions should be
added for such advanced web caches.

In the past decade, the explosive growth of internet and
world-wide web poses new challenges upon the network
and database technologies. Due primarily to the popular-
ity of the web, internet traffic has been doubling every 6
months [11], whereas according to [7] the bandwidth of the
backbone only increases by 50% every year. The widen-
ing gap between the amount of the traffic and the network
bandwidth results in increase of user response times.

There are mainly the following approaches for reducing
the web traffic. (1) Data compression: It will contribute
to reducing the amount of data to be transmitted. (2) In-
dex organization: A good index will help to reduce the
cost of unnecessary retrieval. (3) Data duplication: If there
are copies available at close sites, communication cost can
be reduced. For (1), there are a lot of standards and it is
rather difficult to improve compression algorithms drasti-
cally. For (2), robots will search through internet and they
will cause the increase of traffic. There is a trade-off prob-
lem between the quality of the index and robot usage.

For (3), mirror sites and cache are representative tech-
niques. As one of the advantages of caching is its self-
organizing capability, i.e. contents are selected automati-
cally, it has been a common technique widely used to en-

hance internet infrastructure. Cache can be deployed at a
variety of situations. Cache for content delivery networks
(CDNs) is used for materialized view, which will reduce
workload of origin web servers.

Traditionally, caches have assumed to have a limited
storage capacity and cache replacement algorithms are ded-
icated to handling the situation when no space left for hold-
ing new data. However, throughout last decades, storage
technologies have advanced significantly. Currently, the
price of magnetic disks is as low as 700 MBytes a dollar
(http://www.computersupersale.com/) in con-
trast with 24 MBytes a dollar in 1998 [9]. Since access time
of disks (or even online tapes) is still shorter than time re-
quired for retrieving web pages from origin severs, we can
use disks and tertiary storages in web cache systems. Thus,
we can remove the restriction of cache size that has been
the most severe condition for designing cache algorithms.
It is not unrealistic to employ caches of Terabytes or even
Petaytes to enhance the internet infrastructure in the near
future.

The concept of cache originally came from cache for
CPU, thus there are the following assumptions:

1. Capacity limit. Cache size is usually very small due
to the limit of chip size.

2. Simple algorithm. In order not to incur too much
overhead, simple algorithms are used for cache man-
agement. Sometimes special hardware support is re-
quired.

3. Transparency. Neither the cache manager nor the pro-
cessor is required to investigate the contents of the
data blocks in cache.

4. Performance measurement. Evaluation of cache al-
gorithms is primarily based on hit ratio, that is, how
many requests out of all are satisfied by a cache.

When caches are extended to other fields, such as virtual
memory management, disk I/O or database buffering, mo-
bile or web caching, the basic assumptions described above
are not changed so much, although some minor changes
have made in measurement of cache performance. For in-
stance, to handle web data whose sizes are not equal, hit ra-
tio is modified to byte hit ratio (hit ratio weighted by sizes
of data).

Transparency is only effective for a small amount of
data. When a large amount storage space is available,
cache will become a giant repository of information. Trans-
parency is not suitable, since users cannot make use of con-
tents in the cache actively. Transparency results in great
loss of cache utility. By our experiments, we found the fol-
lowing fact by analyzing web access logs of our research
group for one month:

Over 60% of web pages once used will never be
retrieved again before modified or replaced.

Similar results can also be found in other studies [3, 10].
Even we employ an optimal algorithm for cache manage-
ment, the majority of web data are always unused.

To deal with these issues, we have to “forget definitions
and constraints used for traditional cache and to start to
define them from the scratch”. We can also add new useful
functions. The basic assumptions are,

1. There is conceptually no limit of storage space.

2. Store everything as long as it seems to be worthwhile.

3. Users can query the contents of cache and interact
with cache in a non-transparent manner.

4. Operational data (logs) are also stored for priority
management and performance improvement. These
data can also be used for recommendation functions.

Although we do not assume the limit of storage space,
we still need to consider priority of data mainly due to the
performance reasons. Besides the advantages of database
functions, self-organizing capability of cache is important.
We will discuss how to determine priority under web envi-
ronment. The following problems are newly discussed in
this paper.

First, in the traditional cache, all the data in the cache
can be retrieved by similar access time, priority of data
in the cache is only necessary when there is no space for
newly added data. Thus it is required to determine the data
with the least priority only. If a data object is not used for a
long time, the priority will go down. In our system, there is
a storage hierarchy and it will be a waste of main memory if
newly added objects get the highest priority as 60% of data
will not be reused. We have developed an algorithm to de-
termine the priority of an object when it is retrieved, using
the content relevancy (use of topic sensor, to be discussed
later) and the similarity between objects which have been
assigned their priority. For example, a newly added object
is similar to the object with low priority, the same priority
may be assigned to the new object.

Secondly, since web data are complicated, we have to
develop methods to assign priorities to such composite ob-
jects. Besides links, semantic constraints will also deter-
mine the priorities of mutually related objects. For exam-
ple, if object A is shared by to composite objects B and C,
the number of retrievals of object A becomes bigger than
those of B and C. By traditional way, object A will have
high priority. In our algorithm, the priority of A will not
exceed the priorities of B and C. Our definition assigns nat-
ural priority for object A.

