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Abstract

This paper presents the BINGO! focused
crawler, an advanced tool for information por-
tal generation and expert Web search. In
contrast to standard search engines such as
Google which are solely based on precomputed
index structures, a focused crawler interleaves
crawling, automatic classification, link analy-
sis and assessment, and text filtering. A crawl
is started from a user-provided set of training
data and aims to collect comprehensive results
for the given topics.

The focused crawling paradigm has been
around for a few years and many of our
techniques are adopted from the informa-
tion retrieval and machine learning literature.
BINGO! is a system-oriented effort to inte-
grate a suite of techniques into a comprehen-
sive and versatile tool. The paper discusses
its overall architecture and main components,
important lessons from early experimentation
and the resulting improvements on effective-
ness and efficiency, and experimental results
that demonstrate the usefulness of BINGO!
as a next-generation tool for information or-
ganization and search.

1 Introduction

1.1 The Problem of Web and Intranet Infor-
mation Search

Web search engines mostly build on the vector space
model that views text documents (including HTML
or XML documents) as vectors of term relevance
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scores [3, 19]. These terms, also known as features,
represent word occurrence frequencies in documents
after stemming and other normalizations. Queries are
vectors too, so that similarity metrics between vec-
tors, for example, the Euclidean distance or the cosine
metric, can be used to produce a ranked list of search
results, in descending order of (estimated) relevance.
The quality of a search result is assessed a posteriori
by the empirical metrics precision and recall: precision
is the fraction of truly relevant documents among the
top N matches in the result ranking (N typically be-
ing 10), and recall is the fraction of found documents
out of the relevant documents that exist somewhere
in the underlying corpus (e.g., the entire Web). More
recently, the above basic model has been enhanced by
analyzing the link structure between documents, view-
ing the Web as a graph, and defining the authority of
Web sites or documents as an additional metric for
search result ranking [5, 14]. These approaches have
been very successful in improving the precision (i.e.,
”sorting out the junk” in more colloquial terms) for
typical mass queries such as "Madonna tour” (i.e., ev-
erything or anything about the concert tour of pop
star Madonna). However, link analysis techniques do
not help much for expert queries where recall is the
key problem (i.e., finding a few useful results at all).

Two important observations can be made about the
above class of advanced information demands. First,
the best results are often obtained from Yahoo-style
portals that maintain a hierarchical directory of top-
ics, also known as an ontology; the problem with this
approach is, however, that it requires intellectual work
for classifying new documents into the ontology and
thus does not scale with the Web. Second, fully auto-
mated Web search engines such as Google, Altavista,
etc. sometimes yield search results from which the user
could possibly reach the actually desired information
by following a small number of hyperlinks; here the
problem is that exhaustively surfing the vicinity of a
Web document may often take hours and is thus in-
feasible in practice. These two observations have mo-
tivated a novel approach known as focused crawling
or thematic crawling [7], which can be viewed as an



attempt to automate the above kinds of intellectual
preprocessing and postprocessing.

1.2 The Potential of Focused Crawling

In contrast to a search engine’s generic crawler (which
serves to build and maintain the engine’s index), a fo-
cused crawler is interested only in a specific, typically
small, set of topics such as 19th century Russian liter-
ature, backcountry desert hiking and canyoneering, or
programming with (the Web server scripting language)
PHP. The topics of interest may be organized into a
user- or community-specific hierarchy. The crawl is
started from a given set of seed documents, typically
taken from an intellectually built ontology, and aims
to proceed along the most promising paths that stay
“on topic” while also accepting some detours along
digressing subjects with a certain ”tunnelling” proba-
bility. Each of the visited documents is classified into
the crawler’s hierarchy of topics to test whether it is
of interest at all and where it belongs in the ontol-
ogy; this step must be automated using classification
techniques from machine learning such as Naive Bayes,
Maximum Entropy, Support Vector Machines (SVM),
or other supervised learning methods [15, 17, 23]. The
outcome of the focused crawl can be viewed as the
index of a personalized information service or a the-
matically specialized search engine.

A focused crawler can be used for at least two major
problems in information organization and search:

1. Starting with a reasonable set of seed documents
that also serve as training data for the classifier,
a focused crawl can populate a topic directory and
thus serves as a largely automated information por-
tal generator.

2. Starting with a set of keywords or an initial re-
sult set from a search engine (e.g., from a Google
query), a focused crawl can improve the recall for
an advanced expert query, a query that would take
a human expert to identify matches and for which
current Web search engines would typically return
either no or only irrelevant documents (at least in
the top ten ranks).

In either case the key challenge is to minimize the
time that a human needs for setting up the crawl (e.g.,
provide training data, calibrate crawl parameters, etc.)
and for interpreting or analyzing its results. For exam-
ple, we would expect the human to spend a few min-
utes for carefully specifying her information demand
and setting up an overnight crawl, and another few
minutes for looking at the results the next morning.
In addition, the focused crawler may get back to the
user for feedback after some ”learning” phase of say
twenty minutes.

This mode of operation is in significant contrast
to today’s Web search engines which rely solely on
precomputed results in their index structures and

strictly limit the computer resource consumption per
query in the interest of maximizing the throughput of
"mass user” queries. With human cycles being much
more expensive than computer and network cycles, the
above kind of paradigm shift seems to be overdue for
advanced information demands (e.g., of scientists).

