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Abstract

The Web has been rapidly “deepened” by myriad
searchable databases online, where data are hid-
den behind query interfaces. Toward large scale
integration over this “deep Web,” we have been
building the MetaQuerier system— for both ex-
ploring (to find) and integrating (to query) data-
bases on the Web. As an interim repditst,

this paper proposes our goal of the MetaQuerier
for Web-scale integration— With its dynamic and
ad-hoc nature, such large scale integration man-
dates both dynamic source discovery and on-the-
fly query translation. Second we present the
system architecture and underlying technology of
key subsystems in our ongoing implementation.
Third, we discuss “lessons” learned to date, focus-
ing on our efforts in system integration, for putting
individual subsystems to function together. On
one hand, we observe that, across subsystems,
the system integration of an integration system
is itself non-trivial- which presents both chal-
lenges and opportunities beyond subsystems in
isolation. On the other hand, we also observe
that, across subsystems, there emerge unified in-
sights of “holistic integration’— which leverage
large scale itself as a unique opportunity for in-
formation integration.

Introduction
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Figure 1: Databases on the Web.
450,000 online databases. As current crawlers cannot ef-
fectively query databases, such data are invisible to search
engines, and thus remain largely hidden from users.

However, while there are myriad useful databases on-
line, users often have difficulties in firfinding the right
sources and thequeryingover them. Consider user Amy,
who is moving to a new town. To start with, different
gueries need different sources to answer: Where can she
look for real estate listings? e(g, realtor.com) Study-
ing for a new car? qars.com) Looking for a job? fon-
ster.com) Further, different sources support different query
capabilities: After source hunting, Amy must then learn the
grueling details of querying each source.

To enable effective access to databases on the Web,
since April 2002, we have been building a “metaquery-
ing” system, theMetaQuerier (metaquerier.cs.uiuc.ediu
as Figure 2 shows. Our goal is two fold— First, to make the
deep Web systematicalbccessibleit will help usersfind
online databases useful for their queries. Second, to make
the deep Web uniformlysable it will help usersqueryon-
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In the recent years, the Web has been rapidly deepened witiie databases. Toward this goal, we have designed the sys-
the prevalence of databases online. As Figure 1 concepem architecture, developed several key components, and
tually illustrates, on this so-called “deep Web,” numerousstarted system integration. As an interim report, this paper
online databases provide dynamic query-based data accegtesents our proposal of the MetaQuerier, summarizes its
through their query interfaces, instead of static URL links.architecture and techniques, and reports lessons we have
A July 2000 study [7] estimated 43,000-96,000 such searctearned in putting things together.

sites (and 550 billion content pages) on the Web. Our recent Such deep-Web integration faces new challenges— for
survey [11] (as we will explain) in April 2004 estimated coping with thelarge scale The deep Web is a large col-
lection of queryable databases (well on the ortlgt, as

This material is based upon work partially supported by NSF Grants, ; ; :
11S-0133199 and 11S-0313260. Any opinions, findings, and conclusions or.memIoned ear“er)' As the Iarge scale mandates, first, such

recommendations expressed in this publication are those of the author(éﬁ‘teg'jation isdynamic Since sources are p_roliferating and
and do not necessarily reflect the views of the funding agencies. evolving on the Web, they cannot be statically configured




P;etaQ“:ﬂer = Such integration is clearly hard— When we were start-
- : i . A .
s O B ing, we were indeed also skeptidaNevertheless, to move
RESor H e Soures F forward, we Qeqided _to'take two “strgtegie.s"— yvhich have
r Compllation BgVlranslation Selection 5%& been beneficial in pointing us to the right direction.
IS S S As ourfirst strategy, we were prepared to investigate not
= only the right techniques but also thight goalsto achieve.
) o —. 7 We believe, sharing the insight of [8], that “as needs are so
‘ reat, compromise is possible”- Given the scale of such
I E= jEainl = Jrae LI o T o .
b =) =—F| = .= integration, even “simpler scenarios,” if can be achieved,
Query Interfaces Query Capabiliies  Subject Domains  Unifled Interfaces will likely render great usage.
The Deep Web x o For our system goal, we thus decided to focus on a sim-
t} B —manticsIDiscosy pler scenario— integrating sources in the same domains.
Commper] Note that each Web database provides structured informa-
Database Interface Source Schema . . . ” .
Crawler H Extraction H Clustering H Matching | tion as a certain “type,” odomain of data—e.g, ama-
- . . zon.contor “books” andcars.comfor “automobiles.” As
Figure 2: MetaQuerier: System architecture. the Web scales, many sources provide data in the same do-

for intearation. Second. it iad-hoc Since queries are mains (e.g., there are numerous other “book” sources, such
9 ' : 9 asbn.con). Suchdomain-basedntegration is simpler, as

submitted by users for different needs, they will each in'sources are more “homogeneous” in the same domain. and
teract with different sourcese.g, in Amy’s case: those g ” '
are thus more “integratable.” On the other hand, such in-

of real estates, automobiles, and jobs. Thus, toward th{a

large-scale integration, the MetaQuerier must achieve du Fgration Is indeed useful— Users mostly search for specific
rec?uirements— 9 ' %ypes of data. In our Amy’s example, she needs access to

sources in the Jobs domain (or Real Estates, Automobiles).
1. Dynamic discovery As sources are changing, they  As our secondstrategy, we decided to get ohands
must be dynamically discovered for integration— theredirty at the very beginning— to start with a “reality check”
are nopre-selectedources. i of the frontier, for guiding our research. We performed
2. On-the-fly integration: As queries are ad-hoc, the |56 scale surveys, by gathering random samples of Web
MetaQuerier must mediate them on-the-fly for relevanigeryers over 1 million IP hosts, first in December 2002 [12]
sources, with no pre-configur@er-source(i.e., SOUrce-  anq then April 2004 [11]. The surveys clearly reassure the
specific) knowledge. need for large scale integration: Our recent results [11] esti-
We thus propose to build the MetaQuerier for dynamicmated 450,000 databases accessed by 1,258,000 query in-
discovery and on-the-fly integration over databases on thterfaces, across 307,000 deep-Web sites (thus a 3-7 times
Web- To our knowledge, our goal of integration at a largeincrease in 4 years compared to the 2000 study [7]).
scale has largely remained unexplored. While our re- Forour development, these field studies have guided our
search community has actively studied information inte-research— To begin with, the surveys gathered a dataset of
gration (Section 2), it has mostly focused on static, pre-about 500 real sources, which serves as our test data, before
configured systems (say, Book comparison shopping ovewve complete a “crawler” (Section 3) for dynamic source
a set of bookstores), often of relatively small scale. In con-discovery. As a research project, we were thus able to take
trast, the MetaQuerier is motivated by the emergence and “divide and conquer” approach, to identify and study key
proliferation of Web databases for large-scale integration. tasks concurrently. (As a “side effect,” the dataset started
While the need is tantalizing— for effectively accessingour ongoing effort of constructing a shared data collection—
the deep Web- the order is also tall. The challenge arisefie UIUC Web Integration Repositor)
from the mandate of on-the-fsemantics discoveryiven Further, the surveys revealed some inspiring observa-
the dynamically-discovered sources, to achieve on-the-flyions: Databases on the Web aret arbitrarily complex;
integration, we must cope with various “semantics.” Tothere seem to be some “convergence” and “regulangt*
name a few:What are the query capabilities of a soufce urally emerging across many sources. This “concerted
(So as to characterize a source and queryHty to match  complexity” sheds light on the challenge of dynamic se-
between query interfacegSo as to mediate queries.) mantics discovery. (So, it is perhaps hopeful to achieve
Such dynamic semantics discovery is crucial for ourlarge scale metaquerying.) In hindsight, such behavior is
goal. While the challenge of semantics is not new to anyindeed natural at a large scale: As sources proliferate, they
information integration effort, for smaller and static sce-tend to be influenced by peers— which we intuitively un-
narios, automatic semantics discovery is oftemptionto ~ derstand as th@mazon effect As Section 5 will discuss,
reduce human labor, as an aid to manually configured se-
mantics €.g, source descriptions and translation rules). In  *Many colleagues in the community probably share this feeling— Our
contrast, for large scale scenarios, semantics discovery foubtactually started only after reading a long (S pages) skeptical review,
. . . on the issue of finding “semantics,” from an NSF panel of our original
simply ar_nandatesmce sources are collected dynamlcglly MetaQuerier proposal.
and queried on-the-fly. Is it, then, even hopeful to achieve 2pypiicly available ahttp:/metaquerier.cs.uiuc.edu/repository
such Web metaquerying? 30nline bookstores seem to follonazon.coras a de facto standard.




