
Toward Large Scale Integration:
Building a MetaQuerier over Databases on the Web

Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang∗

Computer Science Department
University of Illinois at Urbana-Champaign
{kcchang, binhe, zhang2}@uiuc.edu

Abstract

The Web has been rapidly “deepened” by myriad
searchable databases online, where data are hid-
den behind query interfaces. Toward large scale
integration over this “deep Web,” we have been
building the MetaQueriersystem– for both ex-
ploring (to find) and integrating (to query) data-
bases on the Web. As an interim report,first,
this paper proposes our goal of the MetaQuerier
for Web-scale integration– With its dynamic and
ad-hoc nature, such large scale integration man-
dates both dynamic source discovery and on-the-
fly query translation. Second, we present the
system architecture and underlying technology of
key subsystems in our ongoing implementation.
Third, we discuss “lessons” learned to date, focus-
ing on our efforts in system integration, for putting
individual subsystems to function together. On
one hand, we observe that, across subsystems,
the system integration of an integration system
is itself non-trivial– which presents both chal-
lenges and opportunities beyond subsystems in
isolation. On the other hand, we also observe
that, across subsystems, there emerge unified in-
sights of “holistic integration”– which leverage
large scale itself as a unique opportunity for in-
formation integration.

1 Introduction
In the recent years, the Web has been rapidly deepened with
the prevalence of databases online. As Figure 1 concep-
tually illustrates, on this so-called “deep Web,” numerous
online databases provide dynamic query-based data access
through their query interfaces, instead of static URL links.
A July 2000 study [7] estimated 43,000-96,000 such search
sites (and 550 billion content pages) on the Web. Our recent
survey [11] (as we will explain) in April 2004 estimated

∗This material is based upon work partially supported by NSF Grants
IIS-0133199 and IIS-0313260. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

Cars.com Amazon.com

Apartments.com
Biography.com

401carfinder.com

411localte.com

Figure 1: Databases on the Web.
450,000 online databases. As current crawlers cannot ef-
fectively query databases, such data are invisible to search
engines, and thus remain largely hidden from users.

However, while there are myriad useful databases on-
line, users often have difficulties in firstfinding the right
sources and thenqueryingover them. Consider user Amy,
who is moving to a new town. To start with, different
queries need different sources to answer: Where can she
look for real estate listings? (e.g., realtor.com.) Study-
ing for a new car? (cars.com.) Looking for a job? (mon-
ster.com.) Further, different sources support different query
capabilities: After source hunting, Amy must then learn the
grueling details of querying each source.

To enable effective access to databases on the Web,
since April 2002, we have been building a “metaquery-
ing” system, theMetaQuerier (metaquerier.cs.uiuc.edu),
as Figure 2 shows. Our goal is two fold– First, to make the
deep Web systematicallyaccessible, it will help usersfind
online databases useful for their queries. Second, to make
the deep Web uniformlyusable, it will help usersqueryon-
line databases. Toward this goal, we have designed the sys-
tem architecture, developed several key components, and
started system integration. As an interim report, this paper
presents our proposal of the MetaQuerier, summarizes its
architecture and techniques, and reports lessons we have
learned in putting things together.

Such deep-Web integration faces new challenges– for
coping with thelarge scale: The deep Web is a large col-
lection of queryable databases (well on the order105, as
mentioned earlier). As the large scale mandates, first, such
integration isdynamic: Since sources are proliferating and
evolving on the Web, they cannot be statically configured

Database

Crawler

�����������

Interface

Extraction

Source

Clustering

Schema

Matching

The Deep Web

Back-end: Semantics Discovery

Front-end: Query Execution

Query
Translation

Source
Selection

Grammar

Type Patterns

Result
Compilation

Deep Web Repository

Unified InterfacesSubject DomainsQuery CapabilitiesQuery Interfaces

Query Web databases Find Web databases

Figure 2: MetaQuerier: System architecture.

for integration. Second, it isad-hoc: Since queries are
submitted by users for different needs, they will each in-
teract with different sources–e.g., in Amy’s case: those
of real estates, automobiles, and jobs. Thus, toward the
large-scale integration, the MetaQuerier must achieve dual
requirements–

1. Dynamic discovery: As sources are changing, they
must be dynamically discovered for integration– there
are nopre-selectedsources.

2. On-the-fly integration: As queries are ad-hoc, the
MetaQuerier must mediate them on-the-fly for relevant
sources, with no pre-configuredper-source(i.e., source-
specific) knowledge.

We thus propose to build the MetaQuerier for dynamic
discovery and on-the-fly integration over databases on the
Web– To our knowledge, our goal of integration at a large
scale has largely remained unexplored. While our re-
search community has actively studied information inte-
gration (Section 2), it has mostly focused on static, pre-
configured systems (say, Book comparison shopping over
a set of bookstores), often of relatively small scale. In con-
trast, the MetaQuerier is motivated by the emergence and
proliferation of Web databases for large-scale integration.

While the need is tantalizing– for effectively accessing
the deep Web– the order is also tall. The challenge arises
from the mandate of on-the-flysemantics discovery: Given
the dynamically-discovered sources, to achieve on-the-fly
integration, we must cope with various “semantics.” To
name a few:What are the query capabilities of a source?
(So as to characterize a source and query it.)How to match
between query interfaces? (So as to mediate queries.)

Such dynamic semantics discovery is crucial for our
goal. While the challenge of semantics is not new to any
information integration effort, for smaller and static sce-
narios, automatic semantics discovery is often anoption to
reduce human labor, as an aid to manually configured se-
mantics (e.g., source descriptions and translation rules). In
contrast, for large scale scenarios, semantics discovery is
simply amandate, since sources are collected dynamically
and queried on-the-fly. Is it, then, even hopeful to achieve
such Web metaquerying?

Such integration is clearly hard– When we were start-
ing, we were indeed also skeptical.1 Nevertheless, to move
forward, we decided to take two “strategies”– which have
been beneficial in pointing us to the right direction.

As ourfirst strategy, we were prepared to investigate not
only the right techniques but also theright goalsto achieve.
We believe, sharing the insight of [8], that “as needs are so
great, compromise is possible”– Given the scale of such
integration, even “simpler scenarios,” if can be achieved,
will likely render great usage.

For our system goal, we thus decided to focus on a sim-
pler scenario– integrating sources in the same domains.
Note that each Web database provides structured informa-
tion as a certain “type,” ordomain, of data–e.g., ama-
zon.comfor “books” andcars.comfor “automobiles.” As
the Web scales, many sources provide data in the same do-
mains (e.g., there are numerous other “book” sources, such
asbn.com). Suchdomain-basedintegration is simpler, as
sources are more “homogeneous” in the same domain, and
are thus more “integratable.” On the other hand, such in-
tegration is indeed useful– Users mostly search for specific
types of data. In our Amy’s example, she needs access to
sources in the Jobs domain (or Real Estates, Automobiles).

As our secondstrategy, we decided to get ourhands
dirty at the very beginning– to start with a “reality check”
of the frontier, for guiding our research. We performed
large scale surveys, by gathering random samples of Web
servers over 1 million IP hosts, first in December 2002 [12]
and then April 2004 [11]. The surveys clearly reassure the
need for large scale integration: Our recent results [11] esti-
mated 450,000 databases accessed by 1,258,000 query in-
terfaces, across 307,000 deep-Web sites (thus a 3-7 times
increase in 4 years compared to the 2000 study [7]).