1.3 Contribution and Outline of the Paper

This paper presents the BINGO! system that we have
developed in the last two years at the University of
the Saarland.!. Our approach has been inspired by
and has adopted concepts from the seminal work of
Chakrabarti et al. [7], but we believe it is fair to call
our system a second-generation focused crawler. While
most mathematical and algorithmic ingredients that
we use in BINGO! (e.g., the classifier, cross-entropy-
based feature selection, link analysis for prioritizing
URLs in the crawl queue, etc.) are state-of-the-art, the
overall system architecture is relatively unique (in the
sense that most concepts have been around in the ma-
chine learning and information retrieval literature, but
have not been considered in an integrated system con-
text). The following are salient features of the BINGO!
system:

e As human expert time is scarce and expensive,
building the classifier on extensive, high-quality
training data is a rare luxury. To overcome the
potential deficiencies of the initial training docu-
ments, BINGO! uses a simple form of unsupervised,
dynamic learning: during a crawl the system pe-
riodically identifies the most characteristic docu-
ments that have been automatically classified into
a topic of interest and considers promoting these
class ”archetypes” to become new training data.

e The crawl is structured into two phases: a learning
phase and a harvesting phase. The first phase per-
forms a limited (mostly depth-first) crawl and uses
a conservative tuning of the classifier in order to
obtain a richer feature set (i.e., topic-specific termi-
nology) and to find good candidates for archetypes.
The second phase then switches to a much more ag-
gressive breadth-first strategy with URL prioritiza-
tion. Learning aims to calibrate the precision of the
classifier, whereas harvesting aims at a high recall.

e BINGO! is designed as a comprehensive and flexible
workbench for assisting a portal administrator or
a human expert with certain information demands.
To this end it includes a local search engine for
querying the result documents of a crawl and various
other data analysis techniques for postprocessing.

The paper describes the BINGO! architecture and
its components, and it demonstrates the system’s ef-
fectiveness by two kinds of experiments for informa-
tion portal generation and expert search. The rest

IBINGO! stands for Bookmark-Induced Gathering of
Information



of the paper is organized as follows. Section 2 gives
an overview of the system’s main concepts, the cor-
responding software components, and their interplay.
When we had built the first prototype based on these
concepts and started experimenting, we realized a
number of shortcomings regarding the search effective-
ness, i.e., the quality of the crawl results, and also ef-
ficiency, i.e., speed and resource consumption. These
observations led to substantial improvements that are
discussed in Sections 3 and 4 on effectiveness and ef-
ficiency. Section 5 presents our recent experimental
results. We conclude with an outlook on ongoing and
future work.

2 Overview of the BINGO! System

The BINGO! crawling toolkit consists of six main com-
ponents that are depicted in Figure 1: the focused
crawler itself, an HT'ML document analyzer that pro-
duces a feature vector for each document, the SVM
classifier with its training data, the feature selection
as a "noise-reduction” filter for the classifier, the link
analysis module as a distiller for topic-specific authori-
ties and hubs, and the training module for the classifier
that is invoked for periodic re-training.

Crawler

Analyzer| |Feature
Selection

database

Figure 1: The BINGO! architecture and its main com-
ponents

The crawler starts from a user’s bookmark file or
some other form of personalized or community-specific
topic directory. These intellectually classified docu-
ments serve two purposes: 1) they provide the initial
seeds for the crawl (i.e., documents whose outgoing
hyperlinks are traversed by the crawler), and 2) they
provide the initial contents for the user’s topic tree
and the initial training data for the classifier. Fig-
ure 2 shows an example of such a tree. Note that a
single-node tree is a special case for generating an in-
formation portal with a single topic and no subclass
structure or for answering a specific expert query. In
the latter case the training data is a virtual document
derived from the user query, and this training basis can
be extended by prompting the user for relevance feed-

back after a short initial crawl and adding appropriate
documents.
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Figure 2: Example of a topic tree
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All crawled documents, including the initial data,
are stored in an Oracle9i database which serves as a
cache. The role of the database system as a storage
manager to BINGO! is further discussed in Section 4.

2.1 Crawler

The crawler processes the links in the URL queue us-
ing multiple threads. For each retrieved document the
crawler initiates some analysis steps that depend on
the document’s MIME type (e.g., HTML, PDF, etc.)
and then invokes the classifier on the resulting feature
vector. Once a crawled document has been success-
fully classified, BINGO! extracts all hyperlinks from
the document and adds them to the URL queue for
further crawling; the links are ordered by their prior-
ity, i.e., SVM confidence in our case.

2.2 Document Analyzer

BINGO! computes document vectors according to the
standard bag-of-words model, using stopword elimina-
tion, Porter stemming, and ¢ f xidf based term weight-
ing [3, 16]. This is a standard IR approach where term
weights capture the term frequency (¢f) of the corre-
sponding word stems in the document and the, log-
arithmically dampened, inverse document frequency
(idf) which is the reciprocal of the number of docu-
ments in the entire corpus that contain the term. We
consider our local document database as an approxi-
mation of the corpus for idf computation and recom-
pute it lazily upon each retraining.

The document analyzer can handle a wide range
of content handlers for different document formats (in
particular, PDF, MS Word, MS PowerPoint etc.) as
well as common archive files (zip, gz) and converts
the recognized contents into HT'ML. So these formats
can be processed by BINGO! like usual web pages.
Many useful kinds of documents (like scientific publi-
cations, whitepapers, or commercial product specifica-
tions) are published as PDF; incorporating this mate-
rial improves the crawling recall and the quality of the
classifier’s training set by a substantial margin.



2.3 Feature Selection

The feature selection algorithm provides the BINGO!
engine with the most characteristic features for a given
topic; these are the features that are used by the clas-
sifier for testing new documents. A good feature for
this purpose discriminates competing topics from each
other, i.e., those topics that are at the same level of the
topic tree. Therefore, feature selection has to be topic-
specific; it is invoked for every topic in the tree individ-
ually. As an example, consider a directory with topics
mathematics, agriculture, and arts, where mathemat-
ics has subclasses algebra and stochastics. Obviously,
the term theorem is very characteristic for math doc-
uments and thus an excellent discriminator between
mathematics, agriculture, and arts. However, it is of
no use at all to discriminate algebra versus stochastics.
A term such as field, on the other hand, is a good in-
dicator for the topic algebra when the only competing
topic is stochastics; however, it is useless for a classifier
that tests mathematics versus agriculture.

We use the Mutual Information (MI) measure for
topic-specific feature. This technique, which is a
specialized case of the notions of cross-entropy or
Kullback-Leibler divergence [16], is known as one of
the most effective methods [24]. The MI weight of the
term X; in the topic V; is defined as:

P[X; A Vj]
MI(X;,V;) 7P[X1AVJH09P[Xi]P[Vj] (1)

Mutual information can be interpreted as measure
of how much the joint distribution of features X; and
topics V; deviate from a hypothetical distribution in
which features and topics are independent of each
other (hence the remark about MI being a special case
of the Kullback-Leibler divergence which measures the
differences between multivariate probability distribu-
tions in general).