many of our approaches (Sections 3 and 4) have essentialbut not to fix a small set of sources for integration. Sec-
built upon this very insight. ond, for modeling sources, we must automatically discover
As an interim report, to begin with, this paper will their query capabilities, but not to assume pre-configured
present the system architecture and underlying technologyrrappers providing source descriptions. Third, for query-
of key subsystems in our ongoing implementation. To meetng sources, we must “on-the-fly” translate queries for un-
the dual requirements from dynamic discovery to on-the-seen sources, but not to hard-code per-source knowledge
fly integration, our system framework essentially “mines” specifically for each source. As Section 1 introduced, for
all sources discovered to collect the semantics required fatealizing the MetaQuerier, these challenges essentially boil
on-the-fly integration. Semantics discovery, as motivatedlown to semantics discovery on-the-fly.
earlier, is thus essential in the entire architecture. Further, more recently, many research efforts emerge to
Further, we discuss “lessons” learned to date, focusingackle various tasks for “Web integrationg-g, 1) query
on our efforts insystem integratianfor putting individual ~ interface matching [18, 20, 34, 23], 2) query constraint
subsystems to function together. mapping [10, 36], and 3) wrapper induction [4, 9, 13, 24].

While we share the interest in “component techniques,” this

Lesson 1:Across subsystems, the system integration of apaner studies the overall system architecture as well as is-
integration system is itself non-trivialwhich presents both  g,e5 and insights in system integration— Such “system” fo-
challenges and opportunities beyond subsystems in isol%-us, we believe, is important in its own right.
tion. To demonstrate the possibilities, we propessemble In terms of our “solutions,” we note that, as one of our
cascadinganddomain feedbacks two sample techniques. pjfied insights (Section 5), the MetaQuerier exploits hid-
Lesson 2:Across subsystems, there emerge unified insightden “clues” revealed by holistic sources to discover under-
of “holistic integration”— which leverage the large scale it- lying semantics. Along this line, several research efforts,
self as a unique opportunity for integration. This unified which have also emerged recently, share this similar holis-
insight suggests holistic integration as a promising methodtic insight— but specifically for thechema matchintask,
ology for coping with the large scale. which we also address in the MetaQuerier [18, 20] (as Sec-
tion 3 will report). In particular, references [34, 23] exploit
clustering for holistically matching many schemas. Ref-
erence [26] proposes a “corpus-based” idea, which uses a
eparately-built schema corpus as a holistic “knowledge-
ase” for assisting matching of unseen sources.

We believe these “lessons” will not only guide our fur-
ther development of the MetaQuerier, but also will be im-
portant principles for building large-scale integration sys-
tems in general. In the remainder of this paper, we star,
with Section 2 for the related work. We next, in Section 3,

; . ) While sharing similar holistic frameworks, in contrast to
present the system architecture and underlyl_ng tec_hnlqueﬁqese efforts, we have developed holistic-integrationin-
We then report lessons learned when “putting things to- !

o . . : sight to generally tackle with “semantics discovery” com-
gether” in Sections 4 and 5. Section 6 concludes with oPeN on in many large-scale integration tasks, which we be-
issues and future agenda. '

lieve well generalize beyond the specific task of schema
matching €.g, interface extraction and query translation),
2 Related Work as Section 5 will discuss. Further, we believe, besides

The MetaQuerier has a distinct focus as a large scale inté‘_statistical" analysis (which most other works have based

gration system- for dynamic discovery and on-the-fly me_upon), 'ghere area wide range of applicable te'chr?lqel.gs'(
diation. On one hand, traditionally, information integration syntactical parsing [37] for interface extraction; locality-

has assumed relatively small and pre-configured system?aseoI search [36] for query translation) to generally ex-

On the other hand, the recent emergence of Web integréj-lore holistic hidden regularity for semantics discovery.

tion mo;tly considers only various subtasks. To our knowl—3 MetaQuerier: Architecture & Techniques
edge, this paper is the first one to present the overall system
issues of building large scale integration. As Section 1 discussed, the integration of large scale data-
Information integration has traditionally focused on rel- bases on the Web calls for the needs of dynamic discovery
atively small-scaled pre-configured systems [15, 83j( and on-the-fly integration. Directed by these guidelines, we
Information Manifold [25], TSIMMIS [31], Clio [30]). In  develop the MetaQuerier system architecture. Section 3.1
particular, relevant issues on schema matching [14, 32, 28]Iyi|| overview the architecture, and Section 3.2 will briefly
schema mapping [35, 27], and query mediation [1, 2, 5, 6discuss the key techniques for the subsystems. Last, Sec-
17] have been extensively studied. tion 3.3 will report our implementation status.
In contrast, we are facing a “dynamic” and “ad-hoc” sce- .
nario (Section 1) of integrating databases on the Web. Sucﬁ'1 System Architecture
large-scale integration imposes different requirements anilVe design the MetaQuerier system as guided by the chal-
thus faces new challenges: To deal with this large scaldenges of large scale integration. As Section 1 motivated,
many tasks have to be automated, unlike integration at aur scenario is essentially dynamic and ad-hoc: Sources
small scale where sources can be manually “configured.are not pre-selected; there is no pre-configured per-source
First, for finding sources, we must dynamically select rel-knowledge. Thus, the MetaQuerier must start from collect-
evant sources according to user’s ad-hoc information needing databases on the Weibe(, dynamic discovery). How-



ever, while sources are dynamically discovered, at “run3.2 Subsystems: Key Techniques