For our development, these field studies have guided our
research– To begin with, the surveys gathered a dataset of
about 500 real sources, which serves as our test data, before
we complete a “crawler” (Section 3) for dynamic source
discovery. As a research project, we were thus able to take
a “divide and conquer” approach, to identify and study key
tasks concurrently. (As a “side effect,” the dataset started
our ongoing effort of constructing a shared data collection–
theUIUC Web Integration Repository.2)

Further, the surveys revealed some inspiring observa-
tions: Databases on the Web arenot arbitrarily complex;
there seem to be some “convergence” and “regularity”nat-
urally emerging across many sources. This “concerted
complexity” sheds light on the challenge of dynamic se-
mantics discovery. (So, it is perhaps hopeful to achieve
large scale metaquerying.) In hindsight, such behavior is
indeed natural at a large scale: As sources proliferate, they
tend to be influenced by peers– which we intuitively un-
derstand as theAmazon effect.3 As Section 5 will discuss,

1Many colleagues in the community probably share this feeling– Our
doubt actually started only after reading a long (5 pages) skeptical review,
on the issue of finding “semantics,” from an NSF panel of our original
MetaQuerier proposal.

2Publicly available athttp://metaquerier.cs.uiuc.edu/repository
3Online bookstores seem to followAmazon.comas a de facto standard.

many of our approaches (Sections 3 and 4) have essentially
built upon this very insight.

As an interim report, to begin with, this paper will
present the system architecture and underlying technology
of key subsystems in our ongoing implementation. To meet
the dual requirements from dynamic discovery to on-the-
fly integration, our system framework essentially “mines”
all sources discovered to collect the semantics required for
on-the-fly integration. Semantics discovery, as motivated
earlier, is thus essential in the entire architecture.

Further, we discuss “lessons” learned to date, focusing
on our efforts insystem integration, for putting individual
subsystems to function together.

Lesson 1:Across subsystems, the system integration of an
integration system is itself non-trivial– which presents both
challenges and opportunities beyond subsystems in isola-
tion. To demonstrate the possibilities, we proposeensemble
cascadinganddomain feedbackas two sample techniques.

Lesson 2:Across subsystems, there emerge unified insights
of “holistic integration”– which leverage the large scale it-
self as a unique opportunity for integration. This unified
insight suggests holistic integration as a promising method-
ology for coping with the large scale.

We believe these “lessons” will not only guide our fur-
ther development of the MetaQuerier, but also will be im-
portant principles for building large-scale integration sys-
tems in general. In the remainder of this paper, we start
with Section 2 for the related work. We next, in Section 3,
present the system architecture and underlying techniques.
We then report lessons learned when “putting things to-
gether” in Sections 4 and 5. Section 6 concludes with open
issues and future agenda.

2 Related Work

The MetaQuerier has a distinct focus as a large scale inte-
gration system– for dynamic discovery and on-the-fly me-
diation. On one hand, traditionally, information integration
has assumed relatively small and pre-configured systems.
On the other hand, the recent emergence of Web integra-
tion mostly considers only various subtasks. To our knowl-
edge, this paper is the first one to present the overall system
issues of building large scale integration.

Information integration has traditionally focused on rel-
atively small-scaled pre-configured systems [15, 33] (e.g.,
Information Manifold [25], TSIMMIS [31], Clio [30]). In
particular, relevant issues on schema matching [14, 32, 28],
schema mapping [35, 27], and query mediation [1, 2, 5, 6,
17] have been extensively studied.

In contrast, we are facing a “dynamic” and “ad-hoc” sce-
nario (Section 1) of integrating databases on the Web. Such
large-scale integration imposes different requirements and
thus faces new challenges: To deal with this large scale,
many tasks have to be automated, unlike integration at a
small scale where sources can be manually “configured.”
First, for finding sources, we must dynamically select rel-
evant sources according to user’s ad-hoc information need,

but not to fix a small set of sources for integration. Sec-
ond, for modeling sources, we must automatically discover
their query capabilities, but not to assume pre-configured
wrappers providing source descriptions. Third, for query-
ing sources, we must “on-the-fly” translate queries for un-
seen sources, but not to hard-code per-source knowledge
specifically for each source. As Section 1 introduced, for
realizing the MetaQuerier, these challenges essentially boil
down to semantics discovery on-the-fly.

Further, more recently, many research efforts emerge to
tackle various tasks for “Web integration”–e.g., 1) query
interface matching [18, 20, 34, 23], 2) query constraint
mapping [10, 36], and 3) wrapper induction [4, 9, 13, 24].
While we share the interest in “component techniques,” this
paper studies the overall system architecture as well as is-
sues and insights in system integration– Such “system” fo-
cus, we believe, is important in its own right.

In terms of our “solutions,” we note that, as one of our
unified insights (Section 5), the MetaQuerier exploits hid-
den “clues” revealed by holistic sources to discover under-
lying semantics. Along this line, several research efforts,
which have also emerged recently, share this similar holis-
tic insight– but specifically for theschema matchingtask,
which we also address in the MetaQuerier [18, 20] (as Sec-
tion 3 will report). In particular, references [34, 23] exploit
clustering for holistically matching many schemas. Ref-
erence [26] proposes a “corpus-based” idea, which uses a
separately-built schema corpus as a holistic “knowledge-
base” for assisting matching of unseen sources.

While sharing similar holistic frameworks, in contrast to
these efforts, we have developed ourholistic-integrationin-
sight to generally tackle with “semantics discovery” com-
mon in many large-scale integration tasks, which we be-
lieve well generalize beyond the specific task of schema
matching (e.g., interface extraction and query translation),
as Section 5 will discuss. Further, we believe, besides
“statistical” analysis (which most other works have based
upon), there are a wide range of applicable techniques (e.g.,
syntactical parsing [37] for interface extraction; locality-
based search [36] for query translation) to generally ex-
plore holistic hidden regularity for semantics discovery.

3 MetaQuerier: Architecture & Techniques
As Section 1 discussed, the integration of large scale data-
bases on the Web calls for the needs of dynamic discovery
and on-the-fly integration. Directed by these guidelines, we
develop the MetaQuerier system architecture. Section 3.1
will overview the architecture, and Section 3.2 will briefly
discuss the key techniques for the subsystems. Last, Sec-
tion 3.3 will report our implementation status.

3.1 System Architecture

We design the MetaQuerier system as guided by the chal-
lenges of large scale integration. As Section 1 motivated,
our scenario is essentially dynamic and ad-hoc: Sources
are not pre-selected; there is no pre-configured per-source
knowledge. Thus, the MetaQuerier must start from collect-
ing databases on the Web (i.e., dynamic discovery). How-

ever, while sources are dynamically discovered, at “run
time,” the MetaQuerier must query them (i.e., on-the-fly
integration) if selected. Our architecture design must es-
sentially fill in the “semantics gap” from dynamically dis-
covered sources to querying on-the-fly.

To begin with, we need to extract the query capability
for each discovered query interface. Also, since, in our
current development, we focus on integrating deep Web
sources in the same domain, we need to develop a clus-
tering approach to cluster interfaces into subject domains
(e.g., Books, Airfares). Last, for each domain, to construct
a unified interface and translate the user’s query from the
unified interface to interfaces of specific sources, we need
to discover semantic matchings among attributes. All these
“minings” of semantics, while themselves necessary for
large scale integration, in fact leverage the new opportu-
nities of “holistic” integration, as Section 5 will elaborate.