The result of feature selection for a given topic is a
ranking of the features, with the most discriminative
features listed first. Our experiments achieved good
results with the top 2000 features for each topic as the
input to the classifier (compared to tens of thousands
of different terms in the original documents). For effi-
ciency BINGO! pre-selects candidates for the best fea-
tures based on t f values and evaluates MI weights only
for the 5000 most frequently occurring terms within
each topic. As an example consider the class “Data
Mining” in the topic tree of Figure 2 with home pages
and DBLP pages of 5 to 10 leading researchers for each
topic. Our feature selection finds the following word
stems with the highest MI values: mine, knowledg,
olap, frame, pattern, genet, discov, cluster, dataset.

2.4 Classifier

Document classification consists of a training phase
for building a mathematical decision model based on

intellectually pre-classified documents, and a decision
phase for classifying new, previously unseen docu-
ments fetched by the crawler. For training BINGO!
builds a topic-specific classifier for each node of the
topic tree.

New documents are classified against all topics of
the ontology tree in a top-down manner. Starting with
the root, which corresponds to the union of the user’s
topics of interest, we feed the document’s features into
each of the node-specific decision models (including
node-specific feature selection) and invoke the binary
classifiers for all topics with the same parent. We refer
to these as ”competing” topics as the document will
eventually be placed in at most one of them. Each of
the topic-specific classifiers returns a yes-or-no decision
and also a measure of confidence for this decision (see
below). We assign the document to the tree node with
the highest confidence in a positive decision. Then the
classification proceeds with the children of this node,
until eventually a leaf node is reached. If none of the
topics with the same parent returns yes, the document
is assigned to an artificial node labeled 'OTHERS’ un-
der the same parent.

Our engine uses support vector machines (SVM) [6,
23] as topic-specific classifiers. We use the linear form
of SVM where training amounts to finding a hyper-
plane in the m-dimensional feature vector space that
separates a set of positive training examples (docu-
ment collection D" of the topic V;) from a set of nega-
tive examples (document collection D, of all compet-
ing topics V with the same parent as V;) with maxi-
mum margin. The hyperplane can be described in the
form @-Z+b = 0, as illustrated in Figure 3. Computing
the hyperplane is equivalent to solving a quadratic op-
timization problem [23]. The current BINGO! version
uses an existing open-source SVM implementation [1].

Figure 3: The separating hyperplane of the linear SVM
classifier

Note that in the decision phase the SVM classifier
is very efficient. For a new, previously unseen, docu-
ment in the m-dimensional feature space d € R™ it
merely needs to test whether the document lies on the
7left” side or the "right” side of the separating hy-
perplane. The decision simply requires computing an



m-~dimensional scalar product of two vectors.

We interpret the distance of a newly classified doc-
ument from the separating hyperplane as a measure
of the classifier’s confidence. This computation is an
inexpensive byproduct of the classifier. We use this
kind of SVM confidence for identifying the most char-
acteristic “archetypes” of a given topic. Note that
training documents have a confidence score associ-
ated with them, too, by simply running them through
the classifier’s decision model after completed train-
ing. Further note that the initial training data does
not necessarily yield the best archetypes, in particular,
for expert Web search where the initial training data
is merely a representation of the user’s query terms.
Therefore, BINGO! periodically considers promoting
the best archetypes to become training documents for
retraining the classifier. To estimate the precision of
the new classifier, we use the computationally efficient
&a-method [13]. This estimator has approximately the
same variance as leave-one-out estimation and slightly
underestimates the true precision of the classifier (i.e.,
is a bit pessimistic). The prediction of the classifier’s
performance during a crawl is valuable for tuning the
feature space construction; we will further discuss this
issue in Section 3.

2.5 Link Analysis

The link structure between documents in each topic
is an additional source of information about how well
they capture the topic [4, 5, 7, 14]. Upon each re-
training, we apply the method of [4], a variation of
Kleinberg’s HITS algorithm, to each topic of the direc-
tory. This method aims to identify a set S4 of author-
ities, which should be Web pages with most significant
and/or comprehensive information on the topic, and a
set Sy of hubs, which should be the best link collec-
tions with pointer to good authorities. The algorithm
considers a small part of the hyperlink-induced Web
graph G = (5, E) with a node set S in the order of a
few hundred or a few thousand documents and a set of
edges FE with an edge from node p to node ¢ if the doc-
ument that corresponds to p contains a hyperlink that
points to document q. The node set S is constructed in
two steps: 1) We include all documents that have been
positively classified into the topic under consideration,
which form the ”base set” in Kleinberg’s terminology.
2) We add all successors of these documents (i.e., doc-
uments that can be reached along one outgoing edge)
and a reasonably sized subset of predecessors (i.e., doc-
uments that have a direct hyperlink to a document in
the base set). The predecessors can be determined by
querying a large unfocused Web database that inter-
nally maintains a large fraction of the full Web graph.

The actual computation of hub and authority scores
is essentially an iterative approximation of the prin-
cipal Eigenvectors for two matrices derived from the
adjacency matrix of the graph G. Its outcome are

two vectors with authority scores and hub scores. We
are interested in the top ranked authorities and hubs.
The former are perceived as topic-specific archetypes
and considered for promotion to training data, and the
latter are the best candidates for being crawled next
and therefore added to the high-priority end of the
crawler’s URL queue. These steps are performed with
each retraining.

2.6 Learning Phase vs. Harvesting Phase

Building a reasonably precise classifier from a very
small set of training data is a very challenging task.
Effective learning algorithms for highly heterogeneous
environments like the Web would require a much larger
training basis, yet human users would rarely be willing
to invest hours of intellectual work for putting together
a rich document collection that is truly representative
of their interest profiles. To address this problem, we
distinguish two basic crawl strategies:

e The learning phase serves to identify new archetypes
and expand the classifier’s knowledge base.

e The harvesting phase serves to effectively process the
user’s information demands with improved crawling
precision and recall.