Fime,“ the M.etaQuerier must query there(, o.n—the—ﬂy Database Crawler[SubsystenDC]:
integration) if selected. Our architecture design must es-
sentially fill in the “semantics gap” from dynamically dis- Functionality: As the first step of the MetaQuerier, the sub-
covered sources to querying on-the-fly. systemDC automatically discovers deep Web databases by
To begin with, we need to extract the query capability crawling the Web and identifying query interfaces in Web
for each discovered query interface. Also, since, in outpages. Query interfaces (in HTML format) will be passed
current development, we focus on integrating deep Welto /E for constructing the repository of source query capa-
sources in the same domain, we need to develop a clusilities.
tering approach to cluster interfaces into subject domains
(e.g, Books, Airfares). Last, for each domain, to constructInsight: For discovering databases on the Web, completely
a unified interface and translate the user’s query from th&rawling the entire Web is not only inefficient but also
unified interface to interfaces of specific sources, we neeginnecessary— As online databases are accessed through
to discover semantic matchings among attributes. All thesguery interfaces, we want to build a “focused” crawler that
“minings” of semantics, while themselves necessary foffinds these “query interfaces” quickly. To guide our de-
large scale integration, in fact leverage the new opportusign of an effective “Web-database” crawler, we performed
nities of “holistic” integration, as Section 5 will elaborate. large scale surveys of the deep Web [11, 12] (as Section 1
Therefore, we design the MetaQuerier system as conMentioned). Our survey shows that query interfaces are
sisting of aback-endfor semantics discovery andfeont- ~ Often close to the root page of the Web site. That is, the
endfor query execution, which are connected by Beep ~ depthof a Web database.¢, the minimum number of
Web Repositoryas Figure 2 illustrates. First, the back-end NOPs from the root page of the source site to a Web page
mines source semantics from collected sources. It automagontaining a query interface of the Web database) is of-
ically collects deep Web sourceise(, Database Crawler t€n very small. Specifically, by identifying and examining
or subsystenDC), extracts query capabilities from inter- deep Web sites among 1,000,000 randomly generated IPs,
faces {.e., Interface Extractioror IE), clusters interfaces We observed that no Web databases have depth more than
into subject domainsi.e., Source Clusteringr SC) and S and 94% Web databases are within depth 3.
discovers semantic matchingse(, Schema Matchingr
SM). The collected query interfaces and discovered semal

tics form the Deep Web Repository, which will be exploited . .
by the front-end to interact with users. (For our scenarioP29€s around the root page of a Web site. The site-based

of dynamic and ad-hoc integration, we stress that such gra_wler consists of two stagesite collet_:tor which finds
Deep Web Repository is to be constructed “on-the-fly” af_valld root pages, anshallow crawler which crawls pages

ter source discovery and modeling, without manually pre Vithin a Web server starting from a given root page. First,
configured source-specific knowledge ) the site collector collects valid IPs that have Web servers:

S d.in the front-end tdesianist id Since the IP space is huge and only a small fraction of

ecor:j Inthe r:)n -en h,_our Clﬁ”enh. ehS|_gn IS '(I) prtov;hel/440 install Web servers [11], testing all the potential IPs

USETs a domain category nierarchy, which 1s simrar to thgg very inefficient. Therefore, we develop a site collector to
category organization ofahoo.combut is automatically

2. quickly find IPs that host Web servers. This site collector
formed bY theSC subsyst.em. For each category, a un"C'Gdis itself a crawler that traverses URLSs by preferring out-of-
interface is generated using t8&/ subsystem. A user can

thus first ch d i of int Book di site links, which thus gets to new site names quickly. Sec-
usirst choose a domain of in eresiy, Books) an ISSUE  5nd, the shallow crawler crawls Web pages within a Web
a query through the unified interface of that domagrg(

il tain"database” A subiect = " ter” server (found by the site collector): Since query interfaces
Itie contain ‘database subject = "computer” ). are close to the root page, the shallow crawler only needs

The front-end then selects appropriate sources to query ; ] .
matching their “capability” or “content” to the user queryt% crawl a Web site up to a pre-configured dejtig( 3).

(i.e, Source Selectionr SS; Section 6 will discuss such |nterface Extraction [SubsysteniE]:
query routing). With sources selected, the front-end fur-
ther translates the user’s query to interfaces of these sourcesinctionality: Given a query interface in its HTML format
(i.e., Query Translationor QT) and aggregates query re- as collected byDC, the subsystertE extracts theuery ca-
sults to the useri ., Result Compilatioror RC). pability in the interface. In particular, we view each query
Among the seven subsystems of the MetaQuerier (ininterface as consisting of a set obnstraint templates
cluding both back-end and front-end), we have completedvhere a template specifies the “format” of an acceptable
or partially completed five of them.e., DC [11], IE [37], query condition, as a three-tuglatribute; operator, value}
SC[21], SM [18, 20], andQT [36]. (The remainingSS  The task ofIE is thus to extract the constraint templates
and RC subsystems are in our future research agenda, a&f a given query interface. For example, the query inter-
Section 6 will discuss.) For brevity, to highlight, in the fol- face@I; in Figure 4 should be extracted as four constraint
lowing section, we will discuss three critical subsystemstemplatesi.e., S;: [title; contain $v], So: [category; contain
i.e, DC, IE, and SM, including their functionalities, key $v], Ss: [price range; between$low,$high], andSy: [reader
insights and approaches. age; in; {[4:8], .. .}].

n/-_\pproach: Motivated by this observation, we develop a
site-based crawlerwhich focuses on examining shallow



2P Grammar Sl Tite: I —> Tile: T1
@j S, Category: | ——> Subject: pE—y——. T,
Bestetfont 23 Brice Range:  From | T,
Input: Tokenizer ( * Parser Q“ti’”t_-'_ N 4 ReaderAge  |4tnByeasold » Constraint Price: |under$5 <] T,
qlﬁz/]\ger .. Query mmblll?& Query Interface QI; Matching ~ Query Interface Ql,
' o {:‘:““{’)’t‘ﬂ“ Figure 4: Example query interfaces and their matching.
(o* - HTML - o v [Price; (<) 5, 20,501 interface, we need an error handling mechanism to gener-
" Engine A ate the final output. While the parser framework is rather
X generic, error handling_is often application_ specific._ As
our “base” implementation, our “Merger” (Figure 3) sim-
Figure 3: SubsystenE: Interface extraction. ply merges all query conditions covered in all parse trees, to