Therefore, we design the MetaQuerier system as con-
sisting of aback-endfor semantics discovery and afront-
endfor query execution, which are connected by theDeep
Web Repository, as Figure 2 illustrates. First, the back-end
mines source semantics from collected sources. It automat-
ically collects deep Web sources (i.e., Database Crawler
or subsystemDC), extracts query capabilities from inter-
faces (i.e., Interface Extractionor IE), clusters interfaces
into subject domains (i.e., Source Clusteringor SC) and
discovers semantic matchings (i.e., Schema Matchingor
SM). The collected query interfaces and discovered seman-
tics form the Deep Web Repository, which will be exploited
by the front-end to interact with users. (For our scenarios
of dynamic and ad-hoc integration, we stress that such a
Deep Web Repository is to be constructed “on-the-fly” af-
ter source discovery and modeling, without manually pre-
configured source-specific knowledge.)

Second, in the front-end, our current design is to provide
users a domain category hierarchy, which is similar to the
category organization ofYahoo.com, but is automatically
formed by theSC subsystem. For each category, a unified
interface is generated using theSM subsystem. A user can
thus first choose a domain of interest (e.g., Books) and issue
a query through the unified interface of that domain (e.g.,
title contain"database" ∧ subject = "computer").
The front-end then selects appropriate sources to query by
matching their “capability” or “content” to the user query
(i.e., Source Selectionor SS; Section 6 will discuss such
query routing). With sources selected, the front-end fur-
ther translates the user’s query to interfaces of these sources
(i.e., Query Translationor QT) and aggregates query re-
sults to the user (i.e., Result Compilationor RC).

Among the seven subsystems of the MetaQuerier (in-
cluding both back-end and front-end), we have completed
or partially completed five of them,i.e., DC [11], IE [37],
SC [21], SM [18, 20], andQT [36]. (The remainingSS
andRC subsystems are in our future research agenda, as
Section 6 will discuss.) For brevity, to highlight, in the fol-
lowing section, we will discuss three critical subsystems,
i.e., DC, IE, andSM, including their functionalities, key
insights and approaches.

3.2 Subsystems: Key Techniques

Database Crawler[SubsystemDC]:

Functionality:As the first step of the MetaQuerier, the sub-
systemDC automatically discovers deep Web databases by
crawling the Web and identifying query interfaces in Web
pages. Query interfaces (in HTML format) will be passed
to IE for constructing the repository of source query capa-
bilities.

Insight: For discovering databases on the Web, completely
crawling the entire Web is not only inefficient but also
unnecessary– As online databases are accessed through
query interfaces, we want to build a “focused” crawler that
finds these “query interfaces” quickly. To guide our de-
sign of an effective “Web-database” crawler, we performed
large scale surveys of the deep Web [11, 12] (as Section 1
mentioned). Our survey shows that query interfaces are
often close to the root page of the Web site. That is, the
depth of a Web database (i.e., the minimum number of
hops from the root page of the source site to a Web page
containing a query interface of the Web database) is of-
ten very small. Specifically, by identifying and examining
deep Web sites among 1,000,000 randomly generated IPs,
we observed that no Web databases have depth more than
5 and 94% Web databases are within depth 3.

Approach: Motivated by this observation, we develop a
site-based crawler, which focuses on examining shallow
pages around the root page of a Web site. The site-based
crawler consists of two stages:site collector, which finds
valid root pages, andshallow crawler, which crawls pages
within a Web server starting from a given root page. First,
the site collector collects valid IPs that have Web servers:
Since the IP space is huge and only a small fraction of
1/440 install Web servers [11], testing all the potential IPs
is very inefficient. Therefore, we develop a site collector to
quickly find IPs that host Web servers. This site collector
is itself a crawler that traverses URLs by preferring out-of-
site links, which thus gets to new site names quickly. Sec-
ond, the shallow crawler crawls Web pages within a Web
server (found by the site collector): Since query interfaces
are close to the root page, the shallow crawler only needs
to crawl a Web site up to a pre-configured depth (e.g., 3).

Interface Extraction [SubsystemIE]:

Functionality:Given a query interface in its HTML format
as collected byDC, the subsystemIE extracts thequery ca-
pability in the interface. In particular, we view each query
interface as consisting of a set ofconstraint templates,
where a template specifies the “format” of an acceptable
query condition, as a three-tuple[attribute; operator; value].
The task ofIE is thus to extract the constraint templates
of a given query interface. For example, the query inter-
faceQI1 in Figure 4 should be extracted as four constraint
templates,i.e., S1: [title; contain; $v], S2: [category; contain;
$v], S3: [price range; between; $low,$high], andS4: [reader
age; in; {[4:8], . . .}].

HTML
Layout
Engine

Tokenizer

Best-effort
Parser

Merger

Output:
Query capabilities

Input:
HTML

query form

2P Grammar

[Author; {contains}; text]

[Title; {contains}; text]

[Price; {<}; {5, 20, 50}]

Figure 3: SubsystemIE : Interface extraction.

Insight: We observe that, query interfaces, although pre-
sented differently, often share similar or common query
patterns. For instance, a frequently used pattern is a text
(as the attribute name) followed by a selection list with
numeric values (as the attribute domain), as the attributes
reader age of QI1, andage andprice of QI2 in Figure 4
show. Such observation motivates us to hypothesize the ex-
istence of ahidden syntaxacross holistic sources. That is,
we rationalize the concerted structure by asserting the cre-
ation of query interfaces as guided by some hypothetical
syntax: The hypothetical syntax guides a syntactic com-
position process from query conditions to their visual pat-
terns. This hypothesis effectively transforms the problem
into a new paradigm: We can view query interfaces as avi-
sual language[29], whose composition conforms to a hid-
den,i.e., non-prescribed, grammar. Their semantic extrac-
tion, as the reverse analysis, is thus aparsingproblem.

Approach: We thus introduce aparsingparadigm by hy-
pothesizing that there existshidden syntaxto describe the
layout and semantic of query interfaces [37]. Specifically,
we develop the subsystemIE as a visual language parser,
as Figure 3 shows. Given a query interface in HTML for-
mat, IE tokenizes the page, parses the tokens, and then
merges potentially multiple parse trees, to finally generate
the query capability. At its heart, we develop a2P grammar
and abest-effort parser.

First, by examining many interfaces, a human expert
summarizes and encodes two complementary types of pre-
sentation conventions as the 2P grammar. On one hand,
we need to writeproductionsto capture conventionally de-
ployed hidden patterns. On the other hand, however, by
capturing many patterns, some will conflict, and thus we
also need to capture their conventional precedence (or “pri-
orities”) aspreferences.

Second, to work with a hypothetical syntax, we develop
our parser to perform “best-effort.” As a non-prescribed
grammar is inherently ambiguous and incomplete, we need
a “soft parsing” semantics– The parser will assemble parse
trees that may be multiple (because of ambiguities) and par-
tial (because of incompleteness), instead of insisting on a
single perfect parse. On one hand, it will prune ambigui-
ties, as much as possible, by employing preferences (as in
the 2P grammar). On the other hand, it will recognize the
structure (by applying productions) of the input form, as
much as possible, by maximizing partial results.

When there are multiple parse trees for the same query

Query Interface QI1 Query Interface QI2

Constraint
Matching

S1

S2

S3

S4

T1

T2

T3

T4

Figure 4: Example query interfaces and their matching.
interface, we need an error handling mechanism to gener-
ate the final output. While the parser framework is rather
generic, error handling is often application specific. As
our “base” implementation, our “Merger” (Figure 3) sim-
ply merges all query conditions covered in all parse trees, to
enhance the “recall” (or coverage) of extraction. In our sub-
sequent system integration of putting subsystems together,
we observed further opportunities for error resolution, as
Section 4 will discuss.