Depending on the phase, different focusing rules come
into play to tell the crawler when to accept or reject
Web pages for addition to the URL queue (see Sec-
tion 4.2).

In the learning phase we are exclusively interested
in gaining a broad knowledge base for the classifier
by identifying archetypes for each topic. In many
cases such documents can be obtained from the di-
rect neighborhood of the initial training data, assum-
ing that these have been chosen carefully. For example,
suppose the user provides us with home pages of re-
searchers from her bookmarks on a specific topic, say
data mining; then chances are good that we find a rich
source of topic-specific terminology in the vicinity of
these home pages, say a conference paper on some data
mining issue. i.e., a scientists homepage with links to
her topic-specific publications. Following this ratio-
nale, BINGO! uses a depth-first crawl strategy during
the learning phase, and initially restricts itself to Web
pages from the domains that the initial training doc-
uments come from.

BINGO! repeatedly initiates re-training of the clas-
sifier, when a certain number of documents have been
crawled and successfully classified with confidence
above a certain threshold. At such points, a new set
of training documents is determined for each node of
the topic tree. For this purpose, the most character-
istic documents of a topic, coined archetypes, are de-
termined in two, complementary, ways. First, the link
analysis is initiated with the current documents of a
topic as its base set. The best authorities of a tree node
are regarded as potential archetypes of the node. The
second source of topic-specific archetypes builds on the



confidence of the classifier’s yes-or-no decision for a
given node of the ontology tree. Among the automat-
ically classified documents of a topic those documents
whose yes decision had the highest confidence measure
are selected as potential archetypes. The union of both
top authorities and documents with high SVM confi-
dence form a new set of candidates for promotion to
training data.

After successfully extending the training basis with
additional archetypes, BINGO! retrains all topic-
specific classifiers and switches to the harvesting phase
now putting emphasis on recall (i.e., collecting as many
documents as possible). The crawler is resumed with
the best hubs from the link analysis, using a breadth-
first strategy that aims to visit as many different sites
as possible that are related to the crawl’s topics. When
the learning phase cannot find sufficient archetypes or
when the user wants to confirm archetypes before ini-
tiating a long and resource-intensive harvesting crawl,
BINGO! includes a user feedback step between learn-
ing and harvesting. Here the user can intellectually
identify archetypes among the documents found so far
and may even trim individual HTML pages to remove
irrelevant and potentially dilluting parts (e.g., when
a senior researcher’s home page is heterogeneous in
the sense that it reflects different research topics and
only some of them are within the intended focus of the
crawl).

3 Making BINGO! Effective

The BINGO! system described so far is a complete fo-
cused crawler with a suite of flexible options. When we
started experimenting with the system, we observed
fairly mixed success, however. In particular, some of
the crawls lost their focus and were led astray by in-
appropriate training data or a bad choice of automat-
ically added archetypes. Based on these lessons we
improved the system in a number of ways that are de-
scribed in this section.

3.1 Classifier Training on Negative Examples

An SVM classifier needs both positive and negative
training examples for computing a separating hyper-
plane. As negative examples we used the positive
training data from a topic’s competing classes, which
are the topic’s siblings in the topic tree. For topics
without proper siblings, e.g., for a single-topic crawl,
we added a virtual child “OTHERS” to all tree nodes
which was populated with some arbitrarily chosen doc-
uments that were “semantically far away” from all top-
ics of the directory. This approach worked, but in some
situations it was not sufficient to cope with the extreme
diversity of Web data. In some sense, saying what the
crawl should not return is as important as specifying
what kind of information we are interested in.

As a consequence of this observation we now pop-
ulate the virtual “OTHERS” class in a much more

systematic manner. As the positive training exam-
ples for the various topics all contain ample common-
sense vocabulary and not just the specific terms that
we are interested in, we included training documents
in the “OTHERS” classes that capture as much of the
common-sense terminology as possible. In most of our
experiments we use about 50 documents from the top-
level categories of Yahoo (i.e., sports, entertainment,
etc.) for this purpose. Since our focused crawls were
mostly interested in scientific topics, this choice of neg-
ative examples turned out to be a proper complement
to improve the classifier’s learning.

3.2 Archetype Selection

The addition of inappropriate archetypes for retrain-
ing the classifier was a source of potential diffusion.
To avoid the "topic drift” phenomenon, where a few
out-of-focus training documents may lead the entire
crawl into a wrong thematic direction, we now require
that the classification confidence of an archetype must
be higher than the mean confidence of the previous
training documents. So each iteration effectively adds
x new archetypes (0 < x < min{Ngyin; Neons} where
Ngutn is the number of high-authority candidates from
the link analysis and Neony is the number of candi-
dates with top ranks regarding SVM confidence), and
it may also remove documents from the training data
as the mean confidence of the training data changes.
Once the up to min{Ngyuin; Neons} archetypes of a
topic have been selected, the classifier is re-trained.
This step in turn requires invoking the feature selec-
tion first. So the effect of re-training is twofold: 1)
if the archetypes capture the terminology of the topic
better than the original training data (which is our ba-
sic premise) then the feature selection procedure can
extract better, more discriminative, features for driv-
ing the classifier, and 2) the accuracy of the classifiers
test whether a new, previously unseen, document be-
longs to a topic or not is improved using richer (e.g,
longer but concise) and more characteristic training
documents for building its decision model. In the case
of an SVM classifier, the first point means transform-
ing all documents into a clearer feature space, and
the second point can be interpreted as constructing a
”sharper” (i.e., less blurred) separating hyperplane in
the feature space (with more slack on either side of the
hyperplane to the accepted or rejected documents).

3.3 Focus Adjustment and Tunnelling

Learning Phase with Sharp Focus

During the learning phase BINGO! runs with a very
strict focusing rule. As the system starts only with
a relatively small set of seeds, we can expect only
low classification confidence with this initial classifier.
Therefore, our top priority in this phase is to find new
archetypes to augment the training basis. The crawler



accepts only documents that are reachable via hyper-
links from the original seeds and are classified into the
same topic as the corresponding seeds. We call this
strategy sharp focusing: for all documents p,q € E
and links (p,q) € V accept only those links where
class(p) = class(q).