‘enhance the “recall” (or coverage) of extraction. In our sub-

Insight: We observe that, query interfaces, although pre nt system intearation of puttin bsystems together
sented differently, often share similar or common querySeque syste egration of putting subsystems togetner,
ve observed further opportunities for error resolution, as

patterns. For instance, a frequently used pattern is a te . P

(as the attribute name) followed by a selection list with ection 4 will discuss.
numeric values (as the attribute domain), as the attributegchema Matching[SubsystenSM]:

reader age of QI,, andage andprice of QI in Figure 4

show. Such observation motivates us to hypothesize the efrunctionality: For each domain, the subsyste®M dis-
istence of ehidden syntaxacross holistic sources. That is, covers semantic correspondences.(matchings) among
we rationalize the concerted structure by asserting the credttributes in the extracted query capabilities. For instance,
ation of query interfaces as guided by some hypotheticaln Books domain, we may findubject is the synonym of
syntax: The hypothetical syntax guides a syntactic comcategory, i.e.,, subject = category. In particular, we gen-
position process from query conditions to their visual pat-erally consider to discover complex matchings. In contrast
terns. This hypothesis effectively transforms the problento simple 1:1 matching, complex matching matches a set
into a new paradigm: We can view query interfaces ais a  of m attributes to another set efattributes, which is thus
sual languagg29], whose composition conforms to a hid- also calledn:n matching For instance, in Books domain,
den,i.e., non-prescribedgrammar. Their semantic extrac- author = {first name, last name}; in Airfares domain,
tion, as the reverse analysis, is thysaasingproblem. passengers = {adults, seniors, children, infants}.

_ ) _ The discovered matchings are stored in the Deep Web
Approach: We thus introduce @arsing paradigm by hy-  penository and serve for two purposes: 1) They are ex-

pothesizing that there existsdden syntaxo describe the  pjgited to construct a unified interface for each domain,
layout and semantic of query interfaces [37]. Specifically,yhich is presented to users at the front-end. 2) They are
we develop the subsysteft as a visual language parser, seq to match attributes from the unified interface to the
as Figure 3 shows. Given a query interface in HTML for- ggjacted sources (69— The subsysten®T needs such

mat, IE tokenizes the page, parses the tokens, and thepaichings as input to translate the user’s query.
merges potentially multiple parse trees, to finally generate

the query capability. Atits heart, we develogRgrammar  Insight: Existing schema matching works mostly focus
and abest-effort parser on small scale integration by finding attribute correspon-
First, by examining many interfaces, a human experdences between two schemas and thus are not suitable for
summarizes and encodes two complementary types of prenatching among many sources [32, 28, 14]. To tackle the
sentation conventions as the 2P grammar. On one handhallenge of the large scale matching, as well as to take
we need to writgoroductionsto capture conventionally de- advantage of its hew opportunity, we propose a new ap-
ployed hidden patterns. On the other hand, however, bproach holistic schema matchingo match many schemas
capturing many patterns, some will conflict, and thus weat the same time and find all the matchings at once. Such a
also need to capture their conventional precedence (or “priRolistic view enables us to explore thentextinformation
orities”) aspreferences across all schemas, which is not available when they are
Second, to work with a hypothetical syntax, we developmatched only in pairs.
our parser to perform “best-effort.” As a non-prescribed In particular, we started by exploring attribute occur-
grammar is inherently ambiguous and incomplete, we needences across sources as the context and proposktixBe
a “soft parsing” semantics— The parser will assemble parsenatching approach with the assumption of the existence of
trees that may be multiple (because of ambiguities) and paia hidden generative schema model, which generates query
tial (because of incompleteness), instead of insisting on &terfaces from a finite vocabulary of attributes [18]. In
single perfect parse. On one hand, it will prune ambigui-our further study, and in our current implementation, we
ties, as much as possible, by employing preferences (as ixplore the co-occurrence patterns of attributes to discover
the 2P grammar). On the other hand, it will recognize thecomplex matchings [20]. For instance, we may observe
structure (by applying productions) of the input form, asthatlast name andfirst name have a high probability to
much as possible, by maximizing partial results. co-occur in schemas, while they together rarely co-occur
When there are multiple parse trees for the same querwith author. More generally, we observe thgtouping



Cascade

attributes(i.e., attributes in one group of a matchiegg, S
{last name, first name}) tend to be co-present and thus "] S e S oee Sc
positively correlated across sources. In contraghonym t Feedoack I

attributes (i.e., attribute groups in a matching) are nega- Figure 5: System integration: Putting subsystems together

tively correlated because they rarely co-occur in SChemaSabstractione.g, interface extraction [37], schema match-

ing [18, 20], source clustering [21], and query transla-
&ion [36]. As we started with and focused more on subsys-

matching problem as correlation mining [20]. Specifically, . . :
we develop th&®CM approach for mining complex match- tems, we expecteq that putting thmgs. together is probably
no more than straightforward interfacing and assembly of

ings, consisting of automatic data preparation and correla- odules

tion mining. As preprocessing, the data preparation ste H h tasks for inf tion int i ¢
cleans the extracted query capabilities to prepare “schemta ofwe:/er],ctf,uct as SR c;;]m (t)r:ma 1on |nt_egra |o”n§1r$ ot_j
transactions” for mining. Then the correlation mining step én ot a "soit’ nature— Rather than executing wetl-aefine

discovers complex matchings witlual correlation_nining gem:ntlcs, the!r effecltllven(;_ss tI'S mezsure?atiygracy dent
of positive and negative correlations. uch accuracy is usually subjective and context-dependent.

First, how accurate is good enough® it good enough if
a single subsysterfi; delivers “90%” accuracy? The an-
swer depends on the “consumer” $fs output (say,Sk).
For building the MetaQuerier (Figure 2), as a researcHSecondcan we make it even more accuratéthile tech-
project, we aim at delivering along the way. To begin with, niqgues matter, the accuracy also depends on the availability
we take adivide-and-conqueapproach: As Section 1 mo- of more clues€.g, from other subsystems) to leverage.
tivated, we develop the key components concurrently— To We thus observed that, when putting subsystems to-
date, we have studied and implemente@ [11], IE [37],  gether, this “system integration” presents new issues. As
SCJ21], SM [18, 20], andQT [36]. To speed up prototyp- Figure 5 conceptually illustrates, in our experience to date,
ing, first, we have decided to leverage open-source softwanee found both opportunities and challenges: On one hand,
whenever possible. For instance, the site-based crawldghe challengeof cascadeassembling subsystems may de-
DC embeds the open source wget [16] as its base crawlemand higher accuracy: it may turn out that the accuracy of
and adds on its new crawling logic. AlstE needs to use S; does not sustain a subsequsit On the other hand, the
an “HTML layout engine” (Figure 3) for rendering visual opportunityof feedback putting subsystems together may
tokens— We built this tokenizer upon the DOM API, which supply more information: it may turn out that the informa-
many Web browserse(g, Mosaic or Internet Explorer) tion available at a latter stage, s8y, can help to enhance
support. Second, we decided to mainly use scripting lanthe accuracy ob;.
guages. In particular, we use Python whenever possible— Specifically, we will discuss the materialization of such
However, the mix of open source code also brought in hyissues, centering around the interface extraction subsystem
brid languages;.g, C for wget. IE. When studied in isolation (Section 3.1, delivers 85-