Schema Matching[SubsystemSM]:

Functionality: For each domain, the subsystemSM dis-
covers semantic correspondences (i.e., matchings) among
attributes in the extracted query capabilities. For instance,
in Books domain, we may findsubject is the synonym of
category, i.e., subject = category. In particular, we gen-
erally consider to discover complex matchings. In contrast
to simple 1:1 matching, complex matching matches a set
of m attributes to another set ofn attributes, which is thus
also calledm:n matching. For instance, in Books domain,
author = {first name, last name}; in Airfares domain,
passengers = {adults, seniors, children, infants}.

The discovered matchings are stored in the Deep Web
Repository and serve for two purposes: 1) They are ex-
ploited to construct a unified interface for each domain,
which is presented to users at the front-end. 2) They are
used to match attributes from the unified interface to the
selected sources (bySS)– The subsystemQT needs such
matchings as input to translate the user’s query.

Insight: Existing schema matching works mostly focus
on small scale integration by finding attribute correspon-
dences between two schemas and thus are not suitable for
matching among many sources [32, 28, 14]. To tackle the
challenge of the large scale matching, as well as to take
advantage of its new opportunity, we propose a new ap-
proach,holistic schema matching, to match many schemas
at the same time and find all the matchings at once. Such a
holistic view enables us to explore thecontextinformation
across all schemas, which is not available when they are
matched only in pairs.

In particular, we started by exploring attribute occur-
rences across sources as the context and proposed theMGS
matching approach with the assumption of the existence of
a hidden generative schema model, which generates query
interfaces from a finite vocabulary of attributes [18]. In
our further study, and in our current implementation, we
explore the co-occurrence patterns of attributes to discover
complex matchings [20]. For instance, we may observe
that last name andfirst name have a high probability to
co-occur in schemas, while they together rarely co-occur
with author. More generally, we observe thatgrouping

attributes(i.e., attributes in one group of a matchinge.g.,
{last name, first name}) tend to be co-present and thus
positively correlated across sources. In contrast,synonym
attributes (i.e., attribute groups in a matching) are nega-
tively correlated because they rarely co-occur in schemas.

Approach:This insight motivates us to abstract the schema
matching problem as correlation mining [20]. Specifically,
we develop theDCM approach for mining complex match-
ings, consisting of automatic data preparation and correla-
tion mining. As preprocessing, the data preparation step
cleans the extracted query capabilities to prepare “schema
transactions” for mining. Then the correlation mining step
discovers complex matchings with dual correlation mining
of positive and negative correlations.

3.3 Implementation Status

For building the MetaQuerier (Figure 2), as a research
project, we aim at delivering along the way. To begin with,
we take adivide-and-conquerapproach: As Section 1 mo-
tivated, we develop the key components concurrently– To
date, we have studied and implementedDC [11], IE [37],
SC [21], SM [18, 20], andQT [36]. To speed up prototyp-
ing, first, we have decided to leverage open-source software
whenever possible. For instance, the site-based crawler
DC embeds the open source wget [16] as its base crawler,
and adds on its new crawling logic. Also,IE needs to use
an “HTML layout engine” (Figure 3) for rendering visual
tokens– We built this tokenizer upon the DOM API, which
many Web browsers (e.g., Mosaic or Internet Explorer)
support. Second, we decided to mainly use scripting lan-
guages. In particular, we use Python whenever possible–
However, the mix of open source code also brought in hy-
brid languages,e.g., C for wget.

Further, we aim at incremental deployment, to “pack-
age” smaller scopes in the course of development, before
the complete MetaQuerier. To date, we have deployed
two “applications.” First, forWeb crawling: We used
(part of) DC in our deep Web surveys [11, 12], as Sec-
tion 1 mentioned. Second, forquery-interface integration:
We have assembled two critical subsystems,IE andSM,
for automatically extracting and unifying Web query inter-
faces, which we demonstrated in [22]. In such system as-
sembly, when putting things together, we observed several
“lessons,” which we next report in Section 4 and 5.

4 Putting Together: Integrating Subsystems

Toward building the MetaQuerier system, we are intrigued
to learn that the “system integration” of such an integra-
tion system is itself non-trivial– Beyond each individually
validated subsystem, putting things together actually brings
forward new issues– with not only challenges but also op-
portunities. This section reports the issues we have ob-
served and sketches our solutions.

As just discussed, for our system effort, we naturally
took a “divide-and-conquer” approach; we identify the key
tasks, and develop each corresponding subsystem in its

jSiS kS
Cascade

Feedback

Figure 5: System integration: Putting subsystems together

abstraction,e.g., interface extraction [37], schema match-
ing [18, 20], source clustering [21], and query transla-
tion [36]. As we started with and focused more on subsys-
tems, we expected that putting things together is probably
no more than straightforward interfacing and assembly of
modules.

However, such tasks for information integration are of-
ten of a “soft” nature– Rather than executing well-defined
semantics, their effectiveness is measured byaccuracy.
Such accuracy is usually subjective and context-dependent.
First, how accurate is good enough?Is it good enough if
a single subsystemSi delivers “90%” accuracy? The an-
swer depends on the “consumer” ofSi’s output (say,Sk).
Second,can we make it even more accurate?While tech-
niques matter, the accuracy also depends on the availability
of more clues (e.g., from other subsystems) to leverage.

We thus observed that, when putting subsystems to-
gether, this “system integration” presents new issues. As
Figure 5 conceptually illustrates, in our experience to date,
we found both opportunities and challenges: On one hand,
thechallengeof cascade, assembling subsystems may de-
mand higher accuracy: it may turn out that the accuracy of
Si does not sustain a subsequentSj . On the other hand, the
opportunityof feedback, putting subsystems together may
supply more information: it may turn out that the informa-
tion available at a latter stage, saySk, can help to enhance
the accuracy ofSi.

Specifically, we will discuss the materialization of such
issues, centering around the interface extraction subsystem
IE. When studied in isolation (Section 3.1),IE delivers 85-
90+% accuracy (as our earlier work [37] reported)– thus
it will make about 1-1.5 mistake for every 10 query con-
ditions to extract. While seemingly satisfactory, putting in
the context of the entire system (Figure 2), is this accuracy
good enough? Can it be made more accurate? Beyond the
isolated study, in our system integration, we realized that 1)
the accuracy does not sustain the schema matching taskSM
in cascade, and 2) it can indeed benefit from feedback for
further error handling. More specifically, takingIE as an
example, we will propose two “sample” system-integration
techniques– focusing on their intuitive insights. Our pro-
posal is only a staring point– As Section 6 will discuss, we
believe such system integration is important for integrating
systems in its own right, and we plan to study more sys-
tematically and thoroughly.

• Ensemble cascading: On one hand, to sustain the accu-
racy of SM under imperfect input fromIE, we develop
the ensembleframework, which aggregates a multitude
of executions of “base executions” to achieve robustness.
(Section 4.1).

• Domain feedback: On the other hand, to take advan-
tage of information in latter subsystems, we develop the
feedbackframework, which improves the accuracy ofIE

by exploiting the domain statistics acquired from schema
matching (Section 4.2).
Before discussing these two techniques, we first present

and analyze the origin of the problem: the extraction errors
in the output ofIE.

Preliminary: Error Handling of Interface Extraction

While the parsing approach to extracting interfaces can
achieve over 85% accuracy, the 15% errors may still sig-
nificantly affect the matching quality. Figure 6(a) shows
thebaseframework of integrating theIE andSM subsys-
tems by simply concatenating them. As our experiment re-
ports [19], with such a base framework, the errors in the in-
terface extraction may affect matching accuracy up to 30%.