We have discussed how to map objects with priority to
appropriate storages.

1. Storage media. Where to store (main memory, disks,
tapes) is determined by the priority.

2. Index structure. Detailed index is given to important
documents. Some important indexes are stored in the
main memory.

Database Systems Data Stream Systems Traditional Data Caches
Objectives Data Management Online Decision Support Efficiency
Data Store Persistent Store Little or No Store Temporary Store
Storage Capacity No Limit Assumed Limited Memory Limited Storage
Data Manipulation Insert, Delete, Update Append-Only Insert, Delete
Query Capability Select, Join, Project, Aggregate (Approximate) Aggregate Not Allowed
Management System DBMS DSMS [1] Ad hoc

Table 1: Comparison among Databases, Data Streams and Traditional Data Caches

3. Levels of details. Since there may be important but
large documents, we may not be able to store the
whole data in the main memory, abstracted contents
are prepared to be stored in the main memory in order
to save space.

Under this background, in this paper, we propose Ca-
pacity Bound-free Web Warehouse (CBFWW), a sophisti-
cated manager for caches with a very little storage limita-
tion. In addition to the functions of a conventional cache,
a CBFWW implements a set of new functions as listed be-
low. The architecture is shown in Figure 1, which will be
discussed in Section 3

1. Improving utilization of data that could have been ig-
nored by transparent accesses

2. Determining priority of data when retrieved for the
first time based on popularity of similar contents. Pri-
ority is used for determining the object location in
self-organizing storage structure.

3. Use of data in CBFWW as a sample of the whole web
for popularity-aware search and cache-conscious nav-
igation.

4. Detection of hot topics from news sites using a topic
sensor to improve accuracy of priority prediction and
realization of prefetching operations.

The remainder of this paper will be organized as fol-
lows. In the next section, we will review techniques and
proposals related to our work. Section 3 gives an overview
of a CBFWW system. Section 4 describes priority-based
advanced queries and storage management scheme. To fa-
cilitate handling web data, Section 5 gives an object hier-
archy model for hypertext-based data. Section 6 concludes
the paper and describes some future directions.

2 Related Work

Our proposal is based on an analysis of features in
databases, data stream and traditional data cache. In this
section, we briefly review previous work relevant to our
work, particularly we put emphasis on systems and propos-
als on data management in non-traditional environments.

2.1 Databases and Data Streams

Data stream refers to fast arriving data tuples, which has re-
cently attracted strong attention [1]. Such systems become
available due to the reduction of storage cost. Although
data stream systems and CBFWW are handling a large
amount of data, the characteristics are completely different
as shown in Table 1. The major objective of a data stream
model is for online decision support. Persistent store is not
required and timely response is important. A data stream
can be seen as a append-only table. Queries to a data stream
are limited to aggregate, for instance, Max, Min, Average,
mostly in an approximate way. Individual data is not so im-
portant as in traditional database systems. Data will either
be discarded or archived so that it is quite expensive to re-
trieve old data once processed. Data Stream Management
Systems (DSMSs) proposed in [1] are expected to play a
similar role with DBMSs in traditional database systems.

Traditional data cache also deals with fast arriving data,
although there is a strict storage limit. The objective of
cache is to improve performance of systems. Although data
can be inserted into and deleted from a cache, queries to
a cache is generally not supported. A cache should not
only handle data streams to determine reference patterns,
but also should have functions to manage data storage for
future use.

2.2 Mid-Tier Data Management

As the multi-tier client/server architecture becomes in-
creasingly common in the web, mid-tier data management,
i.e. cache with database management capabilities has re-
cently gained importance [5, 13]. In such a multi-tier ar-
chitecture, application servers implementing most process
logic connect to a backend (central) DBMS, and the lat-
ter often becomes the bottleneck of performance. We can
improve the backend DBMS by storing frequently used re-
sults in the attached cache. This technique can be regarded
as “materialized view” of DBMSs. Such kind of applica-
tion of cache will not contribute to the reduction of network
traffic. Thus the objectives is different.

2.3 Multi-Level Store for Persistent Objects

Another relevant work is multi-level store of persistent ob-
jects. M. Stonebraker [12] proposed the extension of disk-
resident database to include multiple storage levels, where
time critical objects reside in main memory, other objects

Priority Manager

Storage Manager

Topic Manager

Data Analyzer

Query Processor

Constraint Manager

Version Manager

Topic Sensor Web Requester

World−Wide Web

Recommendation Manager

Memory
Disks

StorageTertiary

Priority/Usage DataWeb Data

Users

Figure 1: Architecture of a CBFWW

are disk resident, and the remainder occupy tertiary mem-
ory. It is possible that more than three levels will be present
and that some of these levels will be on remote hardware.
Distribution of objects in a storage hierarchy is based on
semantic criteria. For example,

main memory representation: EMP where age >= 30
and age < 60
disk representation: age < 30
archive representation age >= 60
The distribution criteria can be changed dynamically by

either an application or a database administrator. A specific
application can temporarily redistribute instances by tem-
porary redistribution criteria prior to execution. A database
administrator can permanently change the distribution by
defining permanent distribution criteria. A special program
called vacuum cleaner is dedicated to enforcement of the
distribution criteria as well as management of buffers for
data from lower levels.