Further, we aim at incremental deployment, to “pack-90+% accuracy (as our earlier work [37] reported)— thus
age” smaller scopes in the course of development, beforg will make about 1-1.5 mistake for every 10 query con-
the complete MetaQuerier. To date, we have deployedlitions to extract. While seemingly satisfactory, putting in
two “applications.” First, forWeb crawling We used the context of the entire system (Figure 2), is this accuracy
(part of) DC in our deep Web surveys [11, 12], as Sec-good enough? Can it be made more accurate? Beyond the
tion 1 mentioned. Second, fouery-interface integratian  isolated study, in our system integration, we realized that 1)
We have assembled two critical subsysteifisand SM,  the accuracy does not sustain the schema matchingdsk
for automatically extracting and unifying Web query inter- in cascade, and 2) it can indeed benefit from feedback for
faces, which we demonstrated in [22]. In such system asfurther error handling. More specifically, takirf as an
sembly, when putting things together, we observed severaxample, we will propose two “sample” system-integration
“lessons,” which we next report in Section 4 and 5. techniques— focusing on their intuitive insights. Our pro-

posal is only a staring point— As Section 6 will discuss, we
4 Putting Together: Integrating Subsystems believe such system integration is important for integrating
systems in its own right, and we plan to study more sys-

Toward building the MetaQuerier system, we are intriguedtematically and thoroughly.
to learn that the “system integration” of such an integra-
tion system is itself non-trivial- Beyond each individually
validated subsystem, putting things together actually brings
forward new issues— with not only challenges but also op-
portunities. This section reports the issues we have ob-
served and sketches our solutions.

As just discussed, for our system effort, we naturallye Domain feedback On the other hand, to take advan-
took a “divide-and-conquer” approach; we identify the key tage of information in latter subsystems, we develop the
tasks, and develop each corresponding subsystem in its feedbackramework, which improves the accuracy/é&f

Approach:This insight motivates us to abstract the schem

3.3 Implementation Status

e Ensemble cascadingOn one hand, to sustain the accu-
racy of SM under imperfect input frontE, we develop

the ensembldramework, which aggregates a multitude
of executions of “base executions” to achieve robustness.
(Section 4.1).



by exploiting the domain statistics acquired from schema I IE
matching (Section 4.2).

Before discussing these two techniques, we first present l
and analyze the origin of the problem: the extraction errors == "1" e
in the output ofiE. e foame | oo
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Preliminary: Error Handling of Interface Extraction

While the parsing approach to extracting interfaces can
achieve over 85% accuracy, the 15% errors may still sig- @ o
nificantly affect the matching quality. Figure 6(a) shows st , , S 1

the baseframework of integrating thé€ and SM subsys-
tems by simply concatenating them. As our experiment re- :> o o o

ports [19], with such a base framework, the errors in the in- | |

Multiple Sampling
stria,—~ o ~ Tt trial

terface extraction may affect matching accuracy up to 30%. =] - - - [=]
Specifically, as the 2P grammar is inherently ambigu- N i / ‘
ous, it is possible to have multiple parse trees for the same
qguery interface. Different interpretations of the same to- v ) _
ken lead to the conflicts of different parses. An incorrect 3 e aeory Rl il
parse may associate tokens in a wrong way. Figure 8 il- oo oo
lustrates several such cases, where each circled group rep-(® The base framework (b) The ensemble framework

resents an association of tokens as a query condition. For ~ Figure 6: Integration of subsystents and SM.

instance, Figure 8(b) associates a selection list with either i i _ ) )
“Last Name” or “e.g., Mike,” and thus these two associa- While large scale data integration brings forward the in-

tions conflict on the selection list. Without semantic anno-Nerent problem of noisy quality in interface extraction, the

tation, both associations are valid patterns according to thifge scale also lends itself to an intriguing potential so-
2P grammar. !ut|on. An interesting question to asl_< ifo we r_1ee_d all

As Section 3.2 explained, as our base implementationPut schemas in matching their attributedn principle,
when E is independently developed, we handle the errors$iNCe pursuing a data mining approach, the holistic matcher
by simply taking a union of all the parse trees as the finafXPIoits “statistics-based” evaluatioa.g, correlauop min-
output. However, when integrated into the system contexti"d in our case) in nature and thus needs only “sufficient
the errors inE may affect the accuracy of subsequent Sub_observatlons.' As query interfaces tend to share attnbgtes,
systems. On the other hand, the conflictgfincan be re- €9 author, title, subject, ISBN are repeatedly used in

solved by considering the feedback from other subsystem&h@ny book sources, a subset of schemas may still contain
sufficient information to “represent” the complete set of

4.1 Cascading: The Ensemble Framework schemas. Thus, the holistic matcher in fact only needs suf-
ficient correct schemas to execute, instead of all of them.

As our first attempt for integrating the MetaQuerier, We This insight is promising, but it also brings a new chal-

cascade two important subsystefisand SM, with the in- lenge: As there is no way to differentiate noisy schemas

Fhuet 2;’553;?};%01‘ ngugly dﬁggﬁgtseeddqilrjlegég:;[g:%cgs (')ijyith correct ones, how should we select the schemas to

b . . . e ; guarantee the robustness of our solution?
ase algorithm foilSM is essentially a holistic matching ) i
framework that “mines” semantic correspondences among Tackling this challenge, we propose amsemblérame-
attributes as positive and negative correlatio®\ thus ~ Work, with sampling and voting techniques, to build upon
takes a set of schemas as input and outputs a ranked list 80d extend our holistic matcher, and meanwhile maintain
We notice that the performance degradation with theholistic matcher on a randomly sampled subset of input
base framework (Figure 6(a)) results mainly from the negaSchemas. Such downsamplinghas two attractive char-
tive impact of the noisy input on the right ranking of match- acteristics: First, when schemas are abundant, it is likely
ings in the output o8M. When input schemas are noisy, the t0 contain sufficient correct schemas to be matched. Sec-
ranking of matchings is likely to be affecteid(, incorrect ~ ond, by sampling away some schemas, it is likely to con-
matchings maybe ranked higher than correct ones). Cons&in fewer noises and thus has more chances to sustain the
quently, the ranking is less reliable for the “consumer” ap-holistic matcher. We name a downsampling asa.
plications of SM to select correct matchings. For instance, Further, while a single trial may (or may not) achieve
an application-specific matching selection step is often ingood result, as a randomized scheme, the expected ro-
troduced afteiSM to choose the most promising subset of bustness can only be realized in “statistical” sense— Thus,
matchings among all the discovered ones. Since such a sere propose to take an ensemble of multiple matchers,
lection naturally relies on the ranking of matchings, it is where each matcher is executed over an independent trial
critical to makeSM still output a good ranking with the of schemas. We expect the majority of these matchers
presence of noises. have better results than directly run the matcher on all the



0.1

schemas. Thus, by taking majority voting among these 008

matchers, we can achieve a much better matching accuracy. 008
Therefore, the ensemble framework consists of two 007

steps:multiple samplingandrank aggregationas Figure 6 o

illustrates. The multiple sampling step randomizes the in-

put schemas with multiplg” trials, where each trial is a 003

downsampling of the input schemas with sampling size o0

We then execute thBCM holistic matcher on each trial.