Specifically, as the 2P grammar is inherently ambigu-
ous, it is possible to have multiple parse trees for the same
query interface. Different interpretations of the same to-
ken lead to the conflicts of different parses. An incorrect
parse may associate tokens in a wrong way. Figure 8 il-
lustrates several such cases, where each circled group rep-
resents an association of tokens as a query condition. For
instance, Figure 8(b) associates a selection list with either
“Last Name” or “e.g., Mike,” and thus these two associa-
tions conflict on the selection list. Without semantic anno-
tation, both associations are valid patterns according to the
2P grammar.

As Section 3.2 explained, as our base implementation,
whenIE is independently developed, we handle the errors
by simply taking a union of all the parse trees as the final
output. However, when integrated into the system context,
the errors inIE may affect the accuracy of subsequent sub-
systems. On the other hand, the conflicts inIE can be re-
solved by considering the feedback from other subsystems.

4.1 Cascading: The Ensemble Framework

As our first attempt for integrating the MetaQuerier, we
cascade two important subsystemsIE andSM, with the in-
put of IE as a set of manually collected query interfaces in
the same domain. Also, as discussed in Section 3.2, our
base algorithm forSM is essentially a holistic matching
framework that “mines” semantic correspondences among
attributes as positive and negative correlations.SM thus
takes a set of schemas as input and outputs a ranked list of
matchings evaluated by some correlation measure.

We notice that the performance degradation with the
base framework (Figure 6(a)) results mainly from the nega-
tive impact of the noisy input on the right ranking of match-
ings in the output ofSM. When input schemas are noisy, the
ranking of matchings is likely to be affected (i.e., incorrect
matchings maybe ranked higher than correct ones). Conse-
quently, the ranking is less reliable for the “consumer” ap-
plications ofSM to select correct matchings. For instance,
an application-specific matching selection step is often in-
troduced afterSM to choose the most promising subset of
matchings among all the discovered ones. Since such a se-
lection naturally relies on the ranking of matchings, it is
critical to makeSM still output a good ranking with the
presence of noises.

SM

Rank Aggregation

name
title
ISBN
binding

author
title
subject
ISBN

writer
title
category
format

SM

name
title
ISBN
binding

author
title
subject
ISBN

writer
title
category
format

(a) The base framework (b) The ensemble framework

1st trial Tth trial
Multiple Sampling

SM

IE IE

1. author = name = writer
2. subject = category

1. author = name = writer
2. subject = category

S S

Figure 6: Integration of subsystemsIE andSM.

While large scale data integration brings forward the in-
herent problem of noisy quality in interface extraction, the
large scale also lends itself to an intriguing potential so-
lution. An interesting question to ask is:Do we need all
input schemas in matching their attributes? In principle,
since pursuing a data mining approach, the holistic matcher
exploits “statistics-based” evaluation (e.g., correlation min-
ing in our case) in nature and thus needs only “sufficient
observations.” As query interfaces tend to share attributes,
e.g., author, title, subject, ISBN are repeatedly used in
many book sources, a subset of schemas may still contain
sufficient information to “represent” the complete set of
schemas. Thus, the holistic matcher in fact only needs suf-
ficient correct schemas to execute, instead of all of them.
This insight is promising, but it also brings a new chal-
lenge: As there is no way to differentiate noisy schemas
with correct ones, how should we select the schemas to
guarantee the robustness of our solution?

Tackling this challenge, we propose anensembleframe-
work, with sampling and voting techniques, to build upon
and extend our holistic matcher, and meanwhile maintain
its robustness. To begin with, we consider execute the
holistic matcher on a randomly sampled subset of input
schemas. Such adownsamplinghas two attractive char-
acteristics: First, when schemas are abundant, it is likely
to contain sufficient correct schemas to be matched. Sec-
ond, by sampling away some schemas, it is likely to con-
tain fewer noises and thus has more chances to sustain the
holistic matcher. We name a downsampling as atrial .

Further, while a single trial may (or may not) achieve
good result, as a randomized scheme, the expected ro-
bustness can only be realized in “statistical” sense– Thus,
we propose to take an ensemble of multiple matchers,
where each matcher is executed over an independent trial
of schemas. We expect the majority of these matchers
have better results than directly run the matcher on all the

schemas. Thus, by taking majority voting among these
matchers, we can achieve a much better matching accuracy.

Therefore, the ensemble framework consists of two
steps:multiple samplingandrank aggregation, as Figure 6
illustrates. The multiple sampling step randomizes the in-
put schemas with multipleT trials, where each trial is a
downsampling of the input schemas with sampling sizeS.
We then execute theDCM holistic matcher on each trial.
The output of each trial is a list of ranked matchings. Fi-
nally, the rank aggregation step aggregates the discovered
matchings from all the trials into a merged list of ranked
matchings by taking majority voting.

For brevity of exposition, we intuitively motivate the ef-
fectiveness of this ensemble framework.

Example 1: Suppose there are 50 input schemas. Suppose
a matchingM cannot be correctly ranked because there are
five noisy schemas that can affectM . On the other hand,
assumeM can be correctly ranked if there are no more than
two noisy schemas. Also, suppose we want to sample 20
schemas in one trial and conduct 100 trials in total (i.e., S
= 20 andT = 100).

By simple derivation, we can see that we have 0.07 prob-
ability to get a single trial with no noisy schemas, 0.26
probability with one and 0.36 probability with two. To-
gether, we have 0.07 + 0.26 + 0.36 = 0.69 probability to
correctly rankM in a single trial (i.e., when there is no
more than 2 noises), denoted byPr(M) = 0.69.

Next, we are interested in how many times, among the
100 trials, can we observeM being ranked correctly? This
problem can be transformed as a standard scenario of toss-
ing an unfair coin in statistics: Given the probability of
getting a “head” in each toss asPr(M), with 100 tosses,
how many times can we observe heads? With this equiv-
alent view, we know that the number of trials in whichM
is correctly ranked (i.e., the number of tosses to observe
heads), denoted byO(M), is a random variable that has a
binomial distribution [3] with the success probability in one
trial asPr(M). Figure 7 shows the binomial distribution
of O(M). This figure essentially shows, if the probability
to get a head in one toss is 0.69, after tossing 100 times, the
probability of observing a certain number of heads.

As we take majority voting among all the trials, we are
thus interested in the probability that we can correctly rank
M (or observe heads) in the “majority” (i.e., more than 50)
of any 100 trials (or tosses). From Figure 7, we know that
we have 0.9996 probability to observeM in no less than
50 trials, which means it is almost for sure thatM can be
correctly ranked in the majority of trials.

Example 1 analytically illustrates, whenS and T are
determined, the effectiveness of the ensemble framework.
However, to realize this framework, we still need to tackle
some challenges in each step. First, in the multiple sam-
pling steps, we need to develop a principled approach to au-
tomatically determining an appropriate setting of the sam-
pling size and the number of trials that can guarantee good
robustness of a holistic matcher. Second, in the rank ag-
gregation step, we need to develop an aggregation strategy

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

O(M)

Figure 7: The binomial distribution ofO(M), with 100
trials andPr(M) = 0.69.

that can reflect the wills of the majority in the merged list of
matchings– That is, if a matching can be correctly ranked
in most trials, its ranking in the merged result should also
be correct. Please refer to [19] for these technical details.

To evaluate the matching performance, we compare the
accuracies of the base framework and the ensemble frame-
work on matching query interfaces in two domains, Books
and Airfares, withDCM as the matching algorithm. The
experiments show that the ensemble framework can im-
prove the matching accuracy ofDCM by up to 20%.

4.2 Feedback: Domain Statistics

While theensemblejust discussed addresses howSM can
robustly cascade withIE, this section explores the possibil-
ity whereIE may take advantage of thefeedbackof more
“clues,” in this case domain statistics, fromSM to correct
the errors ofIE.