In our system, definitions on semantic criteria are not re-
quired. By the priority computed from the usage data, the
location of objects in the storage hierarchy is determined
dynamically in a self-organizing manner, although it is pos-
sible to use manual definition together by various reasons
(security, for example).

3 Overview of a CBFWW System

A CBFWW can be regarded as a combination of Cache
(self-organization property), Database (non-transparent us-
age), Search Engine (recommendation) and Data Ware-
house (data analysis and mining). Figure 1 shows an
overview of CBFWW architecture. Functions of compo-
nents are as follows.

(1) Query Processor
A query given by a user is modified by the contents of

Topic Manager. It will be transmitted to Storage Manager
to find out web pages related to the query, which are stored

in the systems. Corresponding page contents with priority
information are obtained and transmitted to Data Analyzer.
The analyzed data with the results from the storage man-
ager are returned to Query Processor. Partial results ob-
tained from CBFWW are given to the user. If not satisfied,
the query is modified further by the result and transmitted
to Web Requester to get additional contents from web.

If a user only asks analysis data of stored contents, the
query is given to Storage Manager and then the results
are analyzed by Data Analyzer. Other kind of query like
popularity-aware queries (see section 4.3) is processed sim-
ilarly.

(2) Topic Manager
By analyzing contents with priorities we can get words

and phrases with weights showing the importance. Rela-
tionships between topics can also be computed using co-
existence relationship. Importance of topics is determined
by usage data as well as data from Topic Sensor.

(3) Topic Sensor
We have analyzed data obtained from a provider Kyoto-

inet (http://web.kyoto-inet.or.jp). There are
popular topics which have concentration of usage for rather
short period. Such queries are influenced by topics given by
news sites. Topic Sensor searches typical news sites to find
out important topics. These topics can be used to predict
future frequent queries. They can be used for modifying
weights of topics managed by Topic Manager.

(4) Priority Manager
In conventional cache using a LRU strategy, a newly ac-

cessed web page have the top priority. If it is not used the
priority will be decreased. In our system, we determine the
priority of a page when it is retrieved, since 60% of pages
will not be used again. Basic idea is to use the similarity
of web pages. If a new page has many words/phrases in
common with some pages that have known priority, then
the same priority will be assigned to the new page. Details
of this method will be discussed in Section 5.3.

Such priority will be modified by hot topics obtained by
Topic Sensor. If a web page has hot topic words/phrases,
the priority will be increased. Furthermore, there are inter-
action problems of mutually related pages to be discussed
in Section 4.2

(5) Recommendation Manager
High quality contents and useful navigation paths can be

obtained from usage and content mining, and used for rec-
ommendation. Views of relevant contents are maintained
for each user so that recommendation is possible. Past us-
age of navigation paths is analyzed by Data Analyzer to be
used for making good navigation plans. Often experienced
web users, or experts can find high quality and relevant in-
formation with less efforts than less experienced ones do.
Navigation that takes advantages of experiences of others
is also known as “Social Navigation” [6]. CBFWW can
provide such functions.

(6) Version Manager
If there is extra capacity, previous contents of web pages

can be stored. A user can know the data in the past. Ver-
sion Manager takes care of versions of contents. Some of
important functions are discussed in the following sections.

(7) Constraint Manager
Constraints are a set of conditions the cache has to sat-

isfy. Traditionally, capacity constraints are the most im-
portant: once this kind of constraints are invalidated, some
objects have to be evicted so as to make space for wor-
thy data. In this paper, as we assume that capacity is large
enough to hold all data we like to bring in. Instead of capac-
ity constraints, we have to take into account the following
constraints.

1. Admission Constraints are criteria for what kind of
objects are allowed to enter each hierarchy level. Typ-
ical admission constraints include, for example, the
limit of object size, the limit of update frequency, and
limit of copyrighted resources.

2. Consistency Constraints include criteria for fresh-
ness of objects in cache. Resources gathered in the
system may not necessarily be consistent with the
original data on servers due to updates, thus they
should have to be kept up-to-date.

There are strong consistency and weak consistency. Strong
consistency requires to check on each modification on ei-
ther the copy or the origin. If strong consistency is im-
posed, the copy should synchronize with the original con-
tents. Weak consistency can allow past data, since we have
to consider usage frequency as well as average period of
updates, to determine polling cycle for each object.

4 Use of Priorities for Advanced Queries and
Storage Management

In this section, we will discuss how priorities are used for
advanced queries and improve efficiency of query process-
ing.

4.1 CBFWW Objects

In conventional cache, priority information is used for self-
organizing contents management. Priorities are still impor-
tant in CBFWW since frequently retrieved data should be
available in a short time. In this section, we will describe
how to manage priorities for composite data appearing in
the cache.