The output of each trial is a list of ranked matchings. Fi-

nally, the rank aggregation step aggregates the discoverddgure 7: The binomial distribution of(M), with 100

matchings from all the trials into a merged list of rankedtrials andPr (M) = 0.69.

Probability
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matchings by taking majority voting. _ that can reflect the wills of the majority in the merged list of
For brevity of exposition, we intuitively motivate the ef- aichings— That is, if a matching can be correctly ranked
fectiveness of this ensemble framework. in most trials, its ranking in the merged result should also

Example 1: Suppose there are 50 input schemas. Supposkée correct. Please refer to [19] for these technical details.
a matching)/ cannot be correctly ranked because there are 10 €valuate the matching performance, we compare the
five noisy schemas that can affet. On the other hand, accuracies of the base framework and the ensemble frame-
assume/ can be correctly ranked if there are no more thanVOrk on matching query interfaces in two domains, Books

two noisy schemas. Also, suppose we want to sample 28"d Airfares, withbCM as the matching algorithm. The
schemas in one trial and conduct 100 trials in total,(s ~ ©XPeriments show that the ensemble framework can im-

= 20 andT" = 100). prove the matching accuracy DICM by up to 20%.

By simple derivation, we can see that we have 0.07 prob- . . .
ability to get a single trial with no noisy schemas, 0.264'2 Feedback: Domain Statistics
probability with one and 0.36 probability with two. To- While theensemblgust discussed addresses h6W can
gether, we have 0.07 + 0.26 + 0.36 = 0.69 probability torobustly cascade witle, this section explores the possibil-
correctly rankM in a single trial (.e., when there is no ity wherelE may take advantage of tHeedbackof more
more than 2 noises), denoted By (M) = 0.69. “clues,” in this case domain statistics, fraBM to correct
Next, we are interested in how many times, among thehe errors of E.
100 trials, can we observd being ranked correctly? This
problem can be transformed as a standard scenario of tosExample 2: Figure 8(a) highlights a conflict raised dur-
ing an unfair coin in statistics: Given the probability of ing parsing of a query interface, where two constraints:
getting a “head” in each toss @&-(M), with 100 tosses, C1 = [adults; equal $val:{1,2,...}] and Cy =[adults;
how many times can we observe heads? With this equivequal $val:{round-trip, one-way}] compete for the attribute
alent view, we know that the number of trials in whigh  adults. After examining a collection of interfaces in the
is correctly rankedife., the number of tosses to observe same domainsM identifies that constrairgdults is most
heads), denoted b (M), is a random variable that has a likely of numeric  type, which has very distinctive pat-
binomial distribution [3] with the success probability in one terns such as a numeric selection list shown in Figure 8(a).
trial as Pr(M). Figure 7 shows the binomial distribution Such a notion otype with distinctive patternsan often
of O(M). This figure essentially shows, if the probability be observed in query interfacesg, numeric (as just ob-
to get a head in one toss is 0.69, after tossing 100 times, tHgerved) and date (with day, month, year inputs). Such type
probability of observing a certain number of heads. information, if available, is very helpful for conflict res-
As we take majority voting among all the trials, we are olution. In this particular example, knowing the attribute
thus interested in the probability that we can correctly rankadults is more likely of numeric type, we are able to deter-
M (or observe heads) in the “majorityi:¢., more than 50) mine more confidently that is a better association. m
of any 100 trials (or tosses). From Figure 7, we know that

we have 0.9996 probability to obserdé in no less than In generalJE can leverage the collective statistics of the
50 trials, which means it is almost for sure thidtcan be ~ peer query interfaces in the same domain. WHehan-
correctly ranked in the majority of trials. m dles one interface at a time (Section 3.2), such “holistic”

domain statistics is often available at subsequent subsys-

Example 1 analytically illustrates, wheti andT are  tems, where many interfaces gather for further processing.
determined, the effectiveness of the ensemble frameworlSpecifically, asSM takes interfaces from the same domain
However, to realize this framework, we still need to tackleas input, it is able to collect such statistics in the process of
some challenges in each step. First, in the multiple samdiscovering matchings.
pling steps, we need to develop a principled approach to au- Note that, as Example 2 hints, our exploration of “do-
tomatically determining an appropriate setting of the samimain statistics” is itself a “voting” (or majority) strategy—
pling size and the number of trials that can guarantee goodhe conflicting associations are resolved by all “peer”
robustness of a holistic matcher. Second, in the rank agguery interfaces in the same domain. For this example,
gregation step, we need to develop an aggregation stratedpy voting on possible attribute types, we can conclude that



Number of .-C, c c LTI, OIS QT — C
H : 2
passengers: | |1 = 1= Lo - .2 i passengers A
Adults | Childry H : g . T
c _— o ................. (m Last Name : e.g. Mike! c Children
2 fRomd Trip  © Ome Way : First Name e.g. Smith t & Round Trip © One Way

(a) Conflict 1 in query Interfac€)I, (b) Conflict 2 in query Interfac& I, (c) Conflict 3 in query Interfac€) 1,
Figure 8: Conflict examples

adults is more likely to occur in a numeric pattern and correlations, while favoringassengers against it. There-
thus choose the correct association. Section 5 will furfore, we may consideadults as a better interpretation than
ther “unify” the domain-feedback scheme with ensemblepassengers. [
cascading (Section 4.1) by the same insight of “majority.”

In our development, we identify three types of domain  Given these three types of feedback information, we
statistics as feedback information that are effective in reneed to combine them with a coherent mechanism for en-

solving the conflicts remained from parsing. hancing the accuracy (as further error handling beyond
) what Section 3.2 discussed) t. Currently, we explore
Type of attributes a simple rule based framework. Specifically, we write the

As illustrated in Example 2, there is a notion of type conflict resolution policies as rules, where each rule states
underlying many attributes, which often reveals distinctivee condition to be satisfied, and the favored constraint to
patterns. Since matched attributes are usually of the samg, cosen by exploiting the domain statistics. In particular,

type, by looking at many interfaceSM is able to collect v have three preference rules, with each rule reflecting
the common type of an attribute, as one type of domairy,e type of domain statistics:

istics. . . .
statistics e Rule 1: Using type of attributeThis rule favors the con-

Frequency of attributes straint whose type is more frequently used in other inter-
Each domain typically has a set of frequently queried faces.
attributes. For examplauthor, title, ISBN, subject, cat-
egory are the common attributes in Books domain, dad
parture city, departure date, passengers, adults, chil-
dren in Airfares domain. A reasonable assumption we care Rule 3: Using correlation of attributeThe rule favors
make is that a query interface is more likely to ask queries the constraints that co-occur with any positively corre-
on those common attributes. Therefore, the information of lated constraint, and disfavors the constraints that co-
attribute frequencies, as another type of domain statistics, occur with any negatively correlated constraint.

can be used to resolve conflicts. While those preferences, when working individually,
determine a favored constraint, their choices may not agree
with each other. For instance, when resolving the conflict
betweeradults andpassengers in Figure 8(c), if we de-
ploy rule 3, we will favoradults. However, suppose that