The above strategy requires that at least some of the
crawled documents are successfully classified into the
topic hierarchy; otherwise, the crawler would quickly
run out of links to be visited. This negative situa-
tion did indeed occur in some of our early experiments
when the training data contained no useful links to re-
lated Web sources. Therefore, BINGO! also considers
links from rejected documents (i.e., documents that
do not pass the classification test for a given topic)
for further crawling. However, we restrict the depth
of traversing links from such documents to a thresh-
old value, typically set to one or two. The rationale
behind this threshold is that one often has to “tun-
nel” through topic-unspecific “welcome” or “table-of-
contents” pages before again reaching a thematically
relevant document.

Harvesting Phase with Soft Focus

Once the training set has reached
min{ Nguth; Neons} documents per topic, BINGO!
performs retraining and the harvesting phase is
started. The now improved crawling precision allows
us to relax the hard focusing rule and to accept
all documents that can successfully be classified
into anyone of the topics of interest, regardless of
whether this is the same class as that of its hyperlink
predecessor. We call this strategy soft focusing: for
all documents p,q € E and links (p,q) € V accept
all links where class(p) # ROOT/OTHERS. The
harvesting usually has tunneling activated.

3.4 Feature Space Construction

Single terms alone and the resulting ¢ f *idf-based doc-
ument vectors are a very crude characterization of doc-
ument contents. In addition to this traditional IR ap-
proach we are also investigating various richer feature
spaces:

e Term pairs: The co-occurrence of certain terms in
the same document adds to the content characteri-
zation and may sometimes even contribute to disam-
biguating polysems (i.e., words with multiple mean-
ings). The extraction of all possible term pairs in a
document is computationally expensive. We use a
sliding window technique and determine only pairs
within a limited word distance.

e Neighbor documents: Sometimes a document’s
neighborhood, i.e., its predecessors and successors in
the hyperlink graph, can help identifying the topic
of the document. We consider constructing feature
vectors that contain both the current document’s
terms and the most significant terms of its neighbor

documents. This approach is somewhat risky as it
may as well dillute the feature space (as reported
in [8]); so it is crucial to combine it with conserva-
tive (MI based) feature selection.

o Anchor texts: The short texts in hyperlink tags of
the HTML pages that point to the current docu-
ment may provide concise descriptions of the target
document. However, it is very crucial to use an ex-
tended form of stopword elimination on anchor texts
(to remove standard phrases such as “click here”).

The way we are using the above feature options in
BINGO! is by constructing combined feature spaces
or by creating multiple alternative classifiers (see next
subsection). For example, BINGO! can construct fea-
ture vectors that have single-term frequencies, term-
pair frequencies, and anchor terms of predecessors as
components. For all components feature selection is
applied beforehand to capture only the most signifi-
cant of these features. The classifier can handle the
various options that BINGO! supports in a uniform
manner: it does not have to know how feature vectors
are constructed and what they actually mean. Vec-
tors with up to several thousand components can be
handled with acceptable performance.

3.5 Meta Classification

BINGO! can construct a separate classifier (i.e.,
trained decision model) for each of the various feature
space options outlined in the previous section (includ-
ing combination spaces). Right after training it uses
the &a estimator [13] for predicting the quality (i.e.,
classification precision) of each alternative and then
selects the one that has the best estimated “gener-
alization performance” for classifying new, previously
unseen, documents. The same estimation technique
can be used, with some extra computational effort,
for choosing an appropriate value for the number of
most significant terms or other features that are used
to construct the classifier’s input vectors after feature
selection.

In addition, BINGO! can combine multiple clas-
sifiers at run-time using a meta classifier approach.
Consider the set V = {vy,...,v,} of classifiers. Let
res(vi, D,K) € {—1,1} be the decision of the i-th
method for the classification of document D into class
C, w(v;) € R be weights and t1,t2 € R be thresholds.
Then we can define a meta decision function as follows:

Meta(V,D,C) =

+1 when Z?Zl w; - res(v;) >t (2)
—1 when 2?21 w; - res(v;) < tg
0, otherwise

The zero decision means that the meta classifier is un-
able to make a clear decision and thus abstains.



Three special instances of the above meta classifier
are of particular importance (one of them using the {«
estimators [13]):

1. unanimous decision: for definitively positive classi-
fication the results of all classifiers must be equal:
as follows:
w(v;)=1forallv; €V, t;1 =h—0.5=—ty

2. majority decision: the meta result is the result of
the majority of the classifiers:

w(v;) =1forallv; €V, t3 =ty =0.

3. weighted average according to the £« estimators:

w(v;) = precisiong,(v;) for all v; € Vit =t =0

Such model combination and averaging techniques
are well known in the machine learning literature [17].
They typically make learning-based decision functions
more robust and can indeed improve the overall clas-
sification precision. This observation was also made
in some of our experiments where unanimous and
weighted average decisions improved precision from
values around 80 percent to values above 90 percent.
By default, BINGO! uses multiple alternative classi-
fiers in parallel and applies the unanimous-decision
meta function in the crawl’s learning phase and the
weighted average in the harvesting phase. FEach of
these parallel classifiers requires computing a scalar
product between vectors with a few thousand com-
ponents for each visited Web page that needs to be
classified. When the crawler’s run-time is critical, we
therefore switch to a single feature space and a single
classifier, namely, the one with the best £a estimator
for its precision. This still requires training multiple
classifiers, but in this run-time-critical case this is done
only once before the harvesting phase is started. For
the learning phase we always use the meta classifier.

3.6 Result Postprocessing

The result of a BINGO! crawl may be a database with
several million documents. Obviously, the human user
needs additional assistance for filtering and analyzing
such result sets in order to find the best answers to her
information demands. To this end BINGO! includes a
local search engine that employs IR and data mining
techniques for this kind of postprocessing.