Web data in a CBFWW can be defined as a collection of
objects with priority orders � and a set of constraints. We
can denote a set of web data handled by CBFWWs as

< Objects; Constraints;�>

Each object has a unique identifier and is associated with
usage information and other meta data that are automat-
ically collected and maintained by the system. Through
usage information, query and navigation can be made
popularity-aware, such as retrieving most recently used ob-
jects about “data stream”. Objects form a hierarchy so that
data management can be done on different granularity lev-
els. Priorities are defined on each level of objects in terms
of meta data maintained by the system.

A Hierarchy of CBFWW Objects

As will be described later, the object hierarchy for web data
is formed adaptively and consists of raw web objects, phys-
ical page objects, logical page objects as well as topics.

1. Raw Web Objects. Single files from web sites. The
smallest units of data that our system can deal with.
For example, single html files, embedded image or au-
dio files, etc. The Storage Manager shown in Figure
1 deals with the raw web objects and their migration
among storage devices in a storage hierarchy. It must
use structural information from Physical Page Man-
ager (to be described) and manages usage and priority
information about raw web objects.

2. Physical Page Objects (Composite Objects). A set
of raw web objects composes a complete visual unit
in a web browser. A physical page (object) often
consists of a container html object and a few com-
ponent objects, e.g., embedded images. The Physi-
cal Page Manager is responsible for management of
structure/integrity and usage status for physical page
objects.

3. Logical Page Objects. A set of one or more physi-
cal page objects forms a complete logical unit based
on frequently traversed paths. The Logical Page Man-
ager is responsible for management of path structure
and usage status for logical page objects, supporting
guided navigation when d a reference is detected to-
wards the start point (a physical page) of a logical
page path.

4. Semantic Region Objects. Semantically similar log-
ical or physical page objects are clustered. For ex-

ample, a newly arrived object will be assigned it pri-
ority by the priorities of objects already in the sys-
tem, which are similar to the new object. The Seman-
tic Region Manager is responsible for management of
construction and usage status of semantic region ob-
jects, supporting popularity-aware query to the web
contents.

Hierarchy of Indices

Existence of indices will help to reduce the access time.
There are the following types of indices:

� Index for raw web objects

� Index for physical page objects

� Index for logical page objects

� Index for semantic region objects

� Index for composition

Index for raw web objects (textual objects only) is gen-
erated by the words/phrases appeared in the web objects.
Other indices are generated by the component indices. In-
dex for composition stores the structural information, for
example, a semantic region contain a set of logical pages.
As the storage required for these indices is very big, we
have to prepare an index for indices to form a index hier-
archy. As indices stores in the main memory can be pro-
cessed in a short time, how to determine priorities of in-
dices is one difficult problem.

Levels of Details

The index hierarchy discussed above correspond to levels
of details. If two objects A and B have identical priority,
usually it is assumed that A and B are store at the same
storage device in the storage hierarchy. If the size of B is
very big, we may not be able to store at the same storage de-
vice. We can generate B’, which only contains word/phrase
information of B. Since B’ is small, it can be stored at the
same level as A, although B should be stored as well. B’
can be regarded as an index for B.For pictures, we may be
able to use pictures of low resolution.

4.2 Priority Management

CBFWW distinguishes itself from other data systems by
its caching features, particularly the features of adaptation
to access patterns and the priority management. Data in
a CBFWW differs from data in other data systems in that
history of past usage associated with each objects is main-
tained by the system. The associated history information
reveals the access patterns and can be used to identify tem-
poral locality of reference. Table 2 gives important at-
tributes to quantify history of usage.

Attribute Type Description
frequency fi int frequency of references
firstref ti time time of first reference
lastkref tki time time of last k’th reference
lastkmod uk

i time time of last k’th modification
shared r int number of its containers

Table 2: Attributes Representing History of Past Usage

Object Attributes for Priority Definition

Frequency fi measures how often object i was referenced
during a fixed period of time. The more often an object is
accessed, the higher the probability of reuse is. Thus, ob-
jects with higher reference frequency will be given higher
priority. Note, the LFU (least frequently used) cache re-
placement policy is just based on this attribute. Frequency
of reference for an object can be computed by a few meth-
ods.

� Sliding Window: Computing frequency within an
movable interval of fixed length (window), for exam-
ple, the last week is a sliding window of size 7 days
and window moves on a daily basis. To realize a slid-
ing window, one has to keep track of detailed usage
information for all data about the current window.

� ��Aging: This method removes the overhead for
keeping usage information. fi;j = � � f� + (1 � �) �
fi;j�1, where fi;j�1 is the (average) frequency of ref-
erence for object i at time j � 1, f� is the frequency
since last computation. Then, fi;j, current frequency
of reference at time j is a weighted sum of the two
frequency (0 � � � 1).

Firstref ti records the time when object i was accessed
for the first time. As capacity is not considered, an object
may persistently exist in the system. Modifications do not
change the ti of an existing object i.

Lastkref tki is the time of the last kth reference to ob-
ject i. In case i has not been accessed as many as k times,
tki = �1. If k = 1, then tki becomes the time since last
reference of i, as used in the LRU strategy. Attributes asso-
ciated with different kinds of objects are used to determine
the priority of the corresponding objects.