Example 2: Figure 8(a) highlights a conflict raised dur-
ing parsing of a query interface, where two constraints:
C1 = [adults; equal; $val:{1,2,. . . }] and C2 =[adults;
equal; $val:{round-trip, one-way}] compete for the attribute
adults. After examining a collection of interfaces in the
same domain,SM identifies that constraintadults is most
likely of numeric type, which has very distinctive pat-
terns such as a numeric selection list shown in Figure 8(a).
Such a notion oftype with distinctive patternscan often
be observed in query interfaces,e.g., numeric (as just ob-
served) and date (with day, month, year inputs). Such type
information, if available, is very helpful for conflict res-
olution. In this particular example, knowing the attribute
adults is more likely of numeric type, we are able to deter-
mine more confidently thatC1 is a better association.

In general,IE can leverage the collective statistics of the
peer query interfaces in the same domain. WhileIE han-
dles one interface at a time (Section 3.2), such “holistic”
domain statistics is often available at subsequent subsys-
tems, where many interfaces gather for further processing.
Specifically, asSM takes interfaces from the same domain
as input, it is able to collect such statistics in the process of
discovering matchings.

Note that, as Example 2 hints, our exploration of “do-
main statistics” is itself a “voting” (or majority) strategy–
The conflicting associations are resolved by all “peer”
query interfaces in the same domain. For this example,
by voting on possible attribute types, we can conclude that

C1

C2

C1 C2

C1

C2

(a) Conflict 1 in query InterfaceQIa (b) Conflict 2 in query InterfaceQIb (c) Conflict 3 in query InterfaceQIa

Figure 8: Conflict examples

adults is more likely to occur in a numeric pattern and
thus choose the correct association. Section 5 will fur-
ther “unify” the domain-feedback scheme with ensemble-
cascading (Section 4.1) by the same insight of “majority.”

In our development, we identify three types of domain
statistics as feedback information that are effective in re-
solving the conflicts remained from parsing.

Type of attributes
As illustrated in Example 2, there is a notion of type

underlying many attributes, which often reveals distinctive
patterns. Since matched attributes are usually of the same
type, by looking at many interfaces,SM is able to collect
the common type of an attribute, as one type of domain
statistics.

Frequency of attributes
Each domain typically has a set of frequently queried

attributes. For example,author, title, ISBN, subject, cat-
egory are the common attributes in Books domain, andde-
parture city, departure date, passengers, adults, chil-
dren in Airfares domain. A reasonable assumption we can
make is that a query interface is more likely to ask queries
on those common attributes. Therefore, the information of
attribute frequencies, as another type of domain statistics,
can be used to resolve conflicts.

Example 3: Consider a conflict generated in interpretation
of query interfaceQIb as shown in Figure 8(b). Constraint
C1 =[last name; contain; $val] andC2 =[e.g.Mike; contain;
$val] conflict on the input box represented as$val. How-
ever, asSM collects constraints from many query inter-
faces, it may tellIE that attributelast name is much more
frequently queried by the peer interfaces, while attribute
e.g.Mike rarely occurs. We thus may conclude that con-
straintC1 is preferred thanC2.

Correlation of attributes
As discussed in Section 3.2,SM discovers matched at-

tribute groups, where attributes within the group are pos-
itively correlated, and attributes across the groups nega-
tively correlated. As the third type of domain statistics,
such correlations can serve as the constraints to check the
sanity of the extracted results and further to resolve con-
flicts.

Example 4: Consider the conflict betweennumber of
passengers C1 andadults C2 in QIa in Figure 8(c).SM
may discover that attributesadults andchildren are posi-
tively correlated, while both of them are negatively corre-
lated withpassengers. Givenchildren being confidently
identified as an attribute (i.e., with no conflicts with oth-
ers), choosingadults will be consistent with the discovered

correlations, while favoringpassengers against it. There-
fore, we may consideradults as a better interpretation than
passengers.

Given these three types of feedback information, we
need to combine them with a coherent mechanism for en-
hancing the accuracy (as further error handling beyond
what Section 3.2 discussed) ofIE. Currently, we explore
a simple rule based framework. Specifically, we write the
conflict resolution policies as rules, where each rule states
the condition to be satisfied, and the favored constraint to
be chosen by exploiting the domain statistics. In particular,
we have three preference rules, with each rule reflecting
one type of domain statistics:

• Rule 1: Using type of attribute. This rule favors the con-
straint whose type is more frequently used in other inter-
faces.

• Rule 2: Using frequency of attribute. This rule favors the
constraint whose attribute is more frequently queried.

• Rule 3: Using correlation of attribute. The rule favors
the constraints that co-occur with any positively corre-
lated constraint, and disfavors the constraints that co-
occur with any negatively correlated constraint.

While those preferences, when working individually,
determine a favored constraint, their choices may not agree
with each other. For instance, when resolving the conflict
betweenadults andpassengers in Figure 8(c), if we de-
ploy rule 3, we will favoradults. However, suppose that
passengers is more frequently queried thanadults, de-
ploying rule 2 will give a different answer, which favors
passengers. To solve this problem of inconsistency, we
adapt a simple strategy – we prioritize the three rules as
rule 3→2→1, based on the confidence of the correctness
of each rule.

To validate the effectiveness of using the feedback infor-
mation, we conducted a preliminary study to see how much
the domain statistics can help to improve the accuracy of
IE. In particular, we collected the parsed results in Airfares
and Books domains, with 20 and 30 interfaces respectively.
We measured the results as the percentage of conflicts that
are resolved correctly using the feedback information. The
result from the Airfares domain shows among the 20 airline
query interfaces, there are 7 conflicts and all of them can be
correctly resolved. For Books domain, there are 7 conflicts
among 30 book query interfaces and 4 out of the 7 are re-
solved. Totally, 11 out of 14 conflicts from the 50 interfaces
are correctly resolved, which amounts to 78.6% percent-
age. This preliminary study shows that exploring feedback
information has good potentials for improving accuracy.

Although the rule based approach is rather simple, it
tends to be heuristic. A more principled way, which we are

currently investigating is to explore a probabilistic model
that combines all three types of domain statistics together
to generate an overall best, as the “most-probable,” inter-
pretation. Such a probabilistic model is motivated by our
observation that the feedback information essentially de-
notes the likelihood of a constraint to be correct from dif-
ferent aspects (i.e., type, frequency and correlation), which
can be estimated by the domain statistics we have collected.
Under this view, resolving conflicts thus becomes choosing
the interpretation with highest probability.

5 Putting Together: Unified Insights
Toward building the MetaQuerier system, we are also in-
spired to observe that there seem to emerge common in-
sights across subsystems. While we have developed these
tasks (Section 3.2) separately, each with its specific tech-
niques, putting things together actually reveals a common
methodology, which conceptually unifies the seemingly
different approaches. This section discusses this method-
ology ofholistic integrationand the insights it implies.

To begin with, as Section 1 motivated, we note that
any integration task is, to a large extent, aboutsemantics
discovery– to discover certain targetsemantics: e.g., for
taskIE (interface extraction): “understanding” query con-
ditions; forSM (schema matching): “matching” them. The
major barrier for large scale integration, with its dynamic
and on-the-fly nature, is exactly such semantics discovery,
for the lack of pre-configured per-source knowledge.

By “holistic integration,” we take a holistic view to ac-
count for manysources together in integration, by glob-
ally exploiting clues across all sources for resolving the
“semantics” of interest– To our surprise, although not ob-
vious by their own, when put together, many of our inte-
gration tasks implicitly share the same holistic-integration
framework– which thus conceptually “unifies” our various
techniques. As a hindsight, we thus “propose” holistic in-
tegration as a conceptual framework and a unified method-
ology for large scale integration.