The search engine supports both exact and vague
filtering at user-selectable classes of the topic hierar-
chy, with relevance ranking based on the usual IR met-
rics such as cosine similarity [3] of term-based docu-
ment vectors. In addition, it can rank filtered docu-
ment sets based on the classifier’s confidence in the as-
signment to the corresponding classes, and it can per-
form the HITS link analysis [14] to compute authority
scores and produce a ranking according to these scores.
Different ranking schemes can be combined into a lin-
ear sum with appropriate weights; this provides flexi-
bility for trial-and-error experimentation by a human
expert.

Filtering and ranking alone cannot guarantee that
the user finds the requested information. Therefore,
when BINGO! is used for expert Web search, our local
search engine supports additional interactive feedback.
In particular, the user may select additional training
documents among the top ranked results that he sees
and possibly drops previous training data; then the
filtered documents are classified again under the re-
trained model to improve precision. For information
portal generation, a typical problem is that the results
in a given class are heterogeneous in the sense that
they actually cover multiple topics that are not nec-
essarily closely related. This may result from the di-
versity and insufficient quality of the original training
data.

To help the portal administrator for better organiz-
ing the data, BINGO! can perform a cluster analysis on
the results of one class and suggest creating new sub-
classes with tentative labels automatically drawn from
the most characteristic terms of these subclasses. The
user can experiment with different numbers of clus-
ters, or BINGO! can choose the number of clusters
such that an entropy-based cluster impurity measure
is minimized [9]. Our current implementation uses the
simple K — means algorithm [16, 17] for clustering,
but we plan to add more sophisticated algorithms.

4 Making BINGO! Efficient

Our main attention in building BINGO! was on search
result quality and the effectiveness of the crawler.
When we started with larger-scale experimentation,
we realized that we had underestimated the impor-
tance of performance and that effectiveness and effi-
ciency are intertwined: the recall of our crawls was
severely limited by the poor speed of the crawler.
In the last months we focused our efforts on per-
formance improvement and reimplemented the most
performance-critical function components.

BINGO! is implemented completely in Java and
uses Oracle9i as a storage engine. The database-
related components (document analysis, feature selec-
tion, etc.) are implemented as stored procedures, the
crawler itself runs as a multi-threaded application un-
der the Java VM. As crawl results are stored in the
database, we implemented our local search engine as
a set of servlets under Apache and the Jserv engine.
Our rationale for Java was easy portability, in par-
ticular, our student’s desire to be independent of the
“religious wars” about Windows vs. Linux as the un-
derlying platform.

This section discusses some of the Java- and
database-related performance problems and also some
of the key techniques for accelerating our crawler. We
adopted some useful tips on crawl performance prob-
lems from the literature [10, 11, 20] and also developed
various additional enhancements.



4.1 Lessons on Database Design and Usage

The initial version of BINGO! used object-relational
features of Oracle9i (actually Oracle8i when we
started), in particular, nested tables for hierarchically
organized data. This seemed to be the perfect match
for storing documents, as the top-level table, and the
corresponding sets of terms and associated statistics
as a subordinate table (document texts were stored
in a LOB attribute of the top-level table). It turned
out, however, that the query optimizer had to com-
pute Cartesian products between the top-level and the
subordinate table for certain kinds of queries with se-
lections and projections on both tables. Although this
may be a problem of only a specific version of the
database system, we decide to drastically simplify the
database design and now have a schema with 24 flat
relations, and also simplified the SQL queries accord-
ingly.

Crawler threads use separate database connections
associated with dedicated database server processes.
Each thread batches the storing of new documents and
avoids SQL insert commands by first collecting a cer-
tain number of documents in workspaces and then in-
voking the database system’s bulk loader for moving
the documents into the database. This way the crawler
can sustain a throughput of up to ten thousand docu-
ments per minute.

4.2 Lessons on Crawl Management

Networking aspects

A key point for an efficient crawler in Java is con-
trol over blocking I/O operations. Java provides the
convenient HTTPUrlConnection class, but the under-
lying socket connection is hidden from the program-
mer. Unfortunately, it is impossible to change the de-
fault timeout setting; thus, a successfully established
but very slow connection cannot be cancelled. The
recommended way to overcome this limitation of the
Java core libraries is to control the blocking connec-
tion using a parallel “watcher thread”. To avoid this
overhead, BINGO! implements its own socket-based
HTTP connections following RFC 822 [18].

The Java core class InetAddress, used for the
representation of network addresses and resolving of
host names, is another potential bottleneck for the
crawler [11]. It was observed that the caching al-
gorithm of InetAddress is not sufficiently fast for
thousands of DNS lookups per minute. To speed
up name resolution, we implemented our own asyn-
chronous DNS resolver. This resolver can operate with
multiple DNS servers in parallel and resends requests
to alternative servers upon timeouts. To reduce the
number of DNS server requests, the resolver caches all
obtained information (hostnames, IP addresses, and
additional hostname aliases) using a limited amount

of memory with LRU replacement and TTL-based in-
validation.

Since a document may be accessed through different
path aliases on the same host (this holds especially for
well referenced authorities for compatibility with out-
dated user bookmarks), the crawler uses several finger-
prints to recognize duplicates. The initial step consists
of simple URL matching (however, URLs have an av-
erage length of more than 50 bytes [2]; our implemen-
tation merely compares the hashcode representation of
the visited URL, with a small risk of falsely dismiss-
ing a new document). In the next step, the crawler
checks the combination of returned IP address and
path of the resource. Finally, the crawler starts the
download and controls the size of the incoming data.
We assume that the filesize is a unique value within
the same host and consider candidates with previously
seen IP /filesize combinations as duplicates. A similar
procedure is applied to handle redirects. The redirec-
tion information is stored in the database for use in
the link analysis (see Section 2.5). We allow multi-
ple redirects up to a pre-defined depth (set to 25 by
default).

Document type management

To avoid common crawler traps and incorrect server
responses, the maximum length of hostnames is re-
stricted to 255 (RFC 1738 [22] standard), the max-
imum URL length is restricted to 1000. This re-
flects the common distribution of URL lengths on the
Web [2], disregarding URLs that have GET parame-
ters encoded in them.