Using Structural Information in Priority Definition

The priority of a physical page (a logical page) is deter-
mined by the maximum priority of logical pages (semantic
regions) containing the physical page (the logical page, re-
spectively).

In Figure 2, for example, physical pages D2 and D3 is
sharing the raw web object E5. SupportD2 and D3 are ac-
cessed 12 and 7 times respectively in the past week. E5 will
be accessed 20 times due to the container pages’ accesses.
However, this may not necessarily mean E5 is popular than
D2 or D3. Since E5 alone cannot be used alone, the rea-
sonable priority of E5 should be based on a maximal ref-
erence frequency between D2 and D3, which is 12 in this

1D

E4

D2 D3

5E

refs=20

refs=7refs=12

E2E1

Semantic Regions (Topics)

E

(Containers)

Logical Page Objects

(Components)

Physical Page Objects

Raw Web Objects
3

B

C

Figure 2: Object Hierarchy for (Hypertext) Web Data

example. Similarly, when measuring priority of a physical
page or logical page, it is also reasonable to consider such
internal structures.

4.3 Popularity-Aware Query

Direct access using an object identifier has been a unique
means to use data in a cache. In this way, as afore-
mentioned, only a very small fraction of data could luckily
get accessed, whereas the majority of data will hardly be
reused. It is beneficial to help users learn from other users’
experience. An attractive feature of our system is that we
allow users to issue queries associated with usage-based
constraints, to investigate information of different popu-
larity. Popularity-aware query is one of features that help
users find information with reference to their popularity.

Query capability can be used either to facilitate cache
management or to assist an end user or application to lo-
cate data associated with history/usage information. In
the following, we assume an OQL-like language with sev-
eral extensions to handling usage information. We assume
LRU (least recently used), MRU (most recently used), LFU
(least frequently used) and MFU (most frequently used) as
new modifiers for filtering querying results based on their
usage information. Each of them can be followed by a
number that indicate how many LRU (MRU, LFU, MFU)
objects to be returned. These modifiers are used the same
way as DISTINCT keyword in SQL syntax.

One example of such queries is to find “most frequently
used documents about “data warehouse”

SELECT MRU p.oid, p.title
FROM Physical_Page p
WHERE p.title MENTION ‘‘data ware-
house’’

In this example, the system will first find physical ob-
jects relevant to “data warehouse”, then among which
choose the most frequently used one, A. As another exam-
ple, to find “top 10 most frequently used logical pages that
contain physical pages with sizes larger than 200(KB)“, we
can use the following statement.

SELECT MFU 10 l.oid, l.path,

FROM Logical_Page l
WHERE EXISTS
(SELECT *

FROM Physical_Page p
WHERE p.oid IN l.physicals

AND p.size > 200,000);

We can also query for frequent paths using logical page
objects.

SELECT MFU, l.path
FROM Logical_Page l
WHERE end_at(l.oid) IN
(SELECT p.oid

FROM Physical_Page p
WHERE p.url="http://www-

db.cs.wisc.edu/cidr/");

This statement tells the system to find the “most frequently
used” logical pages that end at CIDR 2003 home page with
a URL http://www-db.cs.wisc.edu/cidr/. By
this way, we can find out the most popular way that users
used for reaching CIDR 2003 home page.

For efficient processing of queries, proper assignment of
objects to storage hierarchy is required. In general, an ob-
ject with priority should be assigned to fast storage. There
are the following problems. (1) Although there are many
levels of priorities, the levels defined by storage hierarchy
are limited. (2) There is a composite object, whose pri-
ority is related to its component objects (see Figure 2 and
to be explained later). (3) There are large documents with
high priority, where main memory can not store the whole
documents. (4) Priority of an object will be dynamically
modified.

For (1), we have to increase the levels of storage hierar-
chy by duplicating data in disks. Use of indexes can also
improve the speed of access. Problem (2) will be discussed
in the next section. For (3), we should introduce levels of
details for large documents, where summary or abstract can
be stored at fast storage level to provide a fast preview even
the original document is currently not available. For prob-
lem (4), we should deal with the dynamic migration of ob-
jects among levels of storage hierarchy.

4.4 Self-Organizing Storage Management

As the specific characteristics of web data is the existence
of hot spot data, which are usage dependent and time de-
pendent. We have analyzed usage data obtained from a
public provider Kyoto-inet. Hot spot data is very much
influenced by the hot topics in news papers /TV or local
events. The lifetime is very short. For example, for local
events, there will be almost no access of the corresponding
web pages after the event even though the event was very
popular.

The major problem to be discussed is how to map data
with priority to locations in storage hierarchy as shown in
Figure 3. As even in the same storage in the storage hierar-
chy, the access speed can be different (existence of indices,

Main Memory

Disks

Tertiary Storage

Object Hierarchy

Se
m

an
tic

 R
eg

io
ns

Ph
ys

ic
al

 P
ag

es

L
og

ic
al

 P
ag

es

P
ro

ri
ty

 L
ev

el
s

Mappings

Storage Hierarchy

Figure 3: Mapping Object Hierarchy into Storage Hierarchy Adaptively

copies, etc.), we can realize levels corresponding to the pri-
ority levels. Some important topic are summarized here.