. X passengers is more frequently queried thaadults, de-
ever, asSM collects constraints from many query inter- o ,ving“ryle 2 will give a different answer, which favors

;aces, ittlmay teI_VEdtkl;at tak\]ttributdqsttna;me is m;ﬁh mtct)r'le; Jassengers. To solve this problem of inconsistency, we
requently queried by he peer Intertaces, while allribul€,yant 5 simple strategy — we prioritize the three rules as
e.g.Mike rarely occurs. We thus may conclude that con-

X ) rule 3—+2—1, based on the confidence of the correctness
straintC is preferred tha@s. [ ] of each rule

To validate the effectiveness of using the feedback infor-

Correlation of attributes mation, we conducted a preliminary study to see how much

As discussed in Section 3.8M discovers matched at- the domain statistics can help to improve the accuracy of
tribute groups, where attributes within the group are posJE. In particular, we collected the parsed results in Airfares
itively correlated, and attributes across the groups nega2nd Books domains, with 20 and 30 interfaces respectively.
tively correlated. As the third type of domain statistics, Ve measured the results as the percentage of conflicts that
such correlations can serve as the constraints to check tt@e resolved correctly using the feedback information. The

sanity of the extracted results and further to resolve conresultfrom the Airfares domain shows among the 20 airline
flicts. guery interfaces, there are 7 conflicts and all of them can be

correctly resolved. For Books domain, there are 7 conflicts
Example 4: Consider the conflict betweenumber of = among 30 book query interfaces and 4 out of the 7 are re-
passengers C; andadults Cs in QI, in Figure 8(c).SM  solved. Totally, 11 out of 14 conflicts from the 50 interfaces
may discover that attributesdults andchildren are posi- are correctly resolved, which amounts to 78.6% percent-
tively correlated, while both of them are negatively corre-age. This preliminary study shows that exploring feedback
lated withpassengers. Givenchildren being confidently  information has good potentials for improving accuracy.
identified as an attributd.€., with no conflicts with oth- Although the rule based approach is rather simple, it
ers), choosingdults will be consistent with the discovered tends to be heuristic. A more principled way, which we are

e Rule 2: Using frequency of attributdhis rule favors the
constraint whose attribute is more frequently queried.

Example 3: Consider a conflict generated in interpretation
of query interface&) I, as shown in Figure 8(b). Constraint
C1 =[last name; contain $val] andC;y =[e.g.Mike; contain
$val] conflict on the input box represented &sl. How-



currently investigating is to explore a probabilistic mode Sytactic Composition Syatistic Generation

that combines all three types of domain statistics togeth ﬁ

to generate an overall best, as the “most-probable,” intqreeosions| . [Semantics:| || [Presentations:| — Tiiaden . [Semantics
pretation. Such a probabilistic model is motivated by ol cosons ||| | oscnmronces | - Genevior | ‘marehing
observation that the feedback information essentially d @ @

notes the likelihood of a constraint to be correct from dif

ferent aspectd.e., type, frequency and correlation), which Visual-language Parsing Correlation Mining

can be estimated by the domain statistics we have collecte¢g) /E: interface extraction|| (b) SM: schema matching

Under this VieW, I’eSO|Ving conflicts thus becomes Choosing Figure 9: Holistic integration: Exp|oring regu'arity
the interpretation with highest probability. ) . . .
crucial leverage to solve integration tasks— By exploring the

5 Putting Together: Unified Insights hidden regularity and peer majority across many sources,
- . _a holistic approach will take advantage of the large scale
Toward building the MetaQuerier system, we are also inqwjith sufficient “samples”) to discover the desired seman-

spired to observe that there seem to emerge common ifjics for integration. These “holistic” insights, we believe,

tasks (Section 3.2) separately, each with its specific tech-
niques, putting things together actually reveals a commo®, 1 Hidden Regularity: Semantics Discovery
methodology, which conceptually unifies the seemingly ] S _
different approaches. This section discusses this methodts the first leverage, by holistic integration, we explore
ology of holistic integrationand the insights it implies. hidden regularity existing across sources. As just dis-
To begin with, as Section 1 motivated, we note thatcussed, any integration task is essentially the discovery of
any integration task is, to a large extent, abseinantics ~ Certain target semantics— but, we can only observe some
discovery_ to discover certain targﬂemantics e.g, for “SUrface"presentatlonSAS a unified InS|ght, several of our
taskIE (interface extraction): “understanding” query con- Subsystems— we will usé, SM as examples— have ex-
ditions; for SM (schema matching): “matching” them. The Ploited the hidden regularity of surface presentations for se-
major barrier for large scale integration, with its dynamic mantics discovery. In retrospect, we observe that, under the
and on-the-fly nature, is exactly such semantics discoverygame holistic-integration spirit, our subsystems have built

for the lack of pre-configured per-source knowledge. upon two common hypotheses, which relate underlying se-
By “ho”stic integration,” we take a ho“stic VieW to ac- mantics to Observable pl’esentatlons, acCross many sources.

count for manysources together in integration, by glob- (S) Shallow observable cluesThe “underlying” seman-
ally exploiting clues across all sources for resolving the tics often relates to the “observable” presentations, or
“semantics” of interest— To our surprise, although not ob-  shallow clues, in some way ebnnection Thus, we can
vious by their own, when put together, many of our inte-  often identify certain observable clues, which reflect the
gration tasks implicitly share the same holistic-integration underlying semantics.

framework— which thus conceptually “unifies” our various . ) .

techniques. As a hindsight, we thus “propose” holistic in-(*t) Holistic hidden regularity: Such connections often
tegration as a conceptual framework and a unified method- follow some implicit properties, which will reveal holis-
ology for large scale integration. tically across sources. Thus, by observing many sources,

Specifically, we observed two common insights in the We can often identify certain hidden regularity that
various materializations of holistic integration across the 9uides how the semantics connects to the presentations.
MetaQuerier system, in both the techniques for subsystems These hypotheses shed light for dynamic semantics dis-
(Section 3) and system integration (Section 4). covery (Section 1) in large scale integration: By identifying
e Hidden regularity: Holistic integration can leverage the .holistic regu]arity, our integration task, to discpver the

hidden regularityacross many sources, to discover thedesired semantics, is thus tiwerseof this semantics-to-

desired semantics— For our subsystems (Section 3), tasje§esentations connection. Thatis, our “holl_st|c integration”