To recognize and reject data types that the crawler
cannot handle (e.g., video and sound files), the
BINGO! engine checks all incoming documents against
a list of MIME types [12]. For each MIME type we
specify a maximum size allowed by the crawler; these
sizes are based on large-scale Google evaluations [2].
The crawler controls both the HTTP response and the
real size of the retrieved data and aborts the connec-
tion when the size limit is exceeded.

Crawl queue management

The proper URL ordering on the crawl frontier is
a key point for a focused crawler. Since the abso-
lute priorities may vary for different topics of inter-
est, the queue manager maintains several queues, one
(large) incoming and one (small) outgoing queue for
each topic, implemented as Red-Black trees.

The engine controls the sizes of queues and starts
the asynchronous DNS resolution for a small number
of the best incoming links when the outgoing queue is
not sufficiently filled. So expensive DNS lookups are
initiated only for promising crawl candidates. Incom-
ing URL queues are limited to 25.000 links, outgoing
URL queues to 1000 links, to avoid uncontrolled mem-
ory usage.



In all queues, URLs are prioritized based on their
SVM confidence scores (see Section 2). The priority
of tunnelled links (see 3.3) is reduced by a constant
factor for each tunnelling step (i.e., with exponential
decay), set to 0.5 in our experiments.

We also learned that a good focused crawler needs
to handle crawl failures. If the DNS resolution or
page download causes a timeout or error, we tag the
corresponding host as “slow”. For slow hosts the num-
ber of retrials is restricted to 3; if the third attempt
fails the host is tagged as “bad” and excluded for the
rest of the current crawl.

5 Experiments
5.1 Testbed

In the experiments presented here, BINGO! was run-
ning on a dual Intel 2GHz server with 4 GB main mem-
ory under Win2k, connected to an Oracle9i database
server on the same computer. The number of crawler
threads was initially restricted to 15; the number of
parallel accesses per host was set to 2 and per recog-
nized domain to 5. The engine used 5 DNS servers
located on different nodes of our local domain. The
maximum number of retrials after timeouts was set to
3. The maximum allowed tunneling distance was set
to 2. The allowed size of the URL queues for the crawl
frontier was set to 30,000 for each class. To eliminate
“meta search capabilities”, the domains of major Web
search engines (e.g., Google) were explicitly locked for
crawling. The feature selection, using the MI criterion,
selected the best 2000 features for each topic.

In the following subsections we present two kinds
of experiments: 1) the generation of an information
portal from a small seed of training documents, and 2)
an expert query that does not yield satisfactory results
on any of the popular standard search engines such as
Google.

5.2 Portal Generation for a Single Topic

To challenge the learning capabilities of our focused
crawler, we aimed to gather a large collection of Web
pages about database research. This single-topic di-
rectory was initially populated with only two author-
itative sources, the home pages of David DeWitt and
Jim Gray (actually 3 pages as Gray’s page has two
frames, which are handled by our crawler as separate
documents).

The initial SVM classification model was built us-
ing these 2 positive and about 400 negative examples
randomly chosen from Yahoo top-level categories such
as sports and entertainment (see Section 3). In the
learning phase, BINGO! explored the vicinity of the
initial seeds and added newly found archetypes to the
topic. To this end the maximum crawl depth was set
to 4 and the maximum tunnelling distance to 2, and
we restricted the crawl of this phase to the domains of

Property 90 minutes | 12 hours
Visited URLSs 100,209 3,001,982
Stored pages 38,176 992,663

Extracted links 1,029,553 38,393,351
Positively classified 21,432 518,191
Visited hosts 3,857 34,647
Max crawling depth 22 236

Table 1: Crawl summary data

the training data (i.e., the CS department of the Uni-
versity of Wisconsin and Microsoft Research, and also
additional Yahoo categories for further negative ex-
amples). Since we started with extremely small train-
ing data, we did not enforce the thresholding scheme
(3.2) (requirement that the SVM confidence for new
archetypes would have to be higher than the average
confidence of the initial seeds). Instead, we rather
admitted all positively classified documents (includ-
ing the ones that were positively classified into the
complementary class “OTHERS”, i.e., the Yahoo doc-
uments). Altogether we obtained 1002 archetypes,
many of them being papers (in Word or PDF), talk
slides (in Powerpoint or PDF), or project overview
pages of the two researchers, and then retrained the
classifier with this basis.

The harvesting phase then performed prioritized
breadth-first search with the above training basis and
seed URLs, now without any domain limitations (other
than excluding popular Web search engines). We
paused the crawl after 90 minutes to assess the in-
termediate results at this point, and then resumed it
for a total crawl time of 12 hours. Table 5.2 shows
some summary data for this crawl.

To assess the quality of our results we used the
DBLP portal (http://dblp.uni-trier.de/) as a compar-
ison yardstick. The idea was that we could automati-
cally construct a crude approximation of DBLP’s col-
lection of pointers to database researcher homepages.
DBLP contains 31,582 authors with explicit homepage
URLs (discounting those that have only a URL sug-
gested by an automatic homepage finder). We sorted
these authors in descending order of their number of
publications (ranging from 258 to 2), and were par-
ticularly interested in finding a good fraction of the
top ranked authors with BINGO!. To prevent giving
BINGO! any conceivably unfair advantage, we locked
the DBLP domain and the domains of its 7 official mir-
rors for our crawler. In evaluating the results, we con-
sidered a homepage as “found” if the crawl result con-
tained a Web page “underneath” the home page, i.e.,
whose URL had the homepage path as a prefix; these
were typically publication lists, papers, or CVs. The
rationale for this success measure was that it would
now be trivial and fast for a human user to navigate
upwards to the actual homepage.

We evaluated the recall, i.e., the total number of
found DBLP authors, and the precision of the crawl re-



Best crawl results

Top 1000 DBLP

All authors

1,000 27 91
5,000 79 198
all (21,432) 218 1,396

Table 2: BINGO! precision (90 minutes)

Best crawl results

Top 1000 DBLP

All authors

1,000 267 342
5,000 401 1,325
all (518,191) 712 7,101

Table 3: BINGO! precision (12 hours)

sult. For the latter we considered the number of pages
found out of the 1000 DBLP-top-ranked researchers,
i.e., the ones with the most publications, namely, be-
tween 258 and 45 papers. The crawl result was sorted
by descending classification confidence for the class
“database research”, and we compared the top 1000
results to the top 1000 DBLP authors.