Locality of reference: Related objects are stored in ad-
jacent areas of storage (disks, tapes) so that they can be
retrieved together efficiently. Examples of use of this tech-
niques are as follows.

� Several objects are required to be retrieved together
due to the composition structure discussed in Section
5.1.

� Even old data have priority difference. For example,
web data once in hot spot may be retrieved together
for analysis purpose. Such data are clustered in the
tertiary storage.

Data Migration: By the change of priority, the loca-
tion of data in the storage hierarchy should be moved dy-
namically. To cope with recovery problem, copy control is
required as follows.

� Data in main memory have exact copies in the disk.

� Data in the disk have back-up copies in the tertiary
storage, which may not be exact copies due to the pe-
riodically back-up process.

By these reasons, data in the highest priority have copies
in disks and (possibly old) copies in the tertiary storage.
Similar solutions will occur for data in disks. For down-
grading of priority, we just need to make data in the main
memory invalid. For up-grading, we have to make copies.
It is also necessary to maintain indices. To get up-to-date
priorities and location data is not easy.

Besides self-organizing functions we also need facilities
like storage schema definition language.

5 Object Hierarchy Model for Web Data
As we allow query and guided navigation on the contents
of data in cache, we should investigate how web data is
modeled and organized in a CBFWW. Unlike conventional
cache, we have to handle interconnected objects. In addi-
tion, as a CBFWW is still a cache that always keep popu-
lar data on the top of storage hierarchy for fast access, the
model should easily adapt to locality of reference. Assum-
ing a hierarchical model is important because it is easy to
identify spatial locality of reference in an object hierarchy.

We will develop a data hierarchy model for web data,
in particular, the hypertext data. We believe data of other
form, such as XML could also be integrated into this object
hierarchy scheme.

Hypertext data is a collection of documents (or ”nodes”)
containing cross-references or ”links” which, with the aid
of an interactive browser program, allow the reader to move
easily from one document to another. The extension of hy-
pertext to include other media - sound, graphics, and video
- has been termed ”hypermedia”, but is usually just called
”hypertext”.

We will develop a semantic model by taking into ac-
count both structural and semantic information of hyper-
text data. Particularly, we define the concept of semantic
regions for hypertext data caches. This model character-
izes a collection of data in a hypertext cache from three
abstraction levels: physical documents, logical documents,
and semantic regions based on physical structure, logical
structure and semantic structure respectively.

5.1 Physical Structure of Hypertext Data

To capture the spatial locality of hypertext access, a cache
should first understand physical structure of hypertext doc-
uments, the basic elements in a hypertext system. We de-
scribe this feature mainly following the Dexter model [4].

First, document is a basic element of a hypertext system.
We define a (hypertext) document as a composition of a
container (file) and (optionally) a set of media component
files that represent media other than text such as image,
audio and video (Figure 4). A container (file) consists of (1)
textual content, a sequence of terms, sentences, paragraphs;
(2) anchors and (3) hold places for media components.

An anchor is a point in a document representing a start
point for a link. An anchor also specifies a valid range or
anchor text, indicating what part of a document belongs
to the anchor. Anchor texts often describe the linked docu-
ment, used as a navigation guide to the information the user
is seeking for. The anchor text of a is denoted by text(a).
Anchoring provides a mechanism for addressing locations
within the content of a document.

Link is another basic element in a hypertext system. A
link represents relations between documents. There are two
kinds of links. A link from one anchor to another anchor is
called span-to-span link, while a link from one anchor to a

A

a b c d

Container

Components

shared=2

Figure 4: Document Composed by Hypermedia Compo-
nents

document is called as span-to-node link. In the following,
we only consider span-to-node link, and represent a link
as a triplet < d1; a; d2 >, where a is an source anchor in
document d1, d2 is a destination document of this link.

Documents can be evaluated in terms of size, recency
and frequency of reference. To measure the relevance of
a document to some interested “semantic regions”, textual
content (terms or sentences) will be evaluated on the basis
of techniques in information retrieval (IR), such as vector
space model (VSM) and TF-IDF scoring scheme. The con-
tent of a document d can be expressed as

contnentof(d) =< title; body >

where title is a sentence that describes the content of the
document, and body is a sequence of terms in the docu-
ment. Media component (files) are embedded in the hold
places of container files. A media component file can be
shared by one or more documents, thus whether a compo-
nent file can be deleted by a garbage collector is determined
by not only how often it has been used as in most caching
schemes, but also determined by whether there is no more
used by existing cached documents.

A hypertext database is often modeled as a directed hy-
pergraph, with documents as nodes and links as edges. This
model however is not suitable for client caches because a
client cache does not see the whole structure of the poten-
tial hypergraph, instead what it can see are paths followed
by the user in that hypergraph. To predict how the user
uses the hypertext database for caching decision making,
we should model the paths that the user often traverses, in-
stead of the whole hypergraph.