IE exploits hidden “syntax” an&SM hidden “schema framework can tackle Ie_mrge .scale integration by develop-

model.” as Section 5.1 will explain. (While not ex- INg Somereverse analysiswhich holistically analyzes the

plained hereSCandQT also explore the same concept.) shallow clues., as guided .by the'hidden regularity, to dis-
cover the desired semantics. This general framework con-

e Peer majority: It can also leveraggeer majority by  ceptually unifies our approaches for several tasks— We now
taking clues from the majority of peers— For our sys-gemonstrate wittiE and SM, as Figure 9 contrasts.
tem integration (Section 4), the ensemble-cascading and Fjrst, consider taskE: As Section 3.2 introduced, the
domain-feedback schemes both exploit the majority forgservation of condition “patterns” motivated us to hypoth-
error handling, as Section 5.2 will explain. esize the existence d¢fidden syntax which, in our term
As evident from our experience (albeit limited), we be- now, is the hidden regularity, across holistic sources. As
lieve that holistic-integration is promising for large scale Figure 9(a) shows, the hypothetical syntax lfgdden reg-
integration, by leveraging the challenge of scale as an opularity) guides a syntactic composition processd@asnec-
portunity: We are inspired that large scale can itself be dion) from query conditions (asemanticsto their visual



patterns (apresentations That is, there exists a syntactic stanc@. As Figure 6 shows, the ensemble scheme creates

connection (Hypothesi§), and such connections at vari- multiple samples (HypothesiR) of the base results, by

ous sources share the same grammar as the regularity (Hgewnsampling the original input. By design (Section 3.2),

pothesisH). This hidden syntax effectively transforms the the baseSM is “reasonable” in finding correct matchings

problem: As Section 3.2 described, we view query inter-(HypothesisB). We thus take a majority voting, which en-

faces as aisual languagetheir extraction is precisely the hances the accuracy 6iV.

reverse analysis— misual-language parsing Second, consider domain-feedback. As Section 4.2 pro-
Second, consider tasBM. As Section 3.2 introduced, posed, it enhances the accuracyl/bf(as thebase algo-

we hypothesize a hidden generative behavior, which probarthm) for extracting query conditions (@kata instancgin

bilistically generates, from a finite vocabulary, the schemasn interface. In our holistic framework, we rdf for all

we observed— In our term now, this consistent generativénterfaces the crawler discovered (Figure 2)— Thus, we nat-

behavior is the hidden regularity. As Figure 9(b) shows, theurally create multiple “samples” for any query condition;

hidden generative behavior (A&lden regularity guides a  e.g, a condition omadults will likely appear in many in-

statistic generation process (esnnectiol from attribute  terfaces, in different ways— each is thus a random sample

matching (assemantickto their occurrences in interfaces (HypothesisR). By design (Section 3.2), the ba#e is

(as presentations That is, there exists a statistic con- “reasonable” and thus extracts correctly most of the time

nection (HypothesisS), and such connections at various (HypothesisB). The feedback mechanism will gather sta-

sources share the same generative behavior as the regulariistics from all samples, for correcting errors— Such statis-

(HypothesisH). This generative behavior constrains how tics (e.g, the likely type of attributeadults in the Airfares

attributes may occur in interfacesg, grouping attributes domain) reflects the majority— similar to voting.

tend to positively co-occur while synonym attributes neg-

atively. Thereverse analysito find attribute matchingsis 6 Concluding Discussion: Issues & Agenda

thus the “mining” of correlated attributes, and thusoare-

lation miningapproach. As an interim report, this paper presents our proposal of the

MetaQuerier, summarizes its architecture and techniques,
and reports lessons we have learned. While we are still to
deliver our promise of a complete MetaQuerier, our expe-
As the second leverage, by holistic integration, we explorgience has been encouraging— As this paper has presented,
the majority of peers for correcting errors made by the rel- our course of development has gained valuable insights for
atively few. As Section 4 noted, any integration task, in large scale integration, which will continue to direct us
its semantics discovery, is essentially “soft,” since it cantoward building the MetaQuerier— As our future agenda,
make errors— Thus, we generally negcbr correction for  there remain many open issues, as we discuss next.
correcting errors of a “base algorithm,” to enhance its ac- To begin with, while we have developed subsystems
curacy. In the MetaQuerier, such error correction arises irDC, |E, SC, SM and QT, to complete the entire system
our system integration (Section 4). (Figure 2), we need to further develop the currently missing
This section will propose, as we observed, that such ercomponentsFirst, to route a user’s query to right sources,
ror correction can also leverage the holistic view acrosshe subsysterSSneeds to support an effective and efficient
many sources. The insight hinges on the following hy-source selection strategy. Such selection will likely call for
potheses, which concern executing some base algorithiore sophisticategource modelingto capture not only

5.2 Peer Majority: Error Correction

over a data “instance” as input. query capability (as we currently do) but also data qual-
(B) Reasonable bas&he base algorithm is “reasonable” ity of a Web database. With such modeling, we will de-
While not perfect, errors are relatively rare. velop scoring schemes for ranking sources by their poten-

. tial to “satisfy” a query. Secongto present query results,

(R) Random samplesthe data instance can be randomly yhe sypsystenRC needs to compile the results from dif-

sampled, for the base algorithm to execute over. ferent sources into a coherent piece. Such compilation will

These hypotheses hint on a majority-based approactequire extracting data from the result pages and matching
for error correction in large scale integration: Let’s createobjects across different sources, among other issues. While
many samples of base results. First, each base sample wakisting works on wrapper induction (Section 2) have ex-
make rare errors, since the base is “reasonable” (Hypothdensively studied such extraction, our scenarios again allow
sisB). Second, the errors across samples are independents to leverage the “holistic” insighg,g, in a way similar to
since the data instances are “random” (Hypoth@&JisTo-  how IE builds upon “hidden syntax.” We plan to complete
gether, by counting over all samples, we can use the majoeur study of all the modules.
ity among them to correct the relatively few errors. (Such Further, beyond individual subsystems, we believe the
“boosting” can be formally derived, with the same intuition “science” of system integration, for building an integration
as Example 1.) This general approach conceptually unifiesystem like the MetaQuerier, deserves thorough study. As
our error-correction schemes (of Section 4). Section 4 suggested, such integration is not simply mod-

First, consider ensemble-cascading. As Section 4.1 praile assembly— There are interesting architectural issues to
posed, it enhances the accuracyS#fl (as thebase algo- study. While we have proposed ensemble-cascading and
rithm) for matching input query schemas (as theta in-  domain-feedback as sample techniques, the “science” is not



yet clear. For example, will cascading and feedback cof15]
exist? In that case, will there be some stable “fixpoint” in
the “feedback loop”— Note that Figure 5 clearly resembles
similar loop structure ircontrol theory We wonder how  [16]
much we can borrow from the discipline to design a “feed-
back” integration system. We plan to more systematicallylm
study this “science” of system integration.

Finally, as we move closer to system completion, welt8]
will validate with large scale crawling of Web databases.
As Section 1 explained, we currently rely on our testt9
data repository for concurrently developing various tasks—
While our subsystems seem to perform well in their iso-
lated study (Section 3.2) on our test dataset, will they in{20]
deed scale to the real Web scale (for sources on the order
of 10°)? We have started crawling the deep Web, which
will significantly push our “scale” of study. (21]

As we conclude, we are eager to further our exploration
of large scale integration over the deep Web— As we mov?ZZ]
forward, while unforeseen challenges will likely arise, we
are optimistic that inspiring insights will again emerge.

[23]
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