Tables 2 and 3 show the most important measures
on crawl result quality. Most noteworthy is the good
recall: we found 712 of the top 1000 DBLP authors
(without ever going through any DBLP page). The
precision is not yet as good as we wished it to be: 267
of these top-ranked authors can be found in the 1000
documents with highest classification confidence. So
a human user would have to use the local search en-
gine and other data analysis tools to further explore
the crawl result, but given that the goal was to auto-
matically build a rich information portal we consider
the overall results as very encouraging. Note that
our crawler is not intended to be a homepage finder
and thus does not use specific heuristics for recogniz-
ing homepages (e.g., URL pattern matching, typical
HTML annotations in homepages, etc.). This could
be easily added for postprocessing the crawl result and
would most probably improve precision.

5.3 Expert Web Search

To investigate the abilities of the focused crawler
for expert Web search, we studied an example of a
“needle-in-a-haystack” type search problem. We used
BINGO! to search for public domain open source im-
plementations of the ARIES recovery algorithm.

A direct search for “public domain open source
ARIES recovery” on a large-scale Web search engine
(e.g., Google) or a portal for open source software (e.g.,
sourceforge.net) does not return anything useful in the
top 10 ranks; it would be a nightmare to manually nav-
igate through the numerous links that are contained
in these poor matches for further surfing. As an anec-
dotic remark, the open source software portal even re-
turned lots of results about binaries and libraries.

Our procedure for finding better results was as fol-
lows. In a first step, we issued a Google query for “aries
recovery method” and “aries recovery algorithm” to

retrieve useful and starting points for a focused crawl.
The top 10 matches from Google were intellectually in-
spected by us, and we selected 7 reasonable documents
for training; these are listed in Figure 4.

1 http://www.bell-labs.com/topic/books/db-book/
slide-dir/Aries.pdf

2 http://www-2.cs.cmu.edu/afs/cs/academic/class/
15721-f01 /www /lectures/recovery_with_aries.pdf

3 http://icg.-harvard.edu/ cs265/lectures/
readings/mohan-1992.pdf

4 http://www.cs.brandeis.edu/ liuba/abstracts/mohan.html

5 http://www.almaden.ibm.com/u/mohan/
ARIES_ Impact.html

6 http://www-db.stanford.edu/dbseminar/Archive/
FallY99/mohan-1203.html

7 http://www.vldb.org/conf/1989/P337.PDF

Figure 4: Initial training documents

Note that Mohan’s ARIES page (the 5th URL in
Figure 4) does not provide an easy answer to the query;
of course, it contains many references to ARIES-
related papers, systems, and teaching material, but it
would take hours to manually surf and inspect a large
fraction of them in order to get to the source code of
a public domain implementation.

These pages were used to build the initial SVM clas-
sification model. As negative examples we again used
a set of randomly chosen pages from Yahoo top-level
categories such as ”sports”. The focused crawler was
then run for a short period of 10 minutes. It visited
about 17,000 URLs with crawling depth between 1 and
7; 2,167 documents were positively classified into the
topic “ARIES”.

Finally, we used the result postprocessing compo-
nent (see 3.6) and performed a keyword search filtering
with relevance ranking based on cosine similarity. The
top-10 result set for the query ”source code release”
contains links to open-source projects Shore and Mini-
base, which implement ARIES media recovery algo-
rithm (Figure 5). Additionally, the third open source
system, Exodus, is directly referenced by the Shore
homepage. A MiniBase page (further up in the direc-
tory) was also among the top 10 crawl results accord-
ing to SVM classification confidence; so even without
further filtering the immediate result of the focused
crawl would provide a human user with a very good
reference.

We emphasize that the expert Web search sup-
ported by our focused crawler required merely a min-
imum amount of human supervision. The human ex-
pert had to evaluate only 30 to 40 links (20 for train-
ing set selection, and 10 to 20 for result postprocess-
ing), collected into prepared lists with content pre-
views. Including crawling time and evaluation, the
overall search cost was about 14 minutes. This over-
head is significantly lower than the typical time for
manual surfing in the hyperlink vicinity of some initial
authorities (such as IBM Almaden).



0.025 http://www.cs.wisc.edu/shore/doc/
overview/node5.html

0.023 http://www.almaden.ibm.com/cs/
jcentral_press.html

0.022 http://www.almaden.ibm.com/cs/garlic.html

0.021 http://www.cs.brandeis.edu/liuba,/
abstracts/greenlaw.html

0.020 http://www.db.fmi.uni-passau.de/kossmann/
papers/garlic.html

0.018 http://www.tivoli.com/products/index/
storage-mgr /platforms.html

0.015 http://www.cs.wisc.edu/shore/doc/
overview/footnode.html

0.014 http://www.almaden.ibm.com/cs/clio/

0.011 http://www.cs.wisc.edu/coral/minibase/
logmgr /report /node22.html

0.011 http://www.ceid.upatras.gr/courses/minibase/
minibase-1.0/documentation/html/minibase/
logmgr /report /node22.html

Figure 5: Top 10 results for query ” source code release”

6 Conclusion

In this paper we have presented the BINGO! system
for focused crawling and its applications to informa-
tion portal generation and expert Web search. Many
concepts in BINGO! have been adopted from prior
work on Web IR and statistical learning, but we believe
that the integration of these techniques into a compre-
hensive and versatile system like BINGO! is a major
step towards a new generation of advanced Web search
and information mining tools. The experiments that
we presented in this paper have shown the great po-
tential of the focused crawling paradigm but also some
remaining difficulties of properly calibrating crawl se-
tups for good recall and high precision.

Our future work aims to integrate BINGO! engine
with a Web-service-based portal explorer and a seman-
tically richer set of ontology services. On the other
hand, we plan to pursue approaches to generating ”se-
mantically” tagged XML documents from the HTML
pages that BINGO! crawls and investigate ways of
incorporating ranked retrieval of XML data [21] in
the result postprocessing or even as a structure- and
context-aware filter during a focused crawl.
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