Specifically, we observed two common insights in the
various materializations of holistic integration across the
MetaQuerier system, in both the techniques for subsystems
(Section 3) and system integration (Section 4).

• Hidden regularity : Holistic integration can leverage
hidden regularityacross many sources, to discover the
desired semantics– For our subsystems (Section 3), tasks
IE exploits hidden “syntax” andSM hidden “schema
model,” as Section 5.1 will explain. (While not ex-
plained here,SC andQT also explore the same concept.)

• Peer majority: It can also leveragepeer majority, by
taking clues from the majority of peers– For our sys-
tem integration (Section 4), the ensemble-cascading and
domain-feedback schemes both exploit the majority for
error handling, as Section 5.2 will explain.

As evident from our experience (albeit limited), we be-
lieve that holistic-integration is promising for large scale
integration, by leveraging the challenge of scale as an op-
portunity: We are inspired that large scale can itself be a

Semantics:

Query
conditions

Presentations:

Visual
patterns

Hidden Syntax
(Grammar)

Visual-language Parsing

Syntactic Composition

Semantics:

Attribute
matching

Presentations:

Attribute
occurrences

Hidden

Generative

Behavior

Correlation Mining

Statistic Generation

(a) IE : interface extraction (b) SM: schema matching

Figure 9: Holistic integration: Exploring regularity

crucial leverage to solve integration tasks– By exploring the
hidden regularity and peer majority across many sources,
a holistic approach will take advantage of the large scale
(with sufficient “samples”) to discover the desired seman-
tics for integration. These “holistic” insights, we believe,
will be essential for large scale integration tasks.

5.1 Hidden Regularity: Semantics Discovery

As the first leverage, by holistic integration, we explore
hidden regularity existing across sources. As just dis-
cussed, any integration task is essentially the discovery of
certain target semantics– but, we can only observe some
“surface”presentations. As a unified insight, several of our
subsystems– we will useIE, SM as examples– have ex-
ploited the hidden regularity of surface presentations for se-
mantics discovery. In retrospect, we observe that, under the
same holistic-integration spirit, our subsystems have built
upon two common hypotheses, which relate underlying se-
mantics to observable presentations, across many sources.

(S) Shallow observable clues:The “underlying” seman-
tics often relates to the “observable” presentations, or
shallow clues, in some way ofconnection. Thus, we can
often identify certain observable clues, which reflect the
underlying semantics.

(H) Holistic hidden regularity: Such connections often
follow some implicit properties, which will reveal holis-
tically across sources. Thus, by observing many sources,
we can often identify certain hidden regularity that
guides how the semantics connects to the presentations.

These hypotheses shed light for dynamic semantics dis-
covery (Section 1) in large scale integration: By identifying
the holistic regularity, our integration task, to discover the
desired semantics, is thus theinverseof this semantics-to-
presentations connection. That is, our “holistic integration”
framework can tackle large scale integration by develop-
ing somereverse analysis, which holistically analyzes the
shallow clues, as guided by the hidden regularity, to dis-
cover the desired semantics. This general framework con-
ceptually unifies our approaches for several tasks– We now
demonstrate withIE andSM, as Figure 9 contrasts.

First, consider taskIE : As Section 3.2 introduced, the
observation of condition “patterns” motivated us to hypoth-
esize the existence ofhidden syntax– which, in our term
now, is the hidden regularity, across holistic sources. As
Figure 9(a) shows, the hypothetical syntax (ashidden reg-
ularity) guides a syntactic composition process (asconnec-
tion) from query conditions (assemantics) to their visual

patterns (aspresentations). That is, there exists a syntactic
connection (HypothesisS), and such connections at vari-
ous sources share the same grammar as the regularity (Hy-
pothesisH). This hidden syntax effectively transforms the
problem: As Section 3.2 described, we view query inter-
faces as avisual language; their extraction is precisely the
reverse analysis– orvisual-language parsing.

Second, consider taskSM. As Section 3.2 introduced,
we hypothesize a hidden generative behavior, which proba-
bilistically generates, from a finite vocabulary, the schemas
we observed– In our term now, this consistent generative
behavior is the hidden regularity. As Figure 9(b) shows, the
hidden generative behavior (ashidden regularity) guides a
statistic generation process (asconnection) from attribute
matching (assemantics) to their occurrences in interfaces
(as presentations). That is, there exists a statistic con-
nection (HypothesisS), and such connections at various
sources share the same generative behavior as the regularity
(HypothesisH). This generative behavior constrains how
attributes may occur in interfaces–e.g., grouping attributes
tend to positively co-occur while synonym attributes neg-
atively. Thereverse analysisto find attribute matchings is
thus the “mining” of correlated attributes, and thus acorre-
lation miningapproach.

5.2 Peer Majority: Error Correction

As the second leverage, by holistic integration, we explore
themajority of peers for correcting errors made by the rel-
atively few. As Section 4 noted, any integration task, in
its semantics discovery, is essentially “soft,” since it can
make errors– Thus, we generally neederror correction, for
correcting errors of a “base algorithm,” to enhance its ac-
curacy. In the MetaQuerier, such error correction arises in
our system integration (Section 4).

This section will propose, as we observed, that such er-
ror correction can also leverage the holistic view across
many sources. The insight hinges on the following hy-
potheses, which concern executing some base algorithm
over a data “instance” as input.

(B) Reasonable base:The base algorithm is “reasonable”–
While not perfect, errors are relatively rare.

(R) Random samples:The data instance can be randomly
sampled, for the base algorithm to execute over.

These hypotheses hint on a majority-based approach
for error correction in large scale integration: Let’s create
many samples of base results. First, each base sample will
make rare errors, since the base is “reasonable” (Hypothe-
sisB). Second, the errors across samples are independent,
since the data instances are “random” (HypothesisR). To-
gether, by counting over all samples, we can use the major-
ity among them to correct the relatively few errors. (Such
“boosting” can be formally derived, with the same intuition
as Example 1.) This general approach conceptually unifies
our error-correction schemes (of Section 4).

First, consider ensemble-cascading. As Section 4.1 pro-
posed, it enhances the accuracy ofSM (as thebase algo-
rithm) for matching input query schemas (as thedata in-

stance). As Figure 6 shows, the ensemble scheme creates
multiple samples (HypothesisR) of the base results, by
downsampling the original input. By design (Section 3.2),
the baseSM is “reasonable” in finding correct matchings
(HypothesisB). We thus take a majority voting, which en-
hances the accuracy ofSM.

Second, consider domain-feedback. As Section 4.2 pro-
posed, it enhances the accuracy ofIE (as thebase algo-
rithm) for extracting query conditions (asdata instance) in
an interface. In our holistic framework, we runIE for all
interfaces the crawler discovered (Figure 2)– Thus, we nat-
urally create multiple “samples” for any query condition;
e.g., a condition onadults will likely appear in many in-
terfaces, in different ways– each is thus a random sample
(HypothesisR). By design (Section 3.2), the baseIE is
“reasonable” and thus extracts correctly most of the time
(HypothesisB). The feedback mechanism will gather sta-
tistics from all samples, for correcting errors– Such statis-
tics (e.g., the likely type of attributeadults in the Airfares
domain) reflects the majority– similar to voting.