F

D

G HE

A

CB

1. [A, B, E]
2. [A, D, G]

1

6 1 11 1

137

Figure 5: Logical Document Based on Repeated Traversing
Paths

5.2 Logical Documents: Logical Structure of Hyper-
text Data

As links created by hypertext authors do not always re-
flect what readers think, a cache often sees a subset of
documents and a small fraction of paths (sequences of
document-links) are often traversed. In a navigational ac-
cess environment, users are apt to travel data items back
and forth in accordance with paths. Thus, data items might
be visited just because of it location, rather than its content.
We define a path frequently traversed by some users as a
logical document.

A logical document is a representation of user’s perspec-
tive of the hypertext data. In other words, how authors
created a hypertext database is one thing, while what the
client would be interested is another. This distinguishes
our model from any other hypertext models created from
the point of view of hypertext authors or system designers.

Figure 5 depicts two logical documents in a hypertext
database: one is “A-B-E”, the other is “A-D-G”. In “A–D-
G”, starting from document A, the user often (13 times)
chooses to follow a link to D, then G. It is reasonable to
think that, for the user of the cache, “A-D-G” is a logical
unit that contains specific information he needs. The first
document in the path of a logical document is called an
“entry document”, while the last document traversed in the
path is called a “terminal document”.

Logical documents can be measured in terms of size,
recency, and frequency of reference. The size of a logical
document is the length of path, which is indeed the number
of documents contained in the path. A reference to a logical
document is defined as a successful traversal starting from
the entry document, walking through a link to the second
document on the path within a limited time interval, and so
on, until reaching the terminal document.

Logical documents represent the readers’ viewpoint of
hypertext data. That is, different paths leading to a same
document imply different perspectives of the user, To deal
with this difference, we define the content of a logical doc-
ument to be < title; body > with title being the union of
anchor texts contained in the path and the title of the termi-
nal document.

As shown in Figure 6, suppose we have a logical docu-
ment l =< [d1; a1]; [d2; a2]; [d3] > where di (i = 1; 2; 3)
are documents in the repeating traversal path, ai (i = 1; 2)
are anchors leading to a subsequent document. That is, the
user first follows a link from anchor a1 in d1 to d2, where
he follows another link from anchor a2 to d3. Let text(ai)
be the anchor text of ai, tile(di) and body(di) be the title
and body of a document respectively. Then we can define
the content of logical document L to be

contnentof(li) =

< text(a1) + text(a2) + title(d3); body(d3) >

Here “+” is string concatenation operation as in a typical
programming language. For example, if the anchor texts
on the path of a logical document are “Travel in Kyoto”,

“List of bus stations” and “Kyoto station”, and the title of
the terminal document is “Access to the Shinkansen super-
express”, the the logical document will have a logical ti-
tle “Travel to Kyoto, List of bus stations, Kyoto station,
Access to the Shinkansen superexpress”. Note that logical

anchor1

text1

text2

anchor2

title

Body

Body

(text1+text2+title)
Title

Physical Document1

link

link

Physical Document2

Physical Document3

Logical Document

Figure 6: Link Navigations for Specific Information

documents can be of different sizes depending on the con-
figuration of implementation and the actual usage status.
A special case is when the size is 1, which means there is
only one document included in the logical document. Thus,
each visited document can a logical document.

5.3 Semantic Region: Semantic Structure of Hyper-
text Data

Semantic regions is a concrete description about user inter-
ests, which play an important role in identifying preference
of users. We denote a semantic region as R = (�; �), where
� is the semantic centroid (cluster center, or median). � is
the radius of the semantic region. A semantic region is a
cluster of logical documents with a semantic centroid such
that each logical document belongs to exactly one most
suitable cluster, that is, it is closer to centroid of this clus-
ter than any others. The centroid of a cluster is represented
using a feature vector based on vector space model (VSM)
and TF-IDF scoring scheme. For example, (30, 34, 120,
10) is a feature vector presentation with respect to (bread,
butter, salt, knife).

<σ, λ>:

λ

A semantic region R =

σ centroid of the semantiic region
σ

λ:

logical document

radius of semantic region

Figure 7: Semantic Region Based on Adaptive Clustering
of Logical Documents

As new documents come continuously, determining se-
mantic regions for hypertext caching requires efficient
single-pass clustering algorithms that consume a small
amount of memory. Fortunately, there exist a number of
streaming-data algorithms that can achieve high quality

clustering [14, 2, 8]. In general, a clustering problem cane
be described as follows: given the number k of clusters, a
clustering algorithm will try to find k centroids so that each
data point is assigned to the cluster defined by the centroid
nearest to it. This is also known as “k-Median” problem.

Suppose the quality of clustering is measured by the
sum of square distance of data points from their centroid,
the randomized algorithm LSEARCH[8] can usually find a
near-optimum solution inO(nm+nk log k) of time, where
n is proportional to the number of data points, m is a small
number. In this paper, we will not evaluate various cluster-
ing algorithms, instead we assume we already know a suit-
able near-optimum algorithm that can always cluster new
logical documents received. We will concentrate on ex-
ploring whether higher-level semantic information can help
determine potential usage of hypertext data.