6 Concluding Discussion: Issues & Agenda
As an interim report, this paper presents our proposal of the
MetaQuerier, summarizes its architecture and techniques,
and reports lessons we have learned. While we are still to
deliver our promise of a complete MetaQuerier, our expe-
rience has been encouraging– As this paper has presented,
our course of development has gained valuable insights for
large scale integration, which will continue to direct us
toward building the MetaQuerier– As our future agenda,
there remain many open issues, as we discuss next.

To begin with, while we have developed subsystems
DC, IE, SC, SM and QT, to complete the entire system
(Figure 2), we need to further develop the currently missing
components.First, to route a user’s query to right sources,
the subsystemSSneeds to support an effective and efficient
source selection strategy. Such selection will likely call for
more sophisticatedsource modeling, to capture not only
query capability (as we currently do) but also data qual-
ity of a Web database. With such modeling, we will de-
velop scoring schemes for ranking sources by their poten-
tial to “satisfy” a query.Second, to present query results,
the subsystemRC needs to compile the results from dif-
ferent sources into a coherent piece. Such compilation will
require extracting data from the result pages and matching
objects across different sources, among other issues. While
existing works on wrapper induction (Section 2) have ex-
tensively studied such extraction, our scenarios again allow
us to leverage the “holistic” insight,e.g., in a way similar to
how IE builds upon “hidden syntax.” We plan to complete
our study of all the modules.

Further, beyond individual subsystems, we believe the
“science” of system integration, for building an integration
system like the MetaQuerier, deserves thorough study. As
Section 4 suggested, such integration is not simply mod-
ule assembly– There are interesting architectural issues to
study. While we have proposed ensemble-cascading and
domain-feedback as sample techniques, the “science” is not

yet clear. For example, will cascading and feedback co-
exist? In that case, will there be some stable “fixpoint” in
the “feedback loop”– Note that Figure 5 clearly resembles
similar loop structure incontrol theory. We wonder how
much we can borrow from the discipline to design a “feed-
back” integration system. We plan to more systematically
study this “science” of system integration.

Finally, as we move closer to system completion, we
will validate with large scale crawling of Web databases.
As Section 1 explained, we currently rely on our test
data repository for concurrently developing various tasks–
While our subsystems seem to perform well in their iso-
lated study (Section 3.2) on our test dataset, will they in-
deed scale to the real Web scale (for sources on the order
of 105)? We have started crawling the deep Web, which
will significantly push our “scale” of study.

As we conclude, we are eager to further our exploration
of large scale integration over the deep Web– As we move
forward, while unforeseen challenges will likely arise, we
are optimistic that inspiring insights will again emerge.

References
[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries

using materialized views. InACM PODS, pages 254–263, 1998.

[2] F. N. Afrati, C. Li, and J. D. Ullman. Generating efficient plans for
queries using views. InACM SIGMOD 2001, pages 319–330, 2001.

[3] D. R. Anderson, D. J. Sweeney, and T. A. Williams.Statistics for
Business and Economics (Second Edition). West Pub. Co., 1984.

[4] A. Arasu and H. Garcia-Molina. Extracting structured data from
web pages. InSIGMOD Conference, 2003.

[5] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for
dynamic information integration.J. Intell. Inf. Syst., 6(2-3):99–130,
1996.

[6] C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting queries using
views in description logics. InProceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 99–108, 1997.

[7] M. K. Bergman. The deep web: Surfacing hidden value. Technical
report, BrightPlanet LLC, Dec. 2000.

[8] M. Carey and L. Haas. The top 10 reasons why federated can’t
succeed– and why it will anyway.Presentation. The Lowell Data-
base Research Self-Assessment Meeting, May 2003. Available at
http://research.microsoft.com/ ∼gray/lowell .

[9] J. Caverlee, L. Liu, and D. Buttler. Probe, cluster, and discover:
Focused extraction of qa-pagelets from the deep web. InICDE Con-
ference, 2004.

[10] K. C.-C. Chang and H. Garcı́a-Molina. Conjunctive constraint map-
ping for data translation. InProceedings of the 3rd ACM Interna-
tional Conference on Digital Libraries, 1998.

[11] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured
databases on the web: Observations and implications.SIGMOD
Record, 33(3):61–70, Sept. 2004.

[12] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured data-
bases on the web: Observations and implications. Technical Report
UIUCDCS-R-2003-2321, Dept. of Computer Science, UIUC, Feb.
2003.

[13] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards au-
tomatic data extraction from large web sites. InVLDB Conference,
pages 109–118, 2001.

[14] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. InSIGMOD
Conference, 2001.

[15] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database techniques
for the world-wide web: A survey.SIGMOD Record, 27(3):59–74,
1998.

[16] GNU. wget. Accessible at"http://www.gnu.org/-
software/wget/wget.html" .

[17] A. Y. Halevy. Answering queries using views: A survey.The VLDB
Journal, 10(4):270–294, 2001.

[18] B. He and K. C.-C. Chang. Statistical schema matching across web
query interfaces. InSIGMOD Conference, 2003.

[19] B. He and K. C.-C. Chang. Making holistic schema matching robust:
An ensemble framework with sampling and voting. Technical Re-
port UIUCDCS-R-2004-2451, Dept. of Computer Science, UIUC,
July 2004.

[20] B. He, K. C.-C. Chang, and J. Han. Discovering complex matchings
across web query interfaces: A correlation mining approach. In
SIGKDD Conference, 2004.

[21] B. He, T. Tao, and K. C.-C. Chang. Organizing structured web
sources by query schemas: A clustering approach. InCIKM Con-
ference, 2004.

[22] B. He, Z. Zhang, and K. C.-C. Chang. Knocking the door to the deep
web: Integrating web query interfaces. InSIGMOD Conference,
System Demonstration, 2004.

[23] H. He, W. Meng, C. T. Yu, and Z. Wu. Wise-integrator: An auto-
matic integrator of web search interfaces for e-commerce. InVLDB
Conference, pages 357–368, 2003.

[24] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induc-
tion for information extraction. InIntl. Joint Conference on Artificial
Intelligence (IJCAI), pages 729–737, 1997.

[25] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous
information sources using source descriptions. InVLDB Confer-
ence, 1996.

[26] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-
based schema matching. InICDE Conference, 2005.

[27] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Rep-
resenting and reasoning about mappings between domain models.
In 8th national conference on artificial intelligence, 2002.

[28] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema match-
ing with cupid. InVLDB Conference, 2001.

[29] K. Marriott. Constraint multiset grammars. InProceedings of IEEE
Symposium on Visual Languages, pages 118–125, 1994.

[30] R. J. Miller, M. A. Herńandez, L. M. Haas, L. Yan, C. T. Howard Ho,
R. Fagin, and L. Popa. The Clio project: managing heterogeneity.
SIGMOD Rec., 30(1):78–83, 2001.

[31] Y. Papakonstantinou, H. Garcı́a-Molina, and J. Ullman. Medmaker:
A mediation system based on declarative specifications. InICDE
Conference, 1996.

[32] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal, 10(4):334–350, 2001.

[33] J. D. Ullman. Information integration using logical views. InICDT
Conference, Jan. 1997.

[34] W. Wu, C. T. Yu, A. Doan, and W. Meng. An interactive clustering-
based approach to integrating source query interfaces on the deep
web. InSIGMOD Conference, 2004.

[35] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven un-
derstanding and refinement of schema mappings. InSIGMOD Con-
ference, 2001.

[36] Z. Zhang, B. He, and K. C.-C. Chang. On-the-fly constraint mapping
across web query interfaces. InProceedings of the VLDB Workshop
on Information Integration on the Web (VLDB-IIWeb’04), 2004.

[37] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query in-
terfaces: Best effort parsing with hidden syntax. InSIGMOD Con-
ference, 2004.