As content of a logical document has two parts: title
and body, we need a method to combine them together. As
terms in a title are generally more important than those in a
body, we show stress more on title than on body. Suppose
L is the set of logical documents for a hypertext cache. li is
a logical document with content < title; body >. Let vtitlei

and vbodyi be the TF-IDF based feature vectors for title and
body of li respectively. The comprehensive feature vector
of li can be calculated as a weighted sum of both, that is,

vi = ! � vtitlei + v
body
i

Here ! is a parameter larger than 1. The combination
of feature vectors for title part and body part enable to dis-
tinguish two logical documents even when they have the
same terminal document. Again we consider the example
about “how to access to Shinkansen superexpress” in “Ky-
oto station”. Another reader may reference the same docu-
ment after following a list of “NTT Western Japan”, “Ky-
oto Office”, “Location” , and then the terminal document.
The first logical document is likely for general travelers,
while the second logical document is much more suitable
for business travelers.

Based on the object hierarchy model for web data, we
can now outline how to manage in a content-sensitive way.
Figure 8 show the situation where newly retrieved objects
are assigned higher priority due to the high priorities of the
associated logical pages and semantic regions. As objects
with higher priority can stay in main memory, they can be
accessed more quickly.

On the contrary, if an object belongs to a logical page
and semantic region with lower priority, even it is currently
active in use, the priority may be low and may soon mi-
grate to lower level of storage hierarchy to make space for
higher priority objects. By this way, Data in semantic re-
gions that have been assigned higher priority can be used
more efficiently than those belong to less important seman-
tic regions. This make data and storage management in a
CBFWW content-sensitive.

High Priority

Low Priority High Priority

Semantic Regions

Physical Pages

Figure 8: Priorities With Respect To Object Hierarchy for
Web Data

6 Concluding Remarks

With the significant improvement of storage technology
and with the wide use of caches of very large capacity
such as those in CDNs, a large amount of web data has
been collected at location near clients. To make full use
of the history-rich information for value-added services,
in this paper, we proposed a new architecture that enable
popularity-aware queries and self-organizing storage man-
agement. Our long-term goal is to build a general pur-
pose system that incorporates data management functions
as in database and online decision support capability in
data stream model in cooperation with dynamic hot spot
data. We have been developing a prototype to be used by a
provider Kyoto-inet.

Acknowledgment

This work is supported in part by JSPS (Japan Society for
the Promotion of Science) and CREST of JST (Japan Sci-
ence and Technology Corporation). The authors would like
to thank Dr. Mukesh Mohania (IBM India Lab, New Delhi,
India) for many interesting discussions.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of the 21th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems (PODS 2002), pages 1–12, Madison, Wisconsin,
June 2002. ACM.

[2] P. S. Bradley, U. M. Fayyad, and C. Reina. Scal-
ing clustering algorithms to large databases. In Pro-
ceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (KDD-98),
pages 9–15, New York City, New York, USA, August
1998. AAAI Press.

[3] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Proceedings of the 1997 USENIX Sym-
posium on Internet Technology and Systems, pages
193–206, December 1997.

[4] F. G. Halasz and M. D. Schwartz. The dexter hyper-
text reference model. Communications of the ACM,
37(2):30–39, 1994.

[5] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,
H. Woo, B. G.Lindsay, and J. F. Naughton. Middle-
tier database caching for e-busines. In Proceedings
ACM SIGMOD Conference on Management of Data
(SIGMOD 2002), pages 600–611, Madison, Wiscon-
sin, May 2002.

[6] A. J. Munro, K. Hook, and D. Benyon, editors. Social
Navigation of Information Space. Springer Verlag,
November 1999.

[7] J. Nielsen. Nielsen’s Law of Internet Bandwidth.
The Alertbox, April 1998. http://www.useit.
com/alertbox/980405.html.

[8] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani. Streaming-data algorithms for high-
quality clustering. In International Conference on
Data Engineering (ICDE 2002), 2002.

[9] D. A. Patterson and K. K. Keeton. Hardware tech-
nology trends and database opportunities. In Pro-
ceedings ACM SIGMOD Conference on Management
of Data (SIGMOD 1998), Seattle, Washington, June
1998. Keynote Address.

[10] L. Rizzo and L. Vicisano. Replacement policies for
a proxy cache. IEEE/ACM Transactions on Network-
ing, 8(2):158–170, 2000.

[11] L. G. Roberts. Beyond Moore’s Law: Internet growth
trends. IEEE Computer–Internet Watch, 33(1):117–
119, Jan. 2000.

[12] M. Stonebraker. Managing persistent objects in
a multi-level store. In Proceedings ACM SIG-
MOD Conference on Management of Data (SIGMOD
1991), pages 2–11, Denver, CO, May 1991.

[13] T. Team. Mid-tier caching: The timesten approac.
In Proceedings ACM SIGMOD Conference on Man-
agement of Data (SIGMOD 2002), pages 588–593,
Madison, Wisconsin, May 2002.

[14] T. Zhang, R. Ramakrishnan, and M. Livny. Birch:
An efficient data clustering method for very large
databases. In Proceedings International SIGMOD
Conference on Management of Data (SIGMOD
1996), pages 103–114, 1996